Homework # 2.

1. Let \(\mu \) be a Borel measure on \([0, 1]\) with \(\mu([0, 1]) = 1 \). Show that there exists a compact set \(K \subseteq [0, 1] \) so that \(\mu(K) = 1 \) but \(\mu(H) < 1 \) for any proper compact subset \(H \) of \(K \). \(K \) is called the support of \(\mu \). Show that every compact subset of \([0, 1]\) is the support of some Borel measure.

2. Construct a function such that each set \(\{ f(x) = \alpha \} \) is measurable for any \(\alpha \in \mathbb{R} \) but the set \(\{ f(x) > 0 \} \) is not measurable.

3. Construct a monotone function that is discontinuous on a dense set on \([0, 1]\).

4. Let \(\phi \) be a non-negative continuous function on \(\mathbb{R}^n \) such that \(\int \phi = 1 \). Given \(t > 0 \) define \(\phi_t(x) = t^{-n} \phi(x/t) \). Show that if \(g \in C^\infty(\mathbb{R}^n) \) with compact support then
 \[
 \phi_t(g) = \int_{\mathbb{R}^n} \phi_t(x)g(x)dx \to g(0).
 \]
 Because of that \(\phi_t \) is called an approximation of identity. How much can you weaken the regularity assumptions on \(\phi \) and \(g \)?

5. Let \(E_k \) be a sequence of measurable sets such that
 \[
 \sum_{k=1}^{\infty} \mu(E_k) < +\infty.
 \]
 Show that then almost all \(x \) lie in at most finitely many of the sets \(E_k \).

6. Let
 \[
 \psi(x) = \begin{cases} x, & 0 \leq x \leq 1/2, \\ 1 - x, & 1/2 \leq x \leq 1, \end{cases}
 \]
 and extend \(\psi(x) \) to a periodic function on all of \(\mathbb{R} \). Set
 \[
 f(x) = \sum_{n=1}^{\infty} \frac{1}{4^n} \psi(4^n x).
 \]
 Show that \(f(x) \) is continuous on \(\mathbb{R} \) but is nowhere differentiable.