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Abstract

These notes are a compilation of separate original notes by Jim Nolen and Pierre
Cardaliaguet, with some very small extra background material, all errors are mine.
This is not my text. Whenever ”we’ appears below, it should be understood as ”Pierre
Cardaliaguet”.

1 What is a mean-field game?

The mean-field game system consists of a Hamilton-Jacobi equation for a value function u(x, t)
and a Fokker-Planck equation for a mean-field density m(x, t):

−∂tu− ν∆u+H(x,Du) = f(x,m(x, t)) in Rd × (0, T )
∂tm− ν∆m− div (DpH(x,Du)m) = 0 in Rd × (0, T )
m(0, x) = m0(x) , u(x, T ) = G(x).

(1.1)

As we will see, this system comes up in an optimization problem approximating a large number
of agents (players), where the behavior of each player is governed by the rest of the players
via the mean-field. Accordingly, the evolution of the value function u(x, t) for an individual
player, is coupled to that of the density m(x, t) of all players. The term mean-field refers to
the fact that the strategy of each player is affected only by the average density (mean-field)
of the other players, and not by a particular stochastic configuration of the system. The
function H(x, p) is the Hamiltonian, and the function f(x,m) is a local coupling between the
value function of the optimal control problem and the density of the players. Of course, the
coupling need not be local, and we will consider non-local couplings as well.

The most unusual feature of (5.1) is that it couples the forward Fokker-Planck equation
that has an initial condition for m(0, x) at the initial time t = 0 to the backward in time
Hamilton-Jacobi equation for u(t, x) that has a prescribed terminal value at t = T . Thus,
this is not a Cauchy problem that normally arises in PDE problems, and has novel features
compared to what we are used to see.

Mean field game theory is devoted to the analysis of differential games with infinitely
many players. For such large population dynamic games, it is unrealistic for a player to
collect detailed state information about all other players. Fortunately this impossible task is
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useless: mean field game theory explains that one just needs to implement strategies based on
the distribution of the other players. Such a strong simplification is well documented in the
(static) game community since the seminal works of Aumann [14]. However, for differential
games, this idea has been considered only very recently: the starting point is a series of papers
by Lasry and Lions [102, 103, 104, 105], who introduced the terminology in around 2005. The
term mean field comes for an analogy with the mean field models in mathematical physics,
which analyse the behavior of many identical particles (see for instance Sznitman’s notes
[122]). Here, the particles are replaced by agents or players, whence the name of mean field
games. Related ideas have been developed independently, and at about the same time, by
Caines, Huang and Malhamé [88, 89, 90, 91], under the name of Nash certainty equivalence
principle.

The Cardaliaguet notes we are following (literally copy-pasting almost 100% of the time)
aim to basic presentation of the topic. They are largely based on Lions’ series of lectures
at the College de France [108] and on Lasry and Lions seminal papers on the subject [102,
103, 104, 105], but also on other notes taken from Lions lectures: Yves Achdou’s survey for
a CIME course [4] and Guant’s notes [82] (see also the survey by Gomes and Saude [72]).

There are several approaches to the analysis of differential games with an infinite number
of agents. A first one is to look at the limit of Nash equilibria in differential games with
a large number of players and try to pass to the limit as this number tends to infinity. A
second approach consists in guessing the equations that Nash equilibria of differential games
with infinitely many players should satisfy and to show that the resulting solutions of these
equations allow to solve differential games with finitely many players.

Concerning the first approach, little was completely understood until very recently. Lions
explains in [108] how to derive formally an equation for the limit to Nash equilibria: it is a
nonlinear transport equation in the space of measures (the “master equation”). Existence,
uniqueness of solution for this equation is an open problem in general, and, beside the linear-
quadratic case, one did not know how to pass to the limit is the Nash system. Progress has
been made very recently on both questions [29, 51, 62] and we explain some of the ideas in
the second part of these notes. The starting point is that, as observed by Lions [108], the
“characteristics” of the infinite dimensional transport equations solve—at least formally—a
system coupling of a Hamilton-Jacobi equation with a Kolmogorov-Fokker-Planck equation:
this is the MFG system, which is the main object of the first chapter of these notes.

A very nice point is that this system also provides a solution to the second approach:
indeed, the feedback control, given by the solution of the mean field game system, provides
ε−Nash equilibria in differential games with a large (but finite) number of players. This point
was first noticed by Huang, Caines and Malham [89] and further developed in several papers
(Carmona, Delarue [44], Kolokoltsov, Li, Yang [95], etc...).

To complete the discussion on the master equation, let us finally underline that, beside
the MFG system, another possible and natural simplification of this equation is a space dis-
cretization, which yields to a more standard transport equation in finite space dimension: see
the discussion by Lions in [108], by Gomes, Mohr, Souza [63, 64, 65] and Guant [80].

We now describe the field field game system in a more precise way. The system has two
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unknowns u and m, which solve the equations
(i) −∂tu− ν∆u+H(x,m,Du) = 0 in Rd × (0, T )

(ii) ∂tm− ν∆m− div (DpH(x,m,Du)m) = 0 in Rd × (0, T )
(iii) m(0) = m0 , u(x, T ) = G(x,m(T ))

(1.2)

In the above system, ν is a nonnegative parameter. The first equation has to be understood
backward in time and the second one is forward in time. There are two crucial structure
conditions for this system: the first one is the convexity of H = H(x,m, p) with respect to
the last variable. This condition means that the first equation (a Hamilton-Jacobi equation)
is associated with an optimal control problem. This first equation is interpreted as the value
function associated with a typical small player. The second structure condition is that m0

(and therefore m(t)) is (the density of) a probability measure.
The heuristic interpretation of this system is the following. An average agent controls the

stochastic differential equation
dXt = αtdt+

√
2νdBt

where (Bt) is a standard Brownian motion. He aims at minimizing the quantity

E
[ˆ T

0

1

2
L(Xs,m(s), αs)ds+G(XT ,m(T ))

]
,

where L is the Legendre transform of H with respect to the p variable. Note that in this cost
the evolution of the measure m(s) enters as a parameter.

The value function of our average player is then given by (1.2-(i)). His optimal control
is—at least heuristically—given in feedback form by α∗(x, t) = −DpH(x,m,Du). Now, if all
agents argue in this way and if their associated noises are independent, then by the law of
large numbers their repartition moves with a velocity which is due, on the one hand, to the
diffusion, and, one the other hand, on the drift term −DpH(x,m,Du). This leads to the
Kolmogorov-Fokker-Planck equation (1.2-(ii)).

The aim of these notes is to collect—with detailed proofs—various existence and unique-
ness results obtained by Lasry and Lions for the above system when the Hamiltonian H is
“separated”: H(x,m, p) = H(x, p)−F (x,m), F being a coupling between the two equations.
There are two types of coupling which are appear in the mean field game literature: either F
is nonlocal and regularizing, i.e., we see F = F (x,m(t)) as a map on the space of probability
measures. This is typically the case when two players who are not to close from each other
can influence themselves. Or F is of local nature, i.e., F = F (x,m(x, t)) depends on the value
of the density at the point (t, x), meaning that the players only take into account their very
nearest neighbors. Although the former coupling can be seen as a limit case of the first one,
in practice techniques of proof are more depending in this case. In particular, if we provide
existence and uniqueness results for nonlocal couplings when ν = 1 (viscous case) and ν = 0
(1rst order model), we consider local couplings only for viscous equations (i.e., ν = 1). We
carefully avoid the case of 1rst order models (ν = 0) with local coupling: this case, described
in [108], is only understood under specific structure conditions and requires several a priori
estimates which, unfortunately, exceed the modest framework of these notes.
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Some comments on the literature are now in order. Since the pioneering works by Lasry
and Lions and by Huang, Caines and Malham, the literature on the MFG has grown very
fast: it is by now almost impossible to give a reasonable account of the activity on the topic.
Many references on the subject can be found, for instance, in the survey by Gomes and Saud
[72] and in the monograph by Bensoussan, Frehse and Yam [25]. We only provide here a few
references, without the smallest pretension of exhaustivity.

By nature mean field games are related with probability and partial differential equations.
Both community have a different approach of the topic, mostly inspired by the works of
Caines, Huang and Malham for the probability part, and by Lasry and Lions for the PDE
one.

Let us start with the probabilistic aspects. As the value function of an optimal control
problem is naturally described in terms of backward stochastic differential equations (BS-
DEs), it is very natural to understand the MFG system as a BSDE with a mean field term of
McKean-Vlasov type: this is the approach generally followed the probabilistic part of the liter-
ature on mean field games: beside the papers by Huang, Caines and Malham already quoted,
see also Buckdahn, Li, Peng [28], Buckdahn, Djehiche, Li, Peng [28], Andersson, Djehiche [13]
(where a linear MFG system appears as optimality condition of a control of mean field type).
Forward-backward stochastic differential equation (FBSDE) of the McKean-Vlasov type, are
analyzed by Carmona, Delarue [44], Kolokoltsov, Li, Yang [95] (with nonlinear diffusions).
MFG models with a major player are discussed by Huang [85], while Nourian, Caines, Mal-
hame, Huang [115] deal with mean field LQG control in leader-follower stochastic multi-agent
systems. Differential games in which several major players influence an overall population but
compete with each others lead to differential games of mean field type, as considered by Ben-
soussan, Frehse [24]. Linear quadratic MFG system have also been very much investigated:
beside Huang, Caines and Malham work, see Bensoussan, Sung, Yam, Yung [23], Carmona,
Delarue [43] for probabilistic arguments, and Bardi [15] from a PDE view point.

In terms of PDE, the analysis of mean field games boils down—more or less—to solve the
coupled system (1.2) with various assumptions on the coefficients. Beside Lasry and Lions’
papers, other existence results and estimates for classical MFG system can be found in Guant
[77, 81] (by use of Hopf-Cole transform for 2nd order of MFG systems with local coupling),
Cardaliaguet, Lasry, Lions, Porretta [40] (2nd order MFG systems with local unbounded
coupling), Bardi, Feleqi [16] (stationary MFG systems with general diffusions and boundary
conditions), Gomes, Pirez, Sanchez-Morgado [66] (estimates for stationary MFG systems),
Cardaliaguet [38] (1rst order MFG system, local coupling by methods of calculus of varia-
tion). Models with several populations are discussed by Feleqi [56], Bardi, Feleqi [16], Cirant
[47]. Other models are considered in the literature: the so-called extended mean field games,
i.e., MFG systems in which the HJ equation also depends on the velocity field of the players
have been studied by Gomes, Patrizi, Voskanyan [67], Gomes, Voskanyan [68]; Santambrogio
[119] discusses MFG models with density constraints; mean field kinetic model for systems of
rational agents interacting in a game theoretical framework is discussed in [49] and [50].

Numerical aspects of the theory have been developed in particular by Achdou, Capuzzo
Dolcetta [1], Achdou, Camilli, Capuzzo Dolcetta [2], [3], Achdou, Perez [6] Camilli, Silva [32],
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Lachapelle, Salomon, Turinici [97].

As shown by numerical studies, solutions of time dependent MFG systems, such as (1.2)
quickly stabilize to stationary MFG systems: the analysis of the phenomenon (i.e., the long
time behavior of solutions of the mean field game system) has been considered for discrete
systems by Gomes, Mohr, Souza [63] and for continuous ones in Lions’ lectures, and sub-
sequently developed by Cardaliaguet, Lasry, Lions, Porretta [40, 41] for second order MFG
game system with local and nonlocal couplings, in Cardaliaguet [37], from 1rst order MFG
systems with nonlocal coupling.

It is impossible to cover all the applications of MFG to economics, social science, bio-
logical science, and engineering—and this part is even less complete than the previous ones.
Let us just mention that the early work on large population differential games was moti-
vated by wireless power control problems: see Huang, Caines, Malham [86, 87]. Application
to economic models can be found in Guant [76], Guant, Lions, Lasry, [78, 106], Lachapelle
[96], Lachapelle, Wolfram [98], Lucas, Moll [109]. A price formation model, inspired by the
MFG, has been introduced in Lasry, Lions [102] and analyzed by Markowich, Matevosyan,
Pietschmann, Wolfram [110], Caffarelli, Markowich, Wolfram [31].

2 Hamilton-Jacobi equations

This section is an edited and expanded version of Jim Nolen’s notes.
We first recall some basic facts about the solutions of the initial (or, rather, terminal)

value problem for the Hamilton-Jacobi equations of the form

ut +H(∇u, x) = 0 (2.1)

u(T, x) = u0(x).

In order to explain how such problems come about, and to understand why the mean-field
games with their coupling of forward and backward equations are so natural, we need to recall
some basic notions from the control theory.

2.1 Deterministic optimal control

Consider the following abstract optimization problem. Let y(s) : [t, T ]→ Rd denote the state
of a system at a time s ∈ [t, T ], which evolves according to a system of ordinary differential
equations

ẏ(s) = f(y(s), α(s)), s ∈ [t, T ] (2.2)

y(t) = x ∈ Rd,

with t > 0 and x ∈ Rd fixed. The function α(s) is called a control and takes values in a
compact subset A of Rm. The set of all admissible controls will be denoted by At,T :

At,T = {α(s) : [t, T ]→ A | α(s) is measureable} . (2.3)
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When the dependence on t and T is clear from the context, we will simply use A instead. By
choosing α we have control over the course of the system y(t).

We would like to control the system in an optimal way, in the following sense. Let a
function g(x) : Rd → R represent a final payoff, which depends on the final state of the
system at time T , and the function r(x, α) : Rd × Rm → R represent a running payoff or
running cost. Given the initial state of the system y(t) = x, the optimization problem is to
find an optimal control α∗(·) that maximizes the functional

Jx,t(α
∗) = max

α(·)∈A
Jx,t(α) = max

α(·)∈A

[ ˆ T

t

r(y(s), α(s)) ds+ g(y(T ))
]
. (2.4)

Even if an optimal control does not exist, we may study the function

u(x, t) = sup
α(·)∈A

Jx,t(α) = max
α(·)∈A

[ ˆ T

t

r(y(s), α(s)) ds+ g(y(T ))
]
, (2.5)

called the value function associated with the control problem. It depends on x and t through
the initial conditions defining y(s). Note that u(x, T ) = g(x), hence whatever evolution
problem in t the function u(x, t) satisfies, it is natural to prescribe its terminal value at t = T
and not its initial value at t = 0.

2.2 The Dynamic Programming Principle

Theorem 2.1. Let u(x, t) be the value function defined by (2.5). If t < τ ≤ T , then

u(x, t) = max
α(·)∈A

[ˆ τ

t

r(y(s), α(s)) ds+ u(y(τ), τ)

]
. (2.6)

The relation (2.32), called the Dynamic Programming Principle, is a fundamental tool
in the analysis of optimal control problems. It says that if we know the value function at
time τ > t, we may determine the value function at time t by optimizing from time t to time τ
and using u(·, τ) as the payoff. Roughly speaking, this is reminiscent of the Markov property
of a stochastic process, in the sense that if we know u(x, τ) we can determine u(·, t) for t < τ
without any other information about the control problem beyond time τ , for times s ∈ [τ, T ].
More precisely, it means that u(x, t) satisfies a semi-group property. Note, however, that the
time in the semi-group property is running backwards!

Proof of Theorem 2.1: The proof of the Dynamic Programming Principle is based on
the simple observation that any admissible control α ∈ At,T is at combination of a control
in At,τ with a control in Aτ,T . We will express this relationship as

At,T = At,τ ⊕Aτ,T . (2.7)

This notation ⊕ means that if αt(s) ∈ At,τ and ατ (s) ∈ Aτ,T , then the control defined by
splicing αt and ατ according to

α(s) = (αt ⊕ ατ )(s) :=

{
αt(s), s ∈ [t, τ ]
ατ (s), s ∈ [τ, T ]

(2.8)

6



is an admissible control in At,T . On the other hand, if we have α ∈ At,T , then by restricting
the domain of α to [t, τ ] we obtain an admissible control in At,τ . Similarly, by restricting the
domain of α to [τ, T ] we obtain an admissible control in Aτ,T .

The function u is defined as

u(x, t) = max
α(·)∈A

[ˆ T

t

r(y(s), α(s)) ds+ g(y(T ))

]
= max

α(·)∈A

[ˆ τ

t

r(y(s), α(s)) ds+

ˆ T

τ

r(y(s), α(s)) ds+ g(y(T ))

]
.

Notice that the first integral on the right depends only on y and α up to time τ , while the
last two terms depend on the values of y and α after time τ . Since a control α ∈ At,T may
be decomposed as α = α1 ⊕ α2 with α1 ∈ At,τ and α2 ∈ Aτ,T , we may maximize over each
component in the decomposition:

u(x, t) = max
α(·)∈A

[ˆ τ

t

r(y(s), α(s)) ds+

ˆ T

τ

r(y(s), α(s)) ds+ g(y(T ))

]
= max

α1∈At,τ ,α2∈Aτ,T ,α=α1⊕α2

[ˆ τ

t

r(y(s), α(s)) ds+

ˆ T

τ

r(y(s), α(s)) ds+ g(y(T ))

]
.

On the right side, the system state y(t) is determined by (2.2) with α = α1 ⊕ α2 ∈ At,T .
Therefore, we may decompose the system state as y(s) = y1 ⊕ y2 where y1(s) : [t, τ ] → Rd

and y2(s) : [τ, T ]→ Rd are defined by

y′1(s) = f(y1(s), α1(s)), s ∈ [t, τ ]

y1(t) = x

and

y′2(s) = f(y2(s), α2(s)), s ∈ [τ, T ]

y2(τ) = y1(τ) = y(τ).

Here we use ⊕ to denote the splicing or gluing of y1 and y2 to create y(t) : [t, T ] → Rd.
Therefore, we have

u(x, t) = max
α1∈At,τ

max
α2∈Aτ,T ,y2(τ)=y1(τ)

[ˆ τ

t

r(y1(s), α1(s)) ds+

ˆ T

τ

r(y2(s), α2(s)) ds+ g(y2(T ))

]
,

where the initial point for y2(τ) is y2(τ) = y1(τ). Observe that y1 depends only on x and α1,
not on y2 or α2. Since the first integral depends only on α1 and y1, this may be rearranged as

u(x, t) = max
α1∈At,τ

max
α2∈Aτ,T ,y2(τ)=y1(τ)

[ˆ τ

t

r(y1(s), α1(s)) ds+

ˆ T

τ

r(y2(s), α2(s)) ds+ g(y2(T ))

]
= max

α1∈At,τ

[ˆ τ

t

r(y1(s), α1(s)) ds+ max
α2∈Aτ,T ,y2(τ)=y1(τ)

(ˆ T

τ

r(y2(s), α2(s)) ds+ g(y2(T ))

)]
= max

α1∈At,τ

[ˆ τ

t

r(y1(s), α1(s)) ds+ u(y1(τ), τ)

]
(using the definition of u)

= max
α(·)∈A

[ˆ τ

t

r(y(s), α(s)) ds+ u(y(τ), τ)

]
(2.9)

7



This completes the proof. 2

Notice that in this proof we have not assumed that an optimal control exists.

2.3 The Hamilton-Jacobi-Bellman Equation

How does the value function depend on x and t? Is it continuous in (x, t)? Is it differentiable?
Does it satisfy a PDE? Unfortunately, the value function may be not differentiable, as shown
by the following simple example. Suppose that f(x, α) = α, g ≡ 0, and r(x, α) is defined by

r(x, α) = −ID(x) =

{
−1, x ∈ D
0, x ∈ Rd \D (2.10)

where D ⊂ Rd is a bounded set. Suppose that the set of admissible controls is A = {|α| ≤ 1},
and y′(s) = α(s), so that |y′(s)| ≤ 1. Therefore, the value function may be written as

u(x, t) = max
y:[t,T ]→Rd,|y′|≤1, y(t)=x

[ˆ T

t

−ID(y(s)) ds

]
. (2.11)

Clearly u(x, t) ≤ 0, and the optimum is obtained by paths that spend the least amount of
time in the set D. If x ∈ Rd \ D, then u(x, t) = 0, because we could take y(s) = x for
all s ∈ [t, T ]. In this case, the system state doesn’t change, so the integral is zero, which is
clearly optimal. On the other hand, if x ∈ D then the optimal control moves y(s) to Rd \D
as quickly as possible and then stays outside D. Since |y′(s)| ≤ 1, this implies that the value
function is given explicitly by

u(x, t) = −min ((T − t), dist(x,R \D)) (2.12)

where
dist(x,R \D) = inf

y∈R\D
|x− y|, (2.13)

is the Euclidean distance from x to the outside of D. Albeit continuous, this function may
be not differentiable. Indeed, if D = {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1} is the unit disk, then

u(x, t) =

{
|x| − 1, |x| ≤ 1

0, |x| ≥ 1
(2.14)

for t ≤ T −1. Thus u(x, t) is not differentiable at the origin x = (x1, x2) = (0, 0) for t < T −1.
So, in general, the value function may be not differentiable. However, one can still derive

a PDE satisfied by the value function. If the value function is differentiable, this equation is
satisfied in the classical sense. At points where the value function is not differentiable, one
can show that the value function (assuming it is at least continuous) satisfies the PDE in a
weaker sense. This weaker notion of “solution” is called a “viscosity solution” of the PDE. For
the moment, we will formally compute as if the value function were actually differentiable.

Let us use the Dynamic Programming Principle to formally derive an equation solved by
the value function u(x, t). The Dynamic Programming Principle does not require differentia-
bility of the value function; however, in our computations we assume that the value function is
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continuous and differentiable with respect to both x and t, and that the optimal control α∗(t)
is continuous in time. The Dynamic Programming Principle tells us that

u(x, t) = max
α(·)∈A

[ˆ τ

t

r(y(s), α(s)) ds+ u(y(τ), τ)

]
. (2.15)

To formally derive a PDE for u, we let h ∈ (0, T − t) and set τ = t+ h < T , then

u(x, t) = max
α(·)∈A

[ˆ t+h

t

r(y(s), α(s)) ds+ u(y(t+ h), t+ h)

]
. (2.16)

We’ll assume that nearly optimal controls are approximately constant for s ∈ [t, t+ h].
First, consider the term u(y(t+h), t+h). From the chain rule and our assumption that u

is continuously differentiable in x and t, we conclude that

u(y(t+ h), t+ h) = u(y(t), t) + hy′(t) · ∇u(y(t), t) + hut(y(t), t) + o(h) (2.17)

= u(y(t), t) + hf(y(t), α(t)) · ∇u(y(t), t) + hut(y(t), t) + o(h)

= u(x, t) + hf(x, α(t)) · ∇u(x, t) + hut(x, t) + o(h). (2.18)

Now, plug this into (2.16):

u(x, t) = max
α(·)∈A

[ˆ t+h

t

r(y(s), α(s)) ds+ u(x, t) + hf(x, α(t)) · ∇u(x, t) + hut(x, t) + o(h)

]
.

(2.19)
The term u(x, t) may be pulled out of the maximum, so that it cancels with the left side:

0 = hut(x, t) + o(h) + max
α(·)∈A

[ˆ t+h

t

r(y(s), α(s)) ds+ hf(x, α(t)) · ∇u(x, t)

]
. (2.20)

Now, divide by h and let h→ 0.

0 = ut(x, t) +
o(h)

h
+ max

α(·)∈A

[
1

h

ˆ t+h

t

r(y(s), α(s)) ds+ f(x, α(t)) · ∇u(x, t)

]
. (2.21)

If α(s) is continuous at t, then as h→ 0,

lim
h→0

1

h

ˆ t+h

t

r(y(s), α(s)) ds = r(y(t), α(t)) = r(x, α(t)) (2.22)

So, if the nearly optimal controls are continuous for s ∈ [t, t + h], then by letting h → 0
in (2.21) we conclude that

ut(x, t) + max
a∈A

[r(x, a) + f(x, a) · ∇u(x, t)] = 0, x ∈ Rd, t < T. (2.23)

This equation is called the Hamilton-Jacobi-Bellman equation. The function u(x, t) also
satisfies the terminal condition

u(x, T ) = g(x). (2.24)
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Notice that the HJB equation is a first-order, fully nonlinear equation, having the form

ut +H(∇u, x) = 0 (2.25)

where the Hamiltonian H is defined by

H(p, x) = max
a∈A

[r(x, a) + f(x, a) · p] , p ∈ Rd. (2.26)

In addition to telling us how the value function depends on x and t, this PDE suggests
what the optimal control should be. Suppose u(x, t) is differentiable and solves (2.24)-(2.26)
in the classical sense. Then the optimal control and the corresponding optimal trajectory are
computed by finding y∗(s) and α∗(s) which satisfy

α∗(s) = argmaxa∈A [r(y∗(s), a) + f(y∗(s), a) · ∇u(y∗(s), s)]

and

dy∗(s)

dt
= f(y∗(s), α∗(s)), s > t

y∗(t) = x. (2.27)

Infinite Time Horizon

So far, we have considered a deterministic control problem with a finite time horizon. This
means that the optimization involves a finite time interval and may involve a terminal payoff.
One might also consider an optimization problem posed on an infinite time interval. Suppose
that y : [t,∞)→ Rd satisfies

ẏ(s) = f(y(s), α(s)), s ∈ [t,∞) (2.28)

y(t) = x ∈ Rd.

Now the domain for the control is also [t,∞). We’ll use A = At,∞ for the set of admissible
controls. For x ∈ Rd, define the value function

u(x, t) = max
α(·)∈A

Jx,t(α) = max
α(·)∈A

[ˆ ∞
t

e−λsr(y(s), α(s)) ds

]
. (2.29)

The exponential term in the integral is a discount factor; without it, the integral might be
infinite. Notice that there is no terminal payoff, only running payoff, and that the value
function depends on t in a trivial way:

u(x, t) = e−λtu(x, 0). (2.30)

So, to find u(x, t) it suffices to compute

u(x) = max
α(·)∈A

Jx(α) = max
α(·)∈A

[ˆ ∞
0

e−λsr(y(s), α(s)) ds

]
(2.31)

where A = A0,∞.
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Theorem 2.2 (Dynamic Programming Principle). Let u(x) be the value function defined by
(2.31). For any x ∈ Rd and h > 0,

u(x) = max
α(·)∈A0,h

[ˆ h

0

e−λsr(y(s), α(s)) ds+ e−λhu(y(h))

]
(2.32)

Proof: Exercise.
Using the Dynamic Programming Principle, one can formally derive the HJB equation for

the infinite horizon control problem. The equation is:

−λu+ max
a∈A

[r(x, a) + f(x, α) · ∇u] = 0 (2.33)

which has the form
−λu+H(∇u, x) = 0 (2.34)

with the Hamiltonian H(p, x) defined by

H(p, x) = max
a∈A

[r(x, a) + f(x, a) · p] (2.35)

Exercise: Check these computations.

2.4 Brief introduction to stochastic optimal control

Thus far, we have considered deterministic optimal control in which the dynamic behaviour
of the system state is deterministic. In a stochastic optimal control problem, the state y(s)
is a stochastic process. Consequently, the controls also will be stochastic, since we may want
to steer the system in a manner that depends on the system’s stochastic trajectory. We
now suppose that the system state Ys(ω) : [t, T ] × Ω → Rd satisfies a stochastic differential
equation

dYs = f(Ys, αs, s)ds+ σ(Yt, αs, s)dBs, s ≥ t

Yt = x, a.s. (2.36)

where Bs is a n-dimensional Brownian motion defined on probability space (Ω,F , {Fs}s≥t, P ),
and σ is a d× n matrix.

The control process αs(ω) : [t, T ]× Ω→ Rm is adapted to the filtration {Fs}s≥t. The set
of admissible controls is now

At,T = {αs(ω) : [t, T ]× Ω→ A | αs is adapted to the filtration {Fs}s≥t} . (2.37)

The assumption that the controls are adapted means that we cannot look into the future;
the control can only be chosen on the basis of information known up to the present time.
Supposing that σ and f satisfy the usual bounds and continuity conditions, the stochastic
process Ys(ω) is uniquely determined by the initial condition Yt = x and the control pro-
cess αs(ω).

Given a time T > t, the stochastic optimal control problem is to maximize

max
α∈At,T

Jx,t(α(·)) = max
α∈At,T

E
[ˆ T

t

r(Ys, αs, s) ds+ g(YT ) | Yt = x

]
(2.38)
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As before, the function r(y, α, s) represents a running payoff (or running cost, if r < 0), and g
represents a terminal payoff (or terminal cost, if g < 0). Since the system state is a stochastic
process, the net payoff is a random variable, and our goal is to maximize the expected payoff.
Again, even if an optimal control process does not exist, we may define the value function as

u(x, t) = max
α∈At,T

E
[ˆ T

t

r(Ys, αs, s) ds+ g(YT )| Yt = x

]
(2.39)

Notice that the value function is not random.
In (2.39) the time horizon is finite. One could also pose an optimal control problem on an

infinite time horizon. For example, one might consider maximizing

max
α∈A

Jx,t(α(·)) = max
α∈A

E
[ˆ γ

t

e−λsr(Ys, αs) ds+ e−λγh(Yγ)

]
(2.40)

where γ is a stopping time.

2.5 Dynamic Programming Principle for Stochastic Control

For the stochastic control problem there is a Dynamic Programming Principle that is anal-
ogous to the DPP for deterministic control. Using the Markov Property of the stochastic
process Yt, one can easily prove the following:

Theorem 2.3. Let u(x, t) be the value function defined by (2.39). If t < τ ≤ T , then

u(x, t) = max
α∈At,τ

E
[ˆ τ

t

r(Ys, αs, s) ds+ u(Yτ , τ) | Yt = x

]
(2.41)

Proof: Exercise. The idea is the same as in the case of deterministic control. Split the
integral into two pieces, one over [t, τ ] and the other over [τ, T ]. Then condition on Fτ and use
the Markov property, so that the second integral and the payoff may be expressed in terms
of u(Yτ , τ). 2

2.6 The Hamilton-Jacobi-Bellman equation

Using the Dynamic Programming Principle, one can formally derive a PDE for the value
function u(x, t). As in the case of deterministic optimal control, one must assume that
the value function is sufficiently smooth. Because the dynamics are stochastic, we want
to apply Itô’s formula in the way that we used the chain rule to derive the HJB equation
for deterministic control. Thus, this formal computation requires that the value function by
twice differentiable.

From Itô’s formula we see that

u(Yτ , τ)− u(x, t) = =

ˆ τ

t

[ut(Ys, s) + f(Ys, αs, s) · ∇u(Ys, s)] ds

+

ˆ τ

t

1

2

∑
k

∑
i,j

uxixj(Ys, s)σ
jk(Ys, αs, s)σ

ik(Ys, αs, s) ds

12



+

ˆ τ

t

(∇u(Ys, s))
Tσ(Ys, αs, s) dBs (2.42)

=

ˆ τ

t

ut(Ys, s) + Lαu(Ys, s) ds+

ˆ τ

t

(∇u(Ys, s))
Tσ(Ys, αs, s) dBs

where L is the second order differential operator

Lαu = f(y, α, s) · ∇u(y, s) +
1

2

∑
k

∑
i,j

uyiyj(y, s)σ
jk(y, αs, s)σ

ik(y, αs, s)

= f(y, α, s) · ∇u(y, s) +
1

2
tr(D2u(y, s)σ(y, α, s)σT (y, α, s)), (2.43)

and D2u is the matrix of second partial derivatives. Now we plug this into the DPP rela-
tion (2.41) and use the fact the martingale term in (2.43) has zero mean. We obtain:

0 = max
α∈At,τ

E
[ˆ τ

t

r(Ys, αs, s) ds+ u(Yτ , τ)− u(x, t) | Yt = x

]
= max

α∈At,τ
E
[ˆ τ

t

r(Ys, αs, s) ds+

ˆ τ

t

ut(Ys, s) + Lαu(Ys, s) ds | Yt = x

]
. (2.44)

Finally, let τ = t + h, divide by h and let h → 0, as in the deterministic case. We formally
obtain the HJB equation

ut(x, t) + max
a∈A

[r(x, a, t) + Lau(x, t)] = 0. (2.45)

This may be written as

ut(x, t) + max
a∈A

[
r(x, a, t) +

1

2
tr(D2u(x, t)σ(x, a, t)σT (x, a, t)) + f(x, a, t) · ∇u(x, t)

]
= 0

(2.46)
which is, in general, a fully-nonlinear, second order equation of the form

ut +H(D2u,Du, x, t) = 0 (2.47)

Notice that the equation is deterministic. The set of possible control values A ⊂ Rm is a subset
of Euclidean space, and the maximum in the HJB equation (2.45) is over this deterministic
set, not over the set A.

HJB for the infinite horizon problem

Deriving the HJB for the infinite horizon problem is very similar. Let the value function be

u(x) = max
α∈A

E

[ˆ ∞
0

e−λsr(Ys, αs) ds | Y0 = x

]
, (2.48)

and σ(x, a), f(y, a) and r(y, a) be independent of t. Then the Dynamic Programming Principle
shows that for any τ > 0

u(x) = max
α∈A

E

[ˆ τ

0

e−λsr(Ys, αs) ds+ e−λτu(Yτ ) | Y0 = x

]
. (2.49)

Using Itô’s formula as before, we formally derive the second order equation equation

−λu(x) + max
a∈A

[r(x, a) + Lau(x)] = 0 (2.50)
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2.7 The basic theory of Hamilton-Jacobi equations

The Euler-Lagrange equations

We now describe the approach to the Hamilton-Jacobi equations in terms of calculus of
variations rather than optimal control. In order to conform to an earlier version of the
notes, we will consider the initial rather than terminal value problem for the Hamilton-Jacobi
equations. When the Hamiltonian is time-independent, the switch from one to another can
be made by a simple change of variables t → T − t. If it does depend on time, the terminal
value problem is more natural in the context of optimal control but we will not try to re-write
everything for that case.

Let L(q, x) be a smooth function, q, x ∈ Rn called the Lagrangian. Fix two points x, y ∈ Rn

and consider the class of admissible trajectories connecting these points:

A = {w ∈ C([0, t];Rn) : w(0) = y, w(t) = x},

that is w(t) are smooth paths that start at y at time zero, and end at x at time t. Define the
functional

I(w) =

ˆ t

0

L(ẇ(s), w(s))ds.

The basic problem of the calculus of variations is to find the optimal curve w(t):

find I∗ = min
w∈A

I(w),

and, if possible, the optimal path z(s) ∈ A such that I(z) = I∗. Let us first assume that
such z(s) exists and deduce some of its properties.

Theorem 2.4. (Euler-Lagrange equations) The function z(s) satisfies the Euler-Lagrange
equations

− d

ds
[∇qL(ż(s), z(s))] +∇xL(ż(s), z(s)) = 0, 0 ≤ s ≤ t. (2.51)

Proof. Let z(t) be a minimizer, and v(t) be a smooth function such that v(0) = v(t) = 0,
and consider wτ (s) = z(s) + τv(s). Set also r(τ) = I(wτ ). As z(s) minimizes I(w) over A
and wτ ∈ A for all τ , we have r′(0) = 0. Let us now compute r′(τ):

r(τ) =

ˆ t

0

L(ż(s) + τ v̇(s), z(s) + τv(s))ds,

so

r′(τ) =

ˆ t

0

[∇qL · v̇(s) +∇xL · v(s)]ds =

ˆ t

0

[− d

ds
∇qL+∇xL] · v(s)ds.

We integrated by parts in the second equality above, and used the fact that the boundary
terms vanish since v(0) = v(t) = 0. Since r′(0) = 0 for all v(s) as above, we should have

− d

ds
∇qL(ż(s), z(s)) +∇xL(ż(s), z(s)) = 0,

which is (2.51). 2
The above computation shows that if z(s) is a minimizer then it has to satisfy the Euler-

Lagrange equation (2.51). However, of course, it is possible that z(s) is a critical point of I(w)
but not its minimum – in that case z(s) also satisfies the Euler-Lagrange equations.
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The Hamilton equations

There is a nice connection between the Euler-Lagrange equations and the Hamilton equations
of classical mechanics. We assume that the equation

p = ∇qL(q, x) (2.52)

can be solved uniquely as an equation for q, as a smooth function of p and x. If that is the
case, we can define the Hamiltonian

H(p, x) = p · q(p, x)− L(q(p, x), x), (2.53)

with the function q(p, x) defined implicitly by (2.52).
Let us now assume that z(s) is the solution of the Euler-Lagrange equations, and set

p(s) = ∇qL(ż(s), z(s)), (2.54)

that is,
ż(s) = q(p(s), z(s)). (2.55)

Differentiating (2.53) in pj gives

∂H(p(s), z(s)

∂pj
= qj(p(s), z(s)) +

n∑
i=1

pi(s)
∂qi
∂pj
−

m∑
i=1

∂L

∂qi

∂qi
∂pj

= qj.

We used (2.54) in the last step. Using this in (2.55) gives

żj(s) =
∂H(p(s), z(s))

∂pj
. (2.56)

The Euler-Lagrange equations say that

ṗj(s) =
∂L

∂xj
. (2.57)

Differentiating (2.53) in x gives:

∂H

∂xj
=

n∑
i=1

pi
∂qi
∂xj
− ∂L

∂xj
−

n∑
i=1

∂L

∂qi

∂qi
∂xj

= − ∂L
∂xj

.

Now, putting this together with (2.56)-(2.57) gives the Hamiltonian system

ż(s) = ∇pH(p(s), z(s)), ṗ(s) = −∇zH(p(s), z(s)). (2.58)
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The Legendre transform

Let us now assume that the Lagrangian does not depend on the variable x: L = L(q). Then
the Hamiltonian H(p) is

H(p) = p · q(p)− L(q(p)), (2.59)

with q being the solution of
p = ∇qL(q). (2.60)

In order to ensure that the function q(p) is well-defined let us assume that the function L(q)
is convex and

lim
|q|→+∞

L(q)

|q|
= +∞. (2.61)

Let us now fix p and consider the function r(q) = p · q − L(q). This function is concave
and r(q) → −∞ as |q| → +∞. Therefore, r(q) attains a unique maximum at the point
where p = ∇L(q), which is exactly (2.60). Thus, we may reformulate (2.59) as

H(p) = sup
q

(p · q − L(q)). (2.62)

The function H(p) defined by (2.62) is called the Legendre transform of L(q), denoted
as H(p) = L∗(q).

Theorem 2.5. Assume that the function L(q) is convex and (2.61) holds, then H(p) is also
convex, and

lim
|p|→+∞

H(p)

|p|
= +∞. (2.63)

Moreover, L(q) is the Legendre transform of the function H.

Proof. The function s(p; q) = p · q − L(q) is an affine function of p for each q fixed.
Therefore, H(p) is a supremum of a family of affine functions – hence, it is convex. Indeed,
for any λ ∈ (0, 1) we have

H(λp1 + (1− λ)p2) = sup
q

(λp1 + (1− λ)p2 · q)− L(q)

= sup
q

[λp1 · q − λL(q) + (1− λ)p2 · q − (1− λ)L(q)]

≤ sup
q

[λp1 · q − λL(q)] + sup
q

[(1− λ)p2 · q − (1− λ)L(q)] = λH(p1) + (1− λ)H(p2),

hence H(p) is convex.
In order to see that (2.63) holds, fix λ > 0 and take q̄ = λp/|p| in the definition of H(p),

then |q̄| ≤ λ, hence

H(p) ≥ p · q̄ − L(q̄) = λ|p| − L(q̄) ≥ λ|p| − sup
|q|≤λ

L(q).

It follows that

lim
|p|→+∞

H(p)

|p|
≥ λ,
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for each λ > 0, thus (2.63) holds.
In order to show that L(q) is actually the Legendre transform of H(p), note that, for all

p and q we have
H(p) ≥ p · q − L(q),

whence
L(q) ≥ p · q −H(p).

It follows that L(q) ≥ H∗(q). But we also have

H∗(q) = sup
p

[p · q −H(p)] = sup
p

[p · q − sup
y

[p · y − L(y)]] = sup
p

inf
y

[p · (q − y) + L(y)]. (2.64)

As the function L(q) is convex, for each q there exists s(q) such that the graph of L(y) lies
above the corresponding hyperplane:

L(y) ≥ L(q) + s · (y − q).

Let us take p = s(q) in (2.64):

H∗(q) ≥ inf
y

[s · (q − y) + L(y)] ≥ L(q). (2.65)

We conclude that H∗(p) = L(q). 2

The Hopf-Lax formula

We now relate the variational problem that we looked at to the Hamilton-Jacobi equations.
Consider the initial value problem

ut +H(∇u) = 0, t > 0, x ∈ Rn, (2.66)

with the initial data u(0, x) = g(x). The initial data g(x) is globally Lipschitz continuous:

Lip(g) = sup
x,y∈Rn

|g(x)− g(y)|
|x− y|

< +∞. (2.67)

We assume that H(p) is convex and satisfies the growth condition (2.63). Let us define

u(t, x) = inf

[ˆ t

0

L(ẇ(s))ds+ g(y) : w(0) = y, w(t) = x

]
, (2.68)

with the infimum taken over all C1 functions w(t) that satisfy the constraint w(t) = x.
Here, L(q) is the Legendre transform of the function H(p). We will show that expression (2.68)
gives a solution of the Hamilton-Jacobi equation (2.66).

Theorem 2.6. (Hopf-Lax formula) The function u(t, x) defined by (2.68) can be written as

u(t, x) = min
y∈Rn

[
tL

(
x− y
t

)
+ g(y)

]
. (2.69)
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Proof. First, for any y ∈ Rn we may take a ”test path”

w(s) = y +
s

t
(x− y),

leading to

u(t, x) ≤
ˆ t

0

L(
x− y
t

)ds+ g(y) = tL

(
x− y
t

)
+ g(y).

As a consequence, we have

u(t, x) ≤ inf
y∈Rn

[
tL

(
x− y
t

)
+ g(y)

]
.

On the other hand, Jensen’s inequality implies that for any test path w(s) we have

1

t

ˆ t

0

L(ẇ(s))ds ≥ L

(
1

t

ˆ t

0

ẇ(s)ds

)
.

Therefore, ˆ t

0

L(ẇ(s))ds ≥ tL

(
x− y
t

)
,

where y = w(0), and thus

u(t, x) ≥ inf
y∈Rn

[
tL

(
x− y
t

)
+ g(y)

]
.

Thus, we have shown that

u(t, x) = inf
y∈Rn

[
tL

(
x− y
t

)
+ g(y)

]
.

The fact that the infimum in the right side is actually achieved follows from the fact that for
each t and x fixed the function

r(y) = tL

(
x− y
t

)
+ g(y)

tends to +∞ as |y| → +∞. This is because L(y) is super-linear at infinity, and g is globally
Lipschitz. 2

A formal computation of the Hamilton-Jacobi equation

Let us now show why we expect the function given by the Hopf-Lax formula to satisfy the
Hamilton-Jacobi equation, assuming that it is as smooth as needed. For simplicity, assume
that x ∈ R. Let z be such that

u(t, x) = tL(
x− z
t

) + g(z).
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Then z is determined by the condition

g′(z) = L′(
x− z
t

), (2.70)

hence we have

ut = L(
x− z
t

)− L′(x− z
t

)zt −
(x− z)

t
L′(

x− z
t

) + g′(z)zt = L(
x− z
t

)− (x− z)

t
L′(

x− z
t

).

Moreover,
ux = L′((x− z)/t), (2.71)

hence the above can be written as

ut = L(
x− z
t

)− ux
(x− z)

t
. (2.72)

On the other hand, in the definition of H(p) we have

H(p) = sup
y∈R

(py − L(y)) = pq − L(q),

with q determined by the relation p = L′(q). Therefore,

H(ux) = uxq − L(q),

with q such that ux = L′(q). But (2.71) implies that then q = (x− z)/t, and (2.72) is nothing
but the Hamilton-Jacobi equation

ut +H(ux) = 0.

Exercise. Check the following fact. Let X(t) and P (t) be the solution of the Hamiltonian
system

Ẋ(t) = ∇pH(X(t), P (t)), Ṗ (t) = −∇xH(X(t), P (t)), (2.73)

with the initial condition X(T ) = x, P (T ) = ∇g(x). Check that, as long as the solution of
the Hamilton-Jacobi equation

∂u

∂t
+H(x,∇u) = 0, u(T, x) = g(x), (2.74)

remains smooth, we have u(t, x) = g(X(t)) and ∇u(t, x) = P (t). Relate this to drift in the
Fokker-Planck equation in the mean-field game system (5.1).

The rigorous derivation of the Hamilton-Jacobi equation

Let us now verify that the Hopf-Lax formula is Lipschitz continuous.

Lemma 2.7. Let u(t, x) be defined by (2.69). Then the function u(t, x) is Lipschitz continuous
in x for t ≥ 0 and x ∈ Rn, and u(t, x)→ g(x) as t→ 0.
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Proof. Take x1, x2 ∈ Rn, and choose y so that

u(t, x1) = tL(
x1 − y
t

) + g(y),

then, choosing z = x2 − x1 + y below, gives

u(t, x1)− u(t, x2) = min
z∈Rn

[
tL

(
x2 − z
t

)
+ g(z)

]
− tL(

x1 − y
t

)− g(y)

≤ g(x2 − x1 + y)− g(y) ≤ Lip(g)|x1 − x2|.

Switching the roles of x1 and x2 gives Lipschitz continuity in x:

|u(t, x1)− u(t, x2)| ≤ Lip(g)|x1 − x2|.

In order to verify the initial condition, note that choosing y = x gives

u(t, x) ≤ tL(0) + g(x), (2.75)

but we also have

u(t, x) = min
y

[
tL

(
x− y
t

)
+ g(y)

]
≥ min

y

[
tL

(
x− y
t

)
+ g(x)− Lip(g)|x− y|

]
= g(x) + min

z
[tL(z)− Lip(g)t|z|] = g(x) + tmin

z
[L(z)− Lip(g)|z|].

once again, as L(z) grows super-linearly at infinity, we have

min
z

[L(z)− Lip(g)|z|] > −∞,

hence
u(t, x) ≥ g(x)− Ct. (2.76)

We conclude that u(t, x)→ g(x) as t→ 0. 2
In order to show that u(t, x) is Lipschitz continuous in time, we need the following lemma

(which is essentially a version of the dynamic programming principle).

Lemma 2.8. For each x ∈ Rn, and 0 ≤ s < t we have

u(t, x) = min
y∈Rn

[
(t− s)L

(
x− y
t− s

)
+ u(s, y)

]
. (2.77)

Proof. Choose z so that

u(s, y) = sL(
y − z
s

) + g(z).

Let us write
x− z
t

= (1− s

t
)
x− y
t− s

+
s

t

y − z
s

.
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As L is convex, it follows that

u(t, x) ≤ tL(
x− z
t

) + g(z) ≤ t(1− s

t
)L(

x− y
t− s

) + sL(
y − z
s

) + g(z)

= (t− s)L(
x− y
t− s

) + sL(
y − z
s

) + g(z) = (t− s)L(
x− y
t− s

) + u(s, y),

and thus

u(t, x) ≤ inf
y∈Rn

[
(t− s)L(

x− y
t− s

) + u(s, y)

]
.

As the function u(s, y) is actually continuous in y (this follows from Lemma 2.7), and |u(s, y)|
grows not faster than linearly at infinity (that follows from (2.75)-(2.76)), the infimum in the
right side is actually attained:

u(t, x) ≤ min
y∈Rn

[
(t− s)L(

x− y
t− s

) + u(s, y)

]
.

In order to show the opposite inequality, choose z so that

u(t, x) = tL(
x− z
t

) + g(z),

and set
y =

s

t
x+ (1− s

t
)z.

Then, we have
x− y
t− s

=
x− z
t

=
y − z
s

,

hence

(t− s)L(
x− y
t− s

) + u(s, y) ≤ (t− s)L(
x− z
t

) + sL(
y − z
s

) + g(z) = tL(
x− z
t

) + g(z) = u(t, x).

This proves (2.77). 2

Lemma 2.9. The function u(t, x) defined by (2.69) is Lipschitz continuous in t for t ≥ 0 and
x ∈ Rn.

Proof. Combining the ideas in the proof of Lemma 2.7 (see (2.75)-(2.76)) with the result
of Lemma 2.8 gives

u(s, x)− C(t− s) ≤ u(t, x) ≤ u(s, x) + C(t− s),

and we are done. 2
Since the function u(t, x) is Lipschitz in t and x, it is differentiable almost everywhere.

Theorem 2.10. The function u(t, x) defined by (2.69) is Lipschitz continuous in t and x,
differentiable almost everywhere and solves the initial value problem

ut +H(∇u) = 0, t > 0, x ∈ Rn, (2.78)

with u(0, x) = g(x).
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Proof. It remains only to verify that at the points (t, x) where both ut and ∇u exist, the
Hamilton-Jacobi equation (2.78) is satisfied. Fix q ∈ Rn, h > 0, then we have, according to
Lemma 2.8:

u(x+ hq, t+ h) = min
y∈Rn

[
hL(

x+ hq − y
h

) + u(t, y)

]
≤ hL(q) + u(t, x).

It follows that
ut(t, x) + q · ∇u(t, x) ≤ L(q),

for all q ∈ Rn. Therefore, we have

ut(t, x) +H(∇u(t, x)) = ut(t, x) + max
q∈Rn

(q · ∇u(t, x)− L(q)) ≤ 0. (2.79)

Next, we show the opposite inequality. Choose z so that

u(t, x) = tL(
x− z
t

) + g(z).

Given h > 0, set

y =
t− h
t

x+ (1− t− h
t

)z = x− h(x− z)

t
, (2.80)

so that
x− z
t

=
y − z
t− h

.

We have

u(t, x)− u(t− h, y) ≥ tL(
x− z
t

) + g(z)−
[
(t− h)L(

y − z
t− h

) + g(z)

]
= hL(

x− z
t

).

Keeping in mind expression (2.80), and letting h→ 0 gives

ut(t, x) +
1

t
(x− z) · ∇u(t, x) ≥ L(

x− z
t

).

It follows that

ut(t, x) +H(∇u(t, x)) = ut(t, x) + max
q∈Rn

(q · ∇u(t, x)− L(q)) ≥ 0,

which, together with (2.79) finishes the proof. 2

2.8 Viscosity solutions for Hamilton-Jacobi equations

We will now consider solutions of the Cauchy problem for the Hamilton-Jacobi equations

ut +H(∇u, x) = 0, t ≥ 0, x ∈ Rn, (2.81)

u(0, x) = g(x).

The idea is to consider solutions of the regularized parabolic problem

uεt +H(∇uε, x) = ε∆uε, (2.82)

uε(0, x) = g(x).
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The idea is to show that for each ε > 0 the problem (2.81) admits a regular solution, and
then pass to the limit ε → 0. The difficulty is that as ε → 0 the regularizing effect of the
Laplacian is less and less, so uε(t, x) are less and less regular, and it is not clear that the limit
of uε(t, x), if it exists, is regular, and in which sense it would satisfy the Hamilton-Jacobi
equation (2.82).

Let us for the moment assume that for some sequence εn → 0 (2.81) has a smooth solution
un(t, x) = uεn(t, x), and that un(t, x) → u(t, x) locally uniformly in Rn × [0,+∞). Let us
take a smooth test function v and suppose that u(t, x) − v(t, x) has a strict local minimum
at some point (t0, x0). Then u(t, x) − v(t, x) > u(t0, x0) − v(t0, x0) in some neighborhood B
of (t0, x0). The functions un(t, x)− v(t, x) have to attain a local maximum inside B when n
is sufficiently large as well – simply because we have

max
∂B

(un(t, x)− v(t, x)) < un(t0, x0)− v(t0, x0).

Hence, un(t, x)− v(t, x) attains a maximum in B. Now, if we let the radius of B go to zero,
we get a sequence of points (tn, xn)→ (t0, x0) such that un(t, x)−v(t, x) has a local maximum
at (tn, xn). We deduce that ∇un(tn, xn) = ∇v(tn, xn), un,t(tn, xn) = vt(tn, xn) and

−∆un(tn, xn) ≥ −∆v(tn, xn).

It follows that

vt(tn, xn) +H(∇v(tn, xn), xn) = un,t(tn, xn) +H(∇un(tn, xn), xn) = ε∆un(tn, xn)

≤ ε∆v(tn, xn). (2.83)

The function v(t, x) is smooth, so we may let ε→ 0 in (2.83) to conclude that

vt(t0, x0) +H(∇v(t0, x0), x0) ≤ 0. (2.84)

Inequality (2.84) should hold for any smooth function v(t, x) such that u(t, x)−v(t, x) attains
a local maximum at (t0, x0). Similarly, if u − v attains a local minimum at (t0, x0) then we
should have

vt(t0, x0) +H(∇v(t0, x0), x0) ≥ 0. (2.85)

The above argument assumed that solutions of the regularized parabolic problem exist and
have a limit u(t, x). Let us now instead take the inequalities (2.84) and (2.85) as the starting
point and define the appropriate solution of the Hamilton-Jacobi equation purely in their
terms, forgetting everything about the parabolic problem.

Definition 2.11. A bounded uniformly continuous function u(t, x) is a viscosity solution of
the Cauchy problem (2.81) for the Hamilton-Jacobi equation if u(0, x) = g(x) for all x ∈ Rn,
and for each v ∈ C∞([0,∞) × Rn) such that u − v has a local maximum at a point (t0, x0)
with t0 > 0, we have

vt(t0, x0) +H(∇v(t0, x0), xn) ≤ 0, (2.86)

while if u− v attains a local minimum at a point (t0, x0) with t0 > 0, we have

vt(t0, x0) +H(∇v(t0, x0), xn) ≥ 0, (2.87)
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We will verify that these two conditions are reasonable in the following sense.

Theorem 2.12. (Consistency) Let u(t, x) be a viscosity solution of the Cauchy problem

ut +H(∇u, x) = 0, t ≥ 0, x ∈ Rn, (2.88)

u(0, x) = g(x).

Assume that u is differentiable at some point (t0, x0) with t0 > 0, then

ut(t0, x0) +H(∇u(t0, x0), x0) = 0. (2.89)

We begin the proof with the following lemma.

Lemma 2.13. Assume that u(x), x ∈ Rn is a continuous function and u(x) is differentiable
at x0. Then there exists a C1(Rn) function q(x) such that u(x0) = v(x0) and u − v has a
strict local maximum at x0.

Proof of Lemma. Let us set

v(x) = u(x+ x0)− u(x0)− x · ∇u(x0),

so that v(0) = 0, ∇v(0) = 0. It follows that v(x) = |x|ρ(x), where the function ρ(x) is
continuous, and ρ(0) = 0. Set

p(r) = max
x∈B(0,r)

ρ(x),

then p(r) is continuous, non-decreasing and p(0) = 0. Finally, define

w(x) = |x|2 +

ˆ 2|x|

|x|
p(r)dr.

Then w ∈ C1(Rn), and
|w(x)| ≤ |x|2 + |x|p(2|x|),

which means that w(0) = 0 and ∇w(0) = 0. However, we have

v(x)− w(x) = |x|ρ(x)− |x|2 −
ˆ 2|x|

|x|
p(r)dr ≤ |x|p(|x|)− |x|2 −

ˆ 2|x|

|x|
p(r)dr

≤ −|x|2 < 0 = v(0)− w(0).

Therefore, the function v(x) − w(x) attains its local maximum at x = 0, which means that
we can take

q(x) = w(x− x0) + u(x0) + (x− x0) · ∇u(x0),

proving Lemma 2.13. 2

Proof of Theorem 2.12. Note that if u(t, x) were C∞ (rather than just differentiable
at (t0, x0)), we could take u itself as a test function in the definition of the viscosity solution,
and conclude that hence both

ut(t0, x0) +H(∇u(t0, x0), x0) ≤ 0,
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and
ut(t0, x0) +H(∇u(t0, x0), x0) ≥ 0,

giving the result. Hence, what we need to do is replace u by a smooth test function without
changing ut and ∇u too much. Lemma 2.13 implies that there exists a C1 function v such
that u− v has a strict maximum at (x0, t0). Next, let vε(t, x) be

vε(t, x) =
1

εn+1

ˆ
χ(
t− s
ε

,
x− y
ε

)v(s, y)dsdy.

Here the function χ(t, x) ∈ C∞(Rn+1) is chosen so that χ(t, x) ≥ 0, and

ˆ
χ(t, x)dtdx = 1.

Then the functions vε ∈ C∞ for all ε > 0, and vε → v, vε,t → vt, ∇vε → ∇v, all locally
uniformly near (t0, x0). It follows that u(t, x) − vε(t, x) has a strict local maximum at some
point (tε, xε) with (tε, xε)→ (t0, x0) as ε→ 0. The definition of the viscosity solution implies
that

vε,t(tε, xε) +H(∇vε(tε, xε), xε) ≤ 0.

Passing to the limit ε→ 0 gives

vt(t0, x0) +H(∇v(t0, x0), x0) ≤ 0.

Since u(t, x) is differentiable at (t0, x0) and u−v attains a local maximum at (t0, x0), we have

ut(t0, x0) = vt(t0, x0), ∇u(t0, x0) = ∇v(t0, x0),

hence
ut(t0, x0) +H(∇u(t0, x0), x0) ≤ 0.

Similarly, we can prove that

vt(t0, x0) +H(∇v(t0, x0), x0) = 0,

and we are done. 2
Viscosity solution (if it exists) is unique.

Theorem 2.14. (Uniqueness) There exists at most one viscosity solution of the Cauchy
problem

ut +H(∇u, x) = 0, t ≥ 0, x ∈ Rn, (2.90)

u(0, x) = g(x).
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Hopf-Lax formula as a viscosity solution

Let us now show that the Hopf-Lax formula gives a viscosity solution for the Cauchy problem

ut +H(∇u) = 0, t ≥ 0, x ∈ Rn, (2.91)

u(0, x) = g(x),

if H(p) is convex,

lim
|p|→+∞

H(p)

|p|
= +∞,

and g(x) is bounded and Lipschitz continuous. Let L be the Legendre transform of H:

L(q) = sup
p∈Rn

(p · q −H(p)),

and set

u(t, x) = min
y∈Rn

[
tL(

x− y
t

) + g(y)

]
. (2.92)

Let us show that u(t, x) is the viscosity solution of (2.91). We already know that u(t, x)
defined by (2.92) is Lipschitz continuous in t and x.

Take v ∈ C∞ and assume that u− v has a local maximum at (t0, x0). Then, we have

u(t0, x0) = min
x∈Rn

[
(t0 − t)L(

x0 − x
t0 − t

) + u(t, x)

]
≤ (t0 − t)L(

x0 − x
t0 − t

) + u(t, x),

for all 0 ≤ t < t0, and x ∈ Rn. Since u− v has a local maximum at (t0, x0), we also have

u(t, x)− v(t, x) ≤ u(t0, x0)− v(t0, x0),

for t, x close to t0, x0. Hence,

v(t0, x0)− v(t, x) ≤ u(t0, x0)− u(t, x) ≤ (t0 − t)L(
x0 − x
t0 − t

).

Let us use this relation for t = t0 − h and x = x0 − hq, with some h > 0 fixed, and q ∈ Rn.
We get

v(t0, x0)− v(t0 − h, x0 − hq) ≤ hL(q).

Passing to the limit h→ 0 gives

vt + q · ∇v(t0, x0) ≤ L(q).

As this is true for all q, we deduce that

vt(t0, x0) +H(∇v(t0, x0)) ≤ 0.

Next, suppose that u− v attains a local minimum at (t0, x0). We will show that

vt(t0, x0) +H(∇v(t0, x0)) ≥ 0.
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If this is false, then there exists some θ > 0 so that

vt(t, x) +H(∇v(t, x)) ≤ −θ < 0,

for all t and x close to t0, x0. It follows that

vt(t, x) + q · ∇u(t, x)− L(q) ≤ −θ, (2.93)

for all such t, x and all q ∈ Rn. Now, for h > 0 small enough there exists x1 close to x0 so
that

u(t0, x0) = hL(
x0 − x1

h
) + u(t0 − h, x1).

Let us look at (2.93) with q = (x0 − x1)/h, then we get

v(x0, t0)− v(t− h, x1) ≤ h

(
L(
x0 − x1

h
)− θ

)
.

But that means
v(x0, t0)− v(t− h, x1) < u(x0, t0)− u(t− h, x1).

This is a contradiction to u− v attaining a local minimum at (t0, x0). 2

3 Nonatomic games

We return to the Cardaliaguet notes.
Before starting the analysis of differential games with a large number of players, it is helpful

to look at this question for classical games. The general framework is as follows: let N be a
(large) number of players. We assume that the players are symmetric (identical), so that the
set Q of available strategies is the same for all players. We denote by FN

i = FN
i (x1, . . . , xN)

the payoff (or the cost) of player i ∈ {1, . . . , N} given the ”all-players” state (x1, . . . , xN).
The symmetry assumption means that

FN
σ(i)(xσ(1), . . . , xσ(N)) = Fi(x1, . . . , xN)

for all permutations σ on {1, . . . , N}. Our goal is to analyze the behavior of the Nash equilibria
for this game as N → +∞.

For this we first recall the notion of Nash equilibria. In order to proceed with the analysis
of large population games, we describe next the limit of maps of many variables. Then we
explain the limit, as the number of players tends to infinity, of Nash equilibria in pure, and
then in mixed, strategies. This is how the mean-field game equation comes about. We finally
discuss the uniqueness of the solution of the limit equation and present some examples.

3.1 Nash equilibria in classical differential games

Here, we introduce the notion of Nash equilibria in one-shot games. Let Q1, . . . , QN be com-
pact metric spaces – the elements of Qi are the possible strategies of player i, and J1, . . . , JN
be continuous real valued functions on

∏N
i=1 Qi.
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Definition 3.1. A Nash equilibrium in pure strategies is a N−tuple (s̄1, . . . , s̄N) ∈
∏N

i=1Qi

such that, for any i = 1, . . . , N ,

Ji(s̄1, . . . , s̄N) ≤ Ji (si, (s̄j)j 6=i) ∀si ∈ Qi .

In other words, a Nash equilibrium is a set of strategies s̄1, . . . , s̄N such that it is ”expen-
sive” for a player i to deviate from s̄i provided that all other players uses strategies s̄k, k 6= i.
Let us consider a couple of examples.

Example 3.2. Consider two players who can set prices p1 and p2, with 0 ≤ p1, p2 ≤ 1, and
sell x1(p1, p2) and x2(p1, p2) units respectively, with

x2(p1, p2) =
2

3
(p1 − p2), if p1 ≥ p2, and x2(p1, p2) = 0 if p1 < p2,

and x1(p1, p1) = 1− x2(p1, p2). The profit of the two players is

u1(p1, p2) = p1x1(p1, p2), u2(p1, p2) = p2x2(p1, p2).

Then, given the strategy p2, for the first player the optimization problem is to maximize the
function u1 = p1x1, with

x1 = 1− 2

3
(p1 − p2).

A simple computation shows that the optimal value of p1 (again, given p2) is

p̃1(p2) = min(1,
3

4
+
p2

2
).

The second player optimizes u2 = p2x2, subject to the constraint x2 = (2/3)(p1 − p2), so the
optimal price for him (given p1) is p̃2(p1) = p1/2. Then the unique Nash equilibrium is p̄1 = 1
and p̄2 = 1/2.

Example 3.3. Let us look at a similar example but with slightly different constraints. Again,
the profits of the two players are u1(p1, p2) = p1x1(p1, p2) and u2(p1, p2) = p2x2(p1, p2), with
x1(p1, p1) = 1− x2(p1, p2). However, we now have

p1 = p2 + l(x2), l(x) =
x− 1/2

ε
, if x ≥ 1/2, and l(x) = 0 if 0 ≤ x ≤ 1/2.

Then one can directly check that a pure Nash equilibrium does not exist when ε > 0 is
sufficiently small, according to some MIT slides that use some jargon.

Example 3.4. Consider the symmetric setting where Q1 = Q2 = T1, and there is a func-
tion F (x1, x2) so that J1(x1, x2) = F (x1, x2), J2(x1, x2) = F (x2, x1). Then a point (y1, y2) is
a pure Nash equilibrium if

∂F

∂y1

(y1, y2) = 0 and
∂F

∂y1

(y2, y1) = 0. (3.1)
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It is easy to construct a function F such that (3.1) has no solutions – the only requirement
on the function ∂F/∂x1 is that F is periodic and

ˆ 1

0

∂F (x1, x2)

∂x1

dx1 = 0 for all 0 ≤ x2 ≤ 1,

so the requirement that its zero set contains no two points symmetric with respect to the
line x1 = x2 can be satisfied, and then (3.1) has no solutions.

Thus, Nash equilibria in pure strategies do not necessarily exist and we have to introduce
the notion of mixed strategies – this means that each player uses a family of strategies with
a certain probability distribution. Let us denote by P(Qi) the space of all Borel probability
measures on Qi. A mixed strategy of player i will be an element of P(Qi). The set P(Q) is
endowed with the weak-* topology: a sequence mN in P(Q) converges to m ∈ P(Q) if

lim
N→∞

ˆ
Q

ϕ(x)dmN(x) =

ˆ
Q

ϕ(x)dm(x) ∀ϕ ∈ C(Q) .

Recall that P(Q) is a compact metric space for this topology, which can be metrized by the
Kantorowich-Rubinstein distance:

d1(µ, ν) = sup{
ˆ
Q

fd(µ− ν) : ‖f‖Lip(Q) ≤ 1 and supx∈Q |f(x)| ≤ 1.} .

Alternatively, this distance can be stated in terms of optimal transportation:

d1(µ, ν) = inf
M

ˆ
Q×Q

d(x, y)dM(x, y),

with the infimum taken over all probability measures dM(x, y) on Q × Q such that the
marginals of M(x, y) in x and y are µ and ν, respectively.

Definition 3.5. A Nash equilibrium in mixed strategies is an N−tuple (π̄1, . . . , π̄N) ∈
∏N

i=1P(Qi)
such that, for any i = 1, . . . , N ,

Ji(π̄1, . . . , π̄N) ≤ Ji ((π̄j)j 6=i, πi) ∀πi ∈ P(Qi) . (3.2)

where, with some abuse of notation, we set

Ji(π1, . . . , πN) =

ˆ
Q1×...×QN

Ji(s1, . . . , sN)dπ1(s1) . . . dπN(sN) .

Theorem 3.6 (Nash (1950), Glicksberg (1952)). Under the above assumptions, there exists
at least one equilibrium point in mixed strategies.

Proof. Consider the best response map Ri : X :=
∏N

j=1P(Qi)→ 2P(Si) of player i:

Ri(π1, . . . , πN) =
{
π ∈ P(Qi) , Ji((πj)j 6=i, π) = min

π′∈P(Si)
Ji((πj)j 6=i, π

′)
}
, (3.3)
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and define φ(π1, . . . , πN) =
∏N

i=1Ri(π1, . . . , πN) : X → 2X . Then, any fixed point x of φ such
that x ∈ φ(x) is a Nash equilibrium of mixed strategies.

Existence of such fixed point is established using Fan’s fixed point Theorem [55], which is
an infinite-dimensional version of the Kakutani theorem. It says the following. Let X be a
non-empty, compact and convex subset of a locally convex topological vector space. We say
that a set-valued function φ : X → 2X is upper-semicontinuous if for every open set W ⊂ X,
the set {x ∈ X : φ(x) ⊆ W} is open in X. Equivalently, for every closed set H ⊂ X, the
set {x ∈ X : φ(x) ∩ H 6= ∅} is closed in X. Assume also that φ(x) is non-empty, compact
and convex for all x ∈ X. Then φ has a fixed point: ∃x̄ ∈ X with x̄ ∈ φ(x̄).

Note that in our setting φ is upper semicontinuous. Indeed, let W ⊂ X be an open set and
take x = (π1, . . . , πn) ∈ X such that φ(x) ∈ W . Then for x′ = (π′1, . . . , π

′
n) sufficiently close

to x, the minimizers in (3.3) for π′j, j 6= i fixed, will be close to the minimizers corresponding
to πj, j 6= i fixed, so that φ(x′) ∈ W . It is also easy to see that the values φ(x) are compact,
convex and non-empty. Therefore, φ has a fixed point, which is a Nash equilibrium in mixed
strategies by the definition of φ. 2

Let us now consider the special case where the game is symmetric. Namely, we assume
that, for all i ∈ {1, . . . , N}, Qi = Q and Ji(s1, . . . , sN) = Jθ(si)(sθ(1), . . . , sθ(N)) for all i and
all permutations θ on {1, . . . , N}.

Theorem 3.7 (Symmetric games). If the game is symmetric, then there is an equilibrium of
the form (π̄, . . . , π̄), where π̄ ∈ P(Q) is a mixed strategy.

Proof. Let X = P(Q) and R : X → 2X be the set-valued map defined by

R(π) =

{
σ ∈ X , J1(σ, π, . . . , π) = min

σ′∈X
J1(σ′, π, . . . , π)

}
.

Then R is upper semicontinuous with nonempty convex compact values. By Fan’s fixed point
Theorem, it has a fixed point π̄ and, from the symmetry of the game, the N−tuple (π̄, . . . , π̄)
is a Nash equilibrium. 2

3.2 Symmetric functions of many variables

Let Q be a compact metric space and uN : QN → R be a symmetric function:

uN(x1, . . . , xN) = uN(xσ(1), . . . , xσ(n)) for any permutation σ on {1, . . . , n}.

Our aim is to define a limit for uN – note that the number of unknowns depends on N
also, so something slightly non-standard needs to be done. The idea is to associate to the
points x1, . . . , xN the measure

mN
X =

1

N

N∑
i=1

δxi .

Next, we interpret uN(X) as the value of a certain functional on mN
X . To this end, we make

the following two assumptions on uN . First, a uniform bound: there exists C > 0 so that

‖uN‖L∞(Q) ≤ C (3.4)
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Second, uniform continuity: there is a modulus of continuity ω independent of n such that

|uN(X)− uN(Y )| ≤ ω(d1(mN
X ,m

N
Y )) ∀X, Y ∈ QN , ∀N ∈ N. (3.5)

Under these assumptions, define the maps UN : P(Q)→ R by

UN(m) = inf
X∈QN

{
uN(X) + ω(d1(mN

X ,m))
}

∀m ∈ P(Q) .

Then, by assumption (3.5), we have

UN(mN
X) = inf

Y ∈QN

{
uN(Y ) + ω(d1(mN

Y ,m
N
X))
}

= uN(X), for any X ∈ QN .

With this interpretation, instead of talking about the convergence of the functions uN that
are defined on different spaces QN that depend on N , we can talk about convergence of the
functionals UN that are all defined on P(Q).

Theorem 3.8. If uN are symmetric and satisfy (3.4) and (3.5), then there is a subse-
quence uNk of uN and a continuous map U : P(Q)→ R such that

lim
k→+∞

sup
X∈QNk

|uNk(X)− U(mNk
X )| = 0 .

Proof of Theorem 3.8. Without loss of generality we can assume that the modulus ω is con-
cave. Let us show that the UN have ω for modulus of continuity on P(Q): if m1,m2 ∈ P(Q)
and if X ∈ QN is ε−optimal in the definition of UN(m2):

uN(x) + ω(d1(mN
X ,m2)) ≤ UN(m2) + ε,

then we have

UN(m1) ≤ uN(X) + ω(d1(mN
X ,m1)) ≤ uN(X) + ω(d1(mN

X ,m2) + d1(m1,m2))
≤ UN(m2) + ε+ ω(d1(mN

X ,m2) + d1(m1,m2))− ω(d1(mN
X ,m2))

≤ UN(m2) + ω(d1(m1,m2)) + ε,

because ω is concave. Hence the family UN are equicontinuous on the compact set P(Q) and
uniformly bounded. We complete the proof thanks to the Ascoli Theorem. 2

Remark 3.9. Some uniform continuity condition is needed: for instance if Q is a compact
subset of Rd and uN(X) = maxi |xi|, then uN “converges” to U(m) = supx∈spt(m) |x| which is
not continuous. Of course the convergence is not uniform.

Remark 3.10. If Q is a compact subset of some finite dimensional space Rd, a typical
condition which ensures (3.5) is the existence of a constant C > 0, independent of N , such
that

sup
i=1,...,N

‖DxiuN‖∞ ≤
C

N
∀N.

31



3.3 Limits of Nash equilibria in pure strategies

Let us assume is that the payoffs FN
1 , . . . , F

N
N of the players are symmetric. In particular,

under suitable bounds and uniform continuity, we know from Theorem 3.8 that FN
i have

a limit, which has the form F (x,m). Here, the dependence on x is to keep track of the
dependence on i of the function FN

i . So the payoffs of the players are very close to the form

F (x1,
1

N − 1

∑
j≥2

δxj), . . . , F (xN ,
1

N − 1

∑
j≤N−1

δxj).

In order to keep the presentation as simple as possible, we suppose that the payoffs already
have this form. That is, we suppose that there is a continuous map F : Q× P(Q)→ R such
that, for any i ∈ {1, . . . , N}

FN
i (x1, . . . , xN) = F

(
xi,

1

N − 1

∑
j 6=i

δxj

)
∀(x1, . . . , xN) ∈ QN .

Let us recall that a pure Nash equilibrium for the game (FN
1 , . . . , F

N
N ) is (x̄N1 , . . . , x̄

N
N) ∈ QN

such that

FN
i (x̄N1 , . . . , x̄

N
i−1, yi, x̄

N
i+1, . . . , x̄

N
N) ≥ FN

i (x̄N1 , . . . , x̄
N
N) ∀yi ∈ Q .

We set

X̄N = (x̄N1 , . . . , x̄
N
N) and mN

X̄N =
1

N

N∑
i=1

δx̄Ni .

Theorem 3.11. Assume that X̄N = (x̄N1 , . . . , x̄
N
N) is a Nash equilibrium in pure strategies for

the game FN
1 , . . . , F

N
N . Then up to extraction of a subsequence, the sequence of measures mN

X̄N

converges to a measure m̄ ∈ P(Q) such that

ˆ
Q

F (y, m̄)dm̄(y) = inf
m∈P(Q)

ˆ
Q

F (y, m̄)dm(y) . (3.6)

Remark 3.12. The “mean field equation” (3.6) is equivalent to saying that the support of m̄
is contained in the set of minima of F (y, m̄). Indeed, if Spt(m̄) ⊂ argminy∈QF (y, m̄), then
clearly m̄ satisfies (3.6). Conversely, if (3.6) holds, then choosing m = δx shows that

ˆ
Q

F (y, m̄)dm̄(y) ≤ F (x, m̄) for any x ∈ Q.

Therefore, we have ˆ
Q

F (y, m̄)dm̄(y) ≤ min
x∈Q

F (x, m̄),

which implies that m̄ is supported in argminy∈QF (y, m̄).
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Proof. Without loss of generality we can assume that the sequence mN
X̄N converges to some m̄.

Let us check that m̄ satisfies (3.6). Note that, by the definition of a pure Nash equilibrium,
the measure δx̄Ni is a minimizer of the problem

inf
m∈P(Q)

ˆ
Q

F (y,
1

N − 1

∑
j 6=i

δx̄Nj )dm(y).

Since

d1

( 1

N − 1

∑
j 6=i

δx̄Nj ,m
N
X̄N

)
≤ 2

N
,

and since F is uniformly continuous, the measure δx̄Ni is also ε−optimal for the problem

inf
m∈P(Q)

ˆ
Q

F (y,mN
X̄N )dm(y),

as soon as N is sufficiently large, and this is true for all i = 1, . . . , N . By linearity, so is mN
X̄N :

ˆ
Q

F (y,mN
X̄N )dmN

X̄N (y) ≤ inf
m∈P(Q)

ˆ
Q

F (y,mN
X̄N )dm(y) + ε.

Letting N → +∞ gives the result. 2

3.4 Limit of the Nash equilibria in mixed strategies

Theorem 3.11 is not completely satisfying because it requires the existence of a pure Nash
equilibrium in the N−player game, which does not always hold. However a Nash equilibrium
in mixed strategies always exists, and we now discuss the corresponding result.

We now assume that the players play the same game FN
1 , . . . , F

N
N as before, but they

are allowed to play in mixed strategies – they minimize over elements of P(Q) instead of
minimizing over elements of Q. If the players play the mixed strategies π1, . . . , πN ∈ P(Q),
then the outcome of player i (still denoted, by abuse of notation, F i

N) is

FN
i (π1, . . . , πN) =

ˆ
QN

F
(
xi,

1

N − 1

∑
j 6=i

δxj

)
dπ1(x1) . . . dπN(xN) . (3.7)

Recall that that symmetric Nash equilibria do exist for mixed strategies, unlike for pure
strategies.

Theorem 3.13. Assume that F is Lipschitz continuous. Let (π̄N , . . . , π̄N) be a symmetric
Nash equilibrium in mixed strategies for the game FN

1 , . . . , F
N
N . Then, up to a subsequence, π̄N

converges to a measure m̄ satisfying (3.6).

Remark 3.14. In particular the above Theorem proves the existence of a solution to the
“mean field equation” (3.6).
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Proof. Let m̄ be a limit, up to extracting a subsequence, of π̄N . Fix y ∈ Q and consider the
map

F̃ (y, x) = F (y,
1

N − 1

∑
j 6=i

δxj) : QN−1 → R.

Note that F̃ is Lip(F )/(N − 1)−Lipschitz continuous in each coordinate xj ∈ Q, hence twe
have, by the definition of the distance d1:∣∣∣ˆ

QN−1

F̃ (y, x)
∏
j 6=i

dπ̄N(xj)−
ˆ
QN−1

F̃ (y, x)
∏
j 6=i

dm̄(xj)
∣∣∣ ≤ Lip(F )d1(π̄N , m̄) ∀y ∈ Q .

(3.8)
Since (π̄1, . . . , π̄N) is a Nash equilibrium, inequality (3.8) implies that, for any ε > 0 and if
we choose N large enough, we have

ˆ
QN

F (y,
1

N − 1

∑
j 6=i

δxj)
∏
j 6=i

dm̄(xj)dm̄(y) ≤
ˆ
QN

F (y,
1

N − 1

∑
j 6=i

δxj)
∏
j 6=i

dm̄(xj)dm(y) + ε ,

(3.9)
for any m ∈ P(Q). Note also that we have

lim
N→+∞

ˆ
QN−1

F (y,
1

N − 1

∑
j 6=i

δxj)
∏
j 6=i

dm̄(xj) = F (y, m̄) , (3.10)

where the convergence is uniform with respect to y ∈ Q thanks to the (Lipschitz) continuity
of F . Letting N → +∞ in both sides of (3.9) gives, in view of (3.10),

ˆ
Q

F (y, m̄)dm̄(y) ≤
ˆ
Q

F (y, m̄)dm(y) + ε ∀m ∈ P(Q) ,

which finishes the proof, since ε is arbitrary. 2

We can also investigate the converse statement: suppose that a measure m̄ satisfying the
equilibrium condition (3.6) is given. To what extent can it be used in an N−player game?

Theorem 3.15. Let F be as in Theorem 3.13. For any ε > 0, there exists N0 ∈ N such that,
if N ≥ N0, the symmetric mixed strategy (m̄, ·, m̄) is ε−optimal in the N−player game with
costs (FN

i ) defined by (3.7). Namely, we have

FN
i (m̄, . . . , m̄) ≤ FN

i (xi, (m̄)j 6=i) + ε ∀xi ∈ Q.

Proof. Indeed, as explained in the proof of Theorem 3.13, see (3.10). we have

lim
N→+∞

FN
i (xi, (m̄)j 6=i) = F (xi, m̄)

and this limit holds uniformly with respect to xi ∈ Q. So we can find N0 such that

sup
xi∈Q

∣∣FN
i (xi, (m̄)j 6=i)− F (xi, m̄)

∣∣ ≤ ε/2 ∀N ≥ N0. (3.11)
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Then, for any xi ∈ Q, we have

FN
i (xi, (m̄)j 6=i) ≥ F (xi, m̄)− ε/2 ≥

ˆ
Q

F (yi, m̄)dm̄(yi)− ε/2 (3.12)

where the last inequality comes from the mean-field equaiton (3.6) for m̄ by using m = δxi .
Using again (3.11) and (3.12), we finally get

FN
i (xi, (m̄)j 6=i) ≥

ˆ
Q

F (yi, m̄)dm̄(yi)− ε/2 ≥ FN
i (m̄, . . . , m̄)− ε.

2

3.5 A uniqueness result

One obtains the full convergence of the measure mN
X̄N (or π̄N), rather than along a subse-

quence, if there is a unique measure m̄ satisfying the mean-field equation (3.6). This is the
case under the following (very strong) assumption:

Proposition 3.16. Assume that F satisfies
ˆ
Q

(F (y,m1)− F (y,m2))d(m1 −m2)(y) > 0 ∀m1 6= m2 . (3.13)

Then there is at most one measure satisfying (3.6).

Remark 3.17. Requiring at the same time the continuity of F and the above monotonicity
condition seems rather restrictive for applications.

Condition (3.13) is more easily fulfilled for mappings defined on strict subsets of P(Q).
For instance, if Q is a compact subset of Rd of positive measure and Pac(Q) is the set of
absolutely continuous measures on Q, with respect to the Lebesgue measure, then

F (y,m) =

{
G(m(y)) if m ∈ Pac(Q)
+∞ otherwise

satisfies (3.13) as soon as G : R→ R is continuous and increasing. Here, we denote by m(y)
the density of m at y.

If we assume that Q is the closure of a smooth open bounded subset Ω of Rd, another
example is given by

F (y,m) =

{
um(y) if m ∈ Pac(Q) ∩ L2(Q)
+∞ otherwise

where um is the solution in H1(Q) of{
−∆um = m in Ω
um = 0 on ∂Ω

Note that in this case the map y → F (y,m) is continuous.
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Proof of Proposition 3.16. Let m̄1, m̄2 satisfying (3.6). Then

ˆ
Q

F (y, m̄1)dm̄1(y) ≤
ˆ
Q

F (y, m̄1)dm̄2(y)

and ˆ
Q

F (y, m̄2)dm̄2(y) ≤
ˆ
Q

F (y, m̄2)dm̄1(y) .

Therefore ˆ
Q

(F (y, m̄1)− F (y, m̄2))d(m̄1 − m̄2)(y) ≤ 0 ,

which implies that m̄1 = m̄2 thanks to assumption (3.13). 2

3.6 An example: potential games

We now consider a class of nonatomic games for which the mean-field game equilibria can be
found by minimizing a functional. To fix the idea, we assume that Q ⊂ Rd, and that F (x,m)
has the form

F (y,m) =

{
F (m(y)) if m ∈ Pac(Q)
+∞, otherwise

where Pac(Q) is the set of absolutely continuous measures on Q, with respect to the Lebesgue
measure, and m(y) is the density of m at y ∈ Q. If F (x,m) can be represented as the
derivative of some mapping Φ(x,m) with respect to the m−variable, and if the problem

inf
m∈P(Q)

ˆ
Q

Φ(x,m)dx

has a minimum m̄, then the first variation tells us that

ˆ
Q

Φ′(x, m̄)(dm− dm̄) ≥ 0 ∀m ∈ P(Q),

so ˆ
Q

F (x, m̄)dm ≥
ˆ
Q

F (x, m̄)dm̄ ∀m ∈ P(Q) ,

which shows that m̄ is a solution of the mean-field game equation.
For instance let us assume that

F (x,m) =

{
V (x) +G(m(x)) if m ∈ Pac(Q)
+∞ otherwise

where V : Q → R is continuous and G : (0,+∞) → R is continuous, strictly increasing,
with G(0) = 0 and G(s) ≥ cs for some c > 0. Then let

Φ(x,m) = V (x)m(x) +H(m(x)) if m is a.c.
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where H is a primitive of G with H(0) = 0. Note that H is strictly convex with

H(s) ≥ c

2
s2.

Hence the problem

inf
m∈Pac(Q)

ˆ
Q

V (x)m(x) +H(m(x))dx

has a unique solution m̄ ∈ L2(Q). Then we have, for any m ∈ Pac(Q),
ˆ
Q

(V (x) +G(m̄(x)))m(x)dx ≥
ˆ
Q

(V (x) +G(m̄(x)))m̄(x)dx ,

so that m̄ satisfies (a slightly modified version of) the mean field equation (3.6). In particular,
we have

V (x) +G(m(x)) = min
y
V (y) +G(m̄(y)) for any x ∈ Spt(m̄).

Let us set λ = miny V (y) +G(m̄(y)). Then

m̄(x) = G−1((λ− V (x))+)

For instance, if we plug formally Q = Rd, V (x) = |x|2/2 and G(s) = log(s) into the above
equality, we get m(x) = e−|x|

2/2/(2π)d/2.

3.7 Comments

There is a huge literature on games with a continuum of players, starting from the seminal
work by Aumann [14]. Schmeidler [120], and then Mas-Colell [111], introduced a notion
of non-cooperative equilibrium in games with a continuum of agents and established several
existence results in a much more general framework where the agents have types, i.e., personal
characteristics; in that set-up, the equilibria are known under the name of Cournot-Nash
equilibria. Blanchet and Carlier [19] investigated classes of problems in which such equilibrium
is unique and can be fully characterized.

The variational approach described in Section 3.6 presents strong similarities with the
potential games of Monderer and Shapley [113].

4 The mean field game system with a non-local cou-

pling

This part is devoted to the mean field game (MFG) system

(i) −∂tu−∆u+H(x,Du) = F (x,m)
(ii) ∂tm−∆m− div (mDpH(x,Du(t, x))) = 0

(iii) m(0) = m0 , u(T, x) = G(x,m(T )).
(4.1)

The Hamiltonian H : Td×Rd → R is assumed to be convex with respect to the second variable.
The two equations in (4.1) are coupled via the functions F and G. For simplicity, we work with
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the data which are periodic in space: although this situation is completely unrealistic in terms
of applications, this assumption simplifies the proofs and avoids the technical discussion on
the boundary conditions. Note that we have set the diffusivity to be equal to one, to simplify
the notation. We will also consider the case when the diffusivity vanishes, so the system is of
the first order.

The MFG system can be interpreted as a Nash equilibrium for a system for nonatomic
agents with a cost (or pay-off) depending of the density of the other agents. More precisely,
at the initial time t = 0 the agents are distributed according to the probability density m0.
We make the strong assumption that the agents also share a common belief on the future
behavior of the density of agents m(t), with, of course, m(0) = m0. Each player, if he starts
from a position x at time t = 0, has to solve a problem of the form

inf
α
E
[ˆ T

0

(H∗(Xs, αs) + F (Xs,m(s)))ds+G(XT ,m(T ))

]
where H∗ is the Legendre transform of H with respect to the last variable, as in (2.26):

H(p, x) = inf
a∈A

[H∗(x, a) + a · p] , p ∈ Rd, (4.2)

and Xs is the solution to the SDE

dXs = αsds+
√

2dBs, X0 = x.

Here, Bs is a standard d−dimensional Brownian motion and the infimum is taken over
controls α : [0, T ] → Rd adapted to the filtration generated by Bs. Note that the final
cost G(XT ,m(T )) depends not only on the final position but also on the distribution of the
other players at the final time T , and that the running cost F (Xs,m(s)) depends on the
position Xs and m(s) but not directly on the control αs.

As it is standard in the control theory, it is convenient to introduce the value func-
tion u(t, x) for this problem:

u(t, x) := inf
α
E
[ˆ T

t

(H∗(Xs, αs) + F (Xs,ms))ds+G(XT ,mT ))

]
where

dXs = αsds+
√

2dBs, Xt = x.

As we have discussed, if mt is known, then u is a classical solution to the Hamilton-Jacobi
equation (4.1)-(i) with the terminal condition u(T, x) = G(x,mT ). Moreover, the optimal
feedback of each agent is given by

α∗(t, x) := −DpH(x,Du(t, x)).

Hence, the best policy for each individual agent at position x at time t, is to play α∗(t, x).
Then, the actual density m̃(t) of agents would evolve according to the Fokker-Planck equa-
tion (4.1)-(ii), with the initial condition m̃(0) = m0. We say that the pair (u,m) is a Nash
equilibrium of the game if the pair (u,m) satisfies the MFG system (4.1). This agrees with
our discussion in the previous section.
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We discuss here several regimes for the MFG system: first, the uniformly parabolic case,
for which existence of a classical solution for the system is expected to hold. When there is
no diffusion, one has to introduce a suitable notion of a weak solution. We will also have to
consider various smoothing properties of the couplings F and G, depending on whether the
couplings are regularizing or not. This is what leads us to separate the ”more regularizing”
non-local couplings from ”not so much regularizing” local couplings.

4.1 The existence theorem

Let us start with the second order mean field games with a nonlocal coupling:

(i) −∂tu−∆u+H(x,Du) = F (x,m) in (0, T )× Td,
(ii) ∂tm−∆m− div (m DpH(x,Du(t, x))) = 0 in (0, T )× Td,

(iii) m(0) = m0 , u(T, x) = G(x,m(T )) in Td.
(4.3)

Our aim is to prove the existence of classical solutions for this system and give some inter-
pretation in terms of a game with finitely many players.

Let us describe various assumptions used throughout the section. Our main hypothesis
is that F and G are regularizing on the set of probability measures on Td in the following
sense. Let P(Td) be the set of such Borel probability measures on Td endowed with the
Kantorovitch-Rubinstein distance:

d1(µ, ν) = sup
{ˆ

Td
φ(x)(µ− ν)(dx) s.t φ : Td → R is 1-Lipschitz continuous

}
. (4.4)

Recall that the distance metricizes the weak-* topology on P(Td) and that P(Td) is a compact
space.

Here are our main assumptions on F , G and m0:
(i) The functions F (x,m) and G(x,m) are Lipschitz continuous in Td × P(Td),
(ii) Uniform regularity of F and G in space: F (·,m) and G(·,m) are bounded in C1+β(Td)
and C2+β(Td) (for some β ∈ (0, 1)) uniformly with respect to m ∈ P(Td).
(iii) The Hamiltonian H : Td × Rd → R is locally Lipschitz continuous, DpH exists and is
continuous on Td × Rd, and H satisfies the growth condition

〈DxH(x, p), p〉 ≥ C0(1 + |p|2) (4.5)

for some constant C0 > 0.
(iv) The probability measure m0 is absolutely continuous with respect to the Lebesgue mea-
sure, and has a C2+β continuous density, still denoted m0.

Let us comment on the Lipschitz continuity in m assumption. For example, if we fix a
Lipschitz function f and take

F (m) =

ˆ
Td
f(x)dm,

then
|F (m1)− F (m2)| ≤ ‖f‖Lipd1(m1,m2),

thus F (m) is Lipschitz continuous. On the other hand, if we take a function g : R → R and
define F (x,m) = g(m(x)) for measures m that are absolutely continuous with respect to the
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Lebesgue measure, then F (x,m) is not Lipschitz continuous in the d1-metric on P(Td), no
matter how nice g is. This is why this assumption implies that coupling is non-local.

A pair (u,m) is a classical solution to (4.3) if u,m : Rd × [0, T ] → R are continuous, of
class C2 in space and C1 in time and (u,m) satisfies (4.3) in the classical sense. The main
result of this section is the following:

Theorem 4.1. Under the above assumptions, there is at least one classical solution to (4.3).

The proof is relatively easy and relies on the basic estimates for Hamilton-Jacobi equations
and on some remarks on the Fokker-Planck equation (4.3-(ii)). We give the details below.

4.2 On the Fokker-Planck equation

Let b : Rd × [0, T ] → R be a given vector field. Our aim is to analyse the Fokker-Planck
equation {

∂tm−∆m− div(mb) = 0 in Td × (0, T ),
m(0, x) = m0(x),

(4.6)

as an evolution equation in the space of probability measures. We assume here that the vector
field b : Td × [0, T ]→ Rd is continuous in time and Hölder continuous in space.

Definition 4.2. We say that m ∈ L1(Td × [0, T ]) is a weak solution to (4.6) if for any test
function ϕ ∈ C∞c (Rd × [0, T )), we have

ˆ
Td
φ(x, 0)dm0(x)−

ˆ
Td
φ(x, t)dm(t)(x)

+

ˆ T

0

ˆ
Td

(∂tϕ(t, x) + ∆ϕ(t, x)− 〈Dϕ(t, x), b(t, x)〉) dm(t)(x) = 0.

In order to analyze some particular solutions of (4.6), it is convenient to introduce the
following stochastic differential equation (SDE){

dXt = −b(Xt, t)dt+
√

2dBt, t ∈ [0, T ]
X0 = Z0

(4.7)

where the initial condition Z0 ∈ L1(Ω) is possibly random and independent of Bt. Under the
above assumptions on b, there is a unique solution to (4.7). This solution is closely related to
equation (4.6):

Lemma 4.1. If L(Z0) = m0, then m(t) := L(Xt) a weak solution of (4.6).

Proof. This is a straightforward consequence of the Itô formula: if ϕ(t, x) is smooth with
compact support, then

ϕ(Xt, t) = ϕ(Z0, 0) +

ˆ t

0

[∂sϕ(Xs, s)− 〈Dϕ(Xs, s), b(Xs, s)〉+ ∆ϕ(Xs, s)] ds

+

ˆ t

0

〈Dϕ(Xs, s), dBs〉 .
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Taking the expectation on both sides (with respect to the Brownian motion and the random-
ness in the initial condition) gives

E [ϕ(Xt, t)] = E
[
ϕ(Z0, 0) +

ˆ t

0

[ϕt(Xs, s)− 〈Dϕ(Xs, s), b(Xs, s)〉+ ∆ϕ(Xs, s)] ds
]
.

So by definition of m(t), we getˆ
Rd
ϕ(t, x)dm(t)(x) =

ˆ
Rd
ϕ(x, 0)dm0(x)

+

ˆ t

0

ˆ
Rd

[ϕt(x, s)− 〈Dϕ(x, s), b(x, s)〉+ ∆ϕ(x, s)] dm(s)(x)ds,

thus m is a weak solution to (4.6). 2

The interpretation of the solution of the continuity equation as the law of the corresponding
solution of the SDE allows us to get a Hölder regularity estimate on m(t) in P(Td).

Lemma 4.2. There is a constant c0 = c0(T ), independent of ν ∈ (0, 1], such that

d1(m(t),m(s)) ≤ c0(1 + ‖b‖∞)|t− s|1/2 ∀s, t ∈ [0, T ] .

Proof. We write

d1(m(t),m(s)) = sup
{ˆ

Td
φ(x)(m(t)−m(s))(dx) s.t φ is 1-Lipschitz continuous

}
≤ sup

{
E [φ(Xt)− φ(Xs)] s.t φ is 1-Lipschitz continuous

}
≤ E [|Xt −Xs|] .

Moreover, if, for instance, s < t we have

E [|Xt −Xs|] ≤ E
[ˆ t

s

|b(Xτ , τ)| dτ +
√

2 |Bt −Bs|
]
≤ ‖b‖∞(t− s) +

√
2ν(t− s).

This finishes the proof. 2

4.3 Proof of the existence Theorem

We are now ready to prove Theorem 4.1. For a large constant C1 to be chosen below, let C
be the set of maps µ ∈ C0([0, T ],P(Td)) such that

sup
s 6=t

d1(µ(s), µ(t))

|t− s|1/2
≤ C1. (4.8)

Then C is a convex closed subset of C0([0, T ],P(Td)). It is actually compact thanks to Ascoli’s
Theorem and the compactness of the set P(Td).

The proof is based on a fixed point theorem. To any µ ∈ C, we associate m = Ψ(µ) ∈ C
as follows. Let u be the unique solution to the terminal problem

−∂tu−∆u+H(x,Du) = F (x, µ(t)) in (0, T )× Td, (4.9)

u(x, T ) = G(x, µ(T )) in Td.
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Then we define m = Ψ(µ) as the solution of the initial value problem for the Fokker-Planck
equation

∂tm−∆m− div(mDpH(x,Du)) = 0 in (0, T )× Td, (4.10)

m(0, x) = m0(x) in Td.

Let us check that Ψ is a well-defined and continuous map C → C. Let us set

H̃(t, x, p) = H(x, p)− F (x, µ(t)).

The theory of the viscous Hamilton-Jacobi equations shows that under assumption (4.5)
equation (4.9) has a unique classical solution u. Moreover, we have an estimate

‖u‖C2+α,1+α/2 ≤ C, (4.11)

where α > 0 and C > 0 do not depend on µ, because of the a priori bounds on F we have
assumed. The constant C may depend on T though.

Next we turn to the Fokker-Planck equation (4.10), that we write in the form

∂tm−∆m− 〈Dm,DpH(x,Du)〉 −m div[DpH(x,Du)] = 0 .

Since u ∈ C2+α,1+α/2, the maps (t, x) → DpH(x,Du) and (t, x) → divDpH(x,Du) belong
to Cα, so that this advection-diffusion equation is uniquely solvable and the solution m
belongs to C2+α,1+α/2. Moreover, from Lemma 4.2, we have the following estimate on m:

d1(m(t),m(s)) ≤ c0(1 + ‖DpH(·, Du)‖∞)|t− s|1/2 ∀s, t ∈ [0, T ],

where ‖DpH(·, Du)‖∞ is bounded by a constant C2 independent of µ, because Du is uniformly
bounded due to (4.11). Thus, if we choose C1 in (4.8) sufficiently large, then m belongs to C,
and the mapping Ψ : µ→ m = Ψ(µ) is well-defined from C into itself.

Let us check that Ψ is a continuous map C → C. Let us assume that µn → µ in C, and
let (un,mn) and (u,m) be the corresponding solutions to (4.9)-(4.10). Note that

F (x, µn(t))→ (x, µ(t)) and G(x, µn(T )→ G(x, µ(T ),

both uniformly, over Td × [0, T ] and Td, respectively, thanks to our continuity assumptions
on F and G. Moreover, as the right side of the Hamilton-Jacobi equation for un is bounded
in C1+α,1+α/2, the functions un are uniformly bounded in C2+α,1+α/2 so that un converges
in C2,1 to the unique solution u of the Hamilton-Jacobi equation with the right side F (x, µ).
The measures mn are then solutions of a linear Fokker-Planck equation with uniformly Hölder
continuous coefficients, which provides uniform C2+α,1+α/2 estimates on mn. Thus, mn con-
verge in turn, also in C2,1, to the unique solution m of the Fokker-Planck equation associated
to DpH(x,Du). The convergence is then easily proved to be also in C0([0, T ],P(Td)). Now,
the Schauder fixed point theorem implies that the continuous map µ→ m = Ψ(µ) has a fixed
point in C: this fixed point (and the corresponding u) is a solution to (4.3).
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4.4 Uniqueness of the solution

Let us assume that, besides assumptions given at the beginning of the section, the following
conditions hold:ˆ

Td
(F (x,m1)− F (x,m2))d(m1 −m2)(x) ≥ 0 ∀m1,m2 ∈ P(Td) (4.12)

and ˆ
Td

(G(x,m1)−G(x,m2))d(m1 −m2)(x) ≥ 0 ∀m1,m2 ∈ P(Td) . (4.13)

We also assume that H is uniformly convex with respect to the last variable:

1

C
Id ≤ D2

ppH(x, p) ≤ CId, (4.14)

with some C > 0.

Theorem 4.3. Under the above conditions, there is a unique classical solution to the mean
field equation (4.3).

Proof. Let (u1,m1) and (u2,m2) be two classical solutions of (4.3), and set

ū = u1 − u2, m̄ = m1 −m2,

then

d

dt

ˆ
Td
ūm̄dx =

ˆ
Td

[(∂tū)m̄+ ū(∂tm̄)]dx (4.15)

=

ˆ
Td

(−∆ū+H(x,Du1)−H(x,Du2)− F (x,m1) + F (x,m2))m̄dx

+

ˆ
Td
ū(∆m̄+ div(m1DpH(x,Du1))− div(m2DpH(x,Du2)))dx.

Note that ˆ
Td
−(∆ū)m̄+ ū(∆m̄)dx = 0,

and, from the monotonicity condition on F , we have

ˆ
Td

(−F (x,m1) + F (x,m2))m̄dx =

ˆ
Td

(−F (x,m1) + F (x,m2))(m1 −m2)dx ≤ 0.

We now rewrite the remaining terms in (4.15) in the following way:

R :=

ˆ
Td

[(H(x,Du1)−H(x,Du2))m̄− 〈Dū,m1DpH(x,Du1)−m2DpH(x,Du2)〉]dx

= −
ˆ
Td
m1 [H(x,Du2)−H(x,Du1)− 〈DpH(x,Du1), Du2 −Du1〉] dx

−
ˆ
Td
m2 [H(x,Du1)−H(x,Du2)− 〈DpH(x,Du2), Du1 −Du2〉] dx.
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The uniform convexity assumption (4.14) on H implies that

R ≤ −
ˆ
Td

(m1 +m2)

2C
|Du1 −Du2|2dx ≤ 0.

Putting the estimates together we get

d

dt

ˆ
Td
ūm̄dx ≤ 0. (4.16)

We integrate this inequality on the time interval [0, T ] to obtain

ˆ
Td
ū(T )m̄(T )dx ≤

ˆ
Td
ū(0)m̄(0)dx−

ˆ T

0

ˆ
Td

(m1 +m2)

2C
|Du1 −Du2|2dx. (4.17)

Note that m̄(0) = 0 while, as ū(T ) = G(x,m1(T ))−G(x,m2(T )), we have

ˆ
Td
ū(T )m̄(T )dx =

ˆ
Td

(G(x,m1(T ))−G(x,m2(T )))(m1(T )−m2(T ))dx ≥ 0

thanks to the monotonicity assumption on G. Now, (4.17) implies that

ˆ
Td
ū(T )m̄(T )dx = 0,

but also that
Du1 = Du2 in {m1 > 0}

⋃
{m2 > 0}.

As a consequence, m2 actually solves the same equation as m1, with the same drift

DpH(x,Du1) = DpH(x,Du2),

hence m1 = m2. Then, in turn, implies that u1 and u2 solve the same Hamilton-Jacobi
equation, so that u1 = u2. 2

4.5 An application to games with finitely many players

Before starting the discussion of games with a large number of players, let us fix a solu-
tion (u,m) of the mean field system (4.3) and investigate the optimal strategy of a generic
player who considers the density m “of the other players” as given. He faces the following
minimization problem

inf
α
J (α) where J (α) = E

[ˆ T

0

L(Xs, αs) + F (Xs,m(s)) ds+G (XT ,m(T ))

]
.

In the above formula, L is a kind of Legendre transform of H with respect to the last variable:

L(x, ξ) := sup
p∈Rd

[−〈p, ξ〉 −H(x, p)].
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The process Xt is given by

Xt = X0 +

ˆ t

0

αsds+
√

2Bs,

with X0 a fixed random initial condition with the law m0, independent of Bt, and the control
α is adapted to the filtration Ft of the d−dimensional Brownian motion Bt. We claim that the
feedback strategy α∗(t, x) := −DpH(x,Du(t, x) is optimal for this optimal stochastic control
problem.

Lemma 4.3. Let X̄t be the solution of the stochastic differential equation{
dX̄t = α∗(t, X̄t)dt+

√
2dBt

X̄0 = X0

and set ᾱ(t) = α∗(t,Xt). Then

inf
α
J (α) = J (ᾱ) =

ˆ
RN
u(0, x) dm0(x) .

Proof. This kind of result is known as a verification Theorem: one has a good candidate for
an optimal control, and one checks, using the equation satisfied by the value function u, that
this is indeed the minimum. Let α be an adapted control. We have, by the Itô formula,

E[G(XT ,m(T ))] = E[u(XT , T )]

= E
[
u(0, X0) +

ˆ T

0

(∂tu(s,Xs) + 〈αs, Du(s,Xs)〉+ ∆u(s,Xs)) ds

]
= E

[
u(0, X0) +

ˆ T

0

(H(Xs, Du(s,Xs)) + 〈αs, Du(s,Xs)〉 − F (Xs,m(s))) ds

]
,

where we have used the equation satisfied by u in the last equality. Thus, by definition of L,

E[G(XT ,m(T ))] ≥ E
[
u(0, X0) +

ˆ T

0

(−L(Xs, αs)− F (Xs,m(s))) ds

]
.

This shows that

E [u(0, X0)] ≤ E
[ˆ T

0

(L(Xs, αs) + F (Xs,m(s))) ds+G(XT ,m(T ))

]
= J(α)

for any adapted control α. If we replace α by ᾱ in the above computations, then, since

H(X̄s, Du(s, X̄s)) + 〈ᾱs, Du(s, X̄s)〉 = H(X̄s, Du(s, X̄s)) + 〈α∗(X̄s, Du(s, X̄s))〉
= −L(X̄s, α

∗(X̄s, Du(s, X̄s))) = −L(X̄s, ᾱs))

all the above inequalities become equalities, so E [u(X0, 0)] = J (ᾱ). 2

We now consider a differential game with N players which is a finite number of players
approximation of the mean field game. In this game, player i = 1, . . . , N , is controlling
through his control αi a dynamics of the form

dX i
t = αitdt+

√
2dBi

t. (4.18)
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The initial conditions X i
0 for this system are also random and all have the law m0. We assume

that all X i
0 and all the Brownian motions Bi

t, i = 1, . . . , N , are independent. Player i can
choose his control αi adapted to the filtration Ft = σ{Xj

0 , B
j
s , s ≤ t, j = 1, . . . , N} – players

”know about each other”. His payoff is then given by

J N
i (α1, . . . , αN) = E

[ˆ T

0

L(X i
s, α

i
s) + F (X i

s,m
N,i
Xs

)ds+G(X i
T ,m

N,i
XT

)

]
,

where

mN,i
Xs

:=
1

N − 1

∑
j 6=i

δXj
s

is the empirical distribution of the players Xj, where j 6= i. Our aim is to explain that the
strategy given by the mean field game is almost optimal for this problem. More precisely, let
(u,m) be a classical solution to the MFG system (4.3) and let us define the feedback

α∗(t, x) := −DpH(x,Du(t, x)).

With the closed loop strategy α∗ one can associate the open-loop control ᾱi obtained by
solving the SDE

dX̄ i
t = α∗(t, X̄ i

t)dt+
√

2dBi
t (4.19)

with random initial condition X i
0 and setting ᾱit = α∗(t, X̄ i

t). Note that this control is just
adapted to the filtration F it = σ(X i

0, B
i
s, s ≤ t}, and not to the full filtration Ft defined

above – you do not need the precise information about the other players.

Theorem 4.4. Assume that F and G are Lipschitz continuous in Td×P (Td). Then there ex-
ists a constant C > 0 such that the symmetric strategy (ᾱ1, . . . , ᾱN) is an ε−Nash equilibrium
in the game J N

1 , . . . ,J N
N for ε := CN−1/(d+4): namely

J N
i (ᾱ1, . . . , ᾱN) ≤ J N

i ((ᾱj)j 6=i, α
i) + CN−1/(d+4)

for any control αi adapted to the filtration (Ft) and any i ∈ {1, . . . , N}.

The Lipschitz continuity assumptions on F and G allow to quantify the error. If F
and G are just continuous, one can only say that, for any ε > 0, there exists N0 such that
the symmetric strategy (ᾱ1, . . . , ᾱN) is an ε−Nash equilibrium in the game J N

1 , . . . ,J N
N for

any N ≥ N0.
Before starting the proof, we need the following result on product measures due to

Horowitz and Karandikar (see for instance Rashev and Rüschendorf [118], Theorem 10.2.1).

Lemma 4.4. Assume that Zi are i.i.d. random variables with a law µ. Then there is a
constant C, depending only on d, such that

E[d1(mN
Z , µ)] ≤ CN−1/(d+4), where mN

Z =
N∑
i=1

δZi .
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Proof of Theorem 4.4. Fix ε > 0. Since the problem is symmetrical, it is enough to show that

J N
1 (ᾱ1, . . . , ᾱN) ≤ J N

1 ((ᾱj)j 6=1, α) + ε (4.20)

for any control α, as soon as N is large enough. Recall that X̄j
t is the solution of the stochastic

differential equation (4.19) with the initial condition Xj
0 . We note that X̄j

t are independent
and identically distributed with the law m(t) – see Lemma 4.1. Therefore, using Lemma 4.4,
we have for any t ∈ [0, T ],

E
[
d1(mN,i

X̄t
,m(t))

]
≤ CN−1/(d+4).

By Lipschitz continuity of F and G with respect to the variable m, we have therefore:

E
[ˆ T

0

sup
x∈Td
|F (x,mN,1

X̄t
)− F (x,m(t))|dt

]
+E

[
sup
x∈Td
|G(x,mN,1

X̄T
)−G(x,m(T ))|

]
≤ CN−1/(d+4).

Let now α1 be a control adapted to the filtration Ft and X1
t be the solution to

dX1
t = α1

tdt+
√

2dB1
t

with a random initial condition X1
0 . We have

J N
1 ((ᾱj)j 6=2, α

1) = E
[ ˆ T

0

(L(X1
s , α

1
s) + F (X1

s ,m
N,i

X̄s
)) ds+G(X1

T ,m
N,i

X̄T
)
]

≥ E
[ ˆ T

0

(L(X1
s , α

1
s) + F

(
X1
s ,m(s)

)
) ds+G

(
X1
T ,m(T )

) ]
− CN−1/(d+4)

≥ J N
1 ((ᾱj)j 6=1, ᾱ

1)− CN−1/(d+4).

The last inequality comes from the optimality of ᾱ in Lemma 4.3. This proves the result. 2

Remark 4.5. Although sufficient in our context, the estimate

sup
t∈[0,T ]

E
[
d1(mN,i

X̄t
,m(t))dt

]
≤ CN−1/(d+4).

is a very rough one. One can actually prove that

E

[
sup
t∈[0,T ]

d1(mN,i

X̄t
,m(t))dt

]
≤ CN−1/(d+8).

See [118], Theorem 10.2.7.

4.6 Extensions

Several other classes of MFG systems have be studied in the literature. We discuss only a
few of them, since the number of models has grown exponentially in the last years.

47



4.6.1 The ergodic MFG system

One may be interested in the large time average of the MFG system (4.3) as the horizon T
tends to infinity. It turns out that the limit system takes the following form:{

(i) λ−∆u+H(x,Du) = F (x,m) in Td
(ii) −∆m− div (m DpH(x,Du(x))) = 0 in Td (4.21)

Here the unknown are now (λ, u,m), where λ ∈ R is the so-called ergodic constant. The
interpretation of the system is the following: each player wants to minimize his ergodic cost

J (x, α) := lim sup
T→+∞

inf
α
E
[

1

T

ˆ T

0

[H∗(Xt,−αt) + F (Xt,m(t))]dt

]
where Xt in the solution to {

dXt = αtdt+
√

2dBt

X0 = x

It turns out that, if (λ, u,m) is a classical solution to (4.21), then the optimal strategy of each
tiny player is given by the feedback

α∗(t, x) := −DpH(x,Du(x))

and, if ᾱ is the solution to {
dXt = α∗(t,Xt)dt+

√
2dBt

X0 = x
(4.22)

and if we set ᾱt := α∗(t,Xt), then J (x, ᾱ) = λ is independent of the initial position. Finally,m
is the invariant measure associated with the SDE (4.22).

4.6.2 The infinite horizon problem

Another natural model pops up when each player aims at minimizing a infinite horizon cost:

J (x, α) = inf
α
E
[ˆ +∞

0

e−rt (H∗(Xt,−αt) + F (Xt,m(t))) dt

]
where r > 0 is a fixed discount rate. Note that there is no reason for the equilibrium for been
given by the initial repartition of the players. This implies that the infinite horizon MFG
system is not stationary. It is actually system of evolution equations in infinite horizon, given
by: 

(i) −∂tu+ ru−∆u+H(x,Du) = F (x,m(t)) in (0,+∞)× Td
(ii) ∂tm−∆m− div (m DpH(x,Du(t, x))) = 0 in (0,+∞)× Td

(iii) m(0) = m0 in Td, u bounded
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4.6.3 General diffusion

The above results can be extended in several directions. For instance, the diffusion need not
be a Brownian motion, and, for the existence part, the system need not be in “separated
form”. Namely, the existence result (i.e., Theorem 4.1) still holds (with almost the same
proof) for the system

(i) −∂tu− aij∂2
iju+H(x,Du,m(t)) = 0 in (0, T )× Td

(ii) ∂tm− ∂ij(aijm)− div (m DpH(x,Du(t, x),m(t))) = 0 in (0, T )× Td
(iii) m(0) = m0 , u(x, T ) = G(x,m(T )) in Td

where we sum over repeated indices (i.e., aij∂
2
iju :=

∑d
i,j=1 aij∂

2
iju). In the above expression,

we assume that there exists c0 > 0 such that

(c0)−1Id ≤ (ai,j(t, x) ≤ c0Id ∀(t, x) ∈ [0, T ]× Td,

that (aij) is continuous and uniformly Lipschitz continuous with respect to the space variable.
We also assume that the Hamiltonian H : Td×Rd×P (Td)→ R is locally Lipschitz continuous,
DpH exists and is continuous on Td×Rd×P (Td), and H satisfies the growth condition (4.5)
uniformly with respect to m. We finally suppose that H(·, p,m) is bounded in C1+β(Td) (for
some β ∈ (0, 1)) locally uniformly with respect to (p,m) ∈ Rd × P (Td). The assumptions on
G are the same as before.

4.6.4 Neumann boundary conditions

When the small players have to control a process in a domain Ω ⊂ Rd with reflexion on the
boundary of Ω, the MFG system takes the form:

(i) −∂tu−∆u+H(x,Du) = F (x,m) in (0, T )× Ω
(ii) ∂tm−∆m− div (m DpH(x,Du(t, x))) = 0 in (0, T )× Ω

(iii) Dνu(t, x) = 0, Dνm(t, x) + 〈DpH(x,Du(t, x)), ν〉 = 0 in (0, T )× ∂Ω
(iv) m(0) = m0 , u(T, x) = G(x,m(T )) in Td

where ν is the unit outward normal to Ω.

4.6.5 MFG systems with several populations

We now assume that the system consists in several populations (say, to fix the ideas, I
populations). Then the system takes the form

(i) −∂tui −∆ui +Hi(x,Dui) = Fi(x,m(t)) in (0, T )× Td
(ii) ∂tmi −∆mi − div (mi DpHi(x,Dui(t, x))) = 0 in (0, T )× Td

(iii) mi(0) = mi,0 , ui(T, x) = Gi(x,m(T )) in Td

where i = 1, . . . , I, ui denotes the value function of each player in population i and m =
(m1, . . . ,mI) denotes the collection of densities mi of the population i. The coupling functions
Fi and Gi depend on the all the densities. Existence of solutions can be proved by fixed point
arguments as in Theorem 4.1. Uniqueness, however, is a difficult issue.
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4.7 Comments

Existence: Existence of solutions for the MFG system can be achieved either by Banach fixed
point Theorem (as in the papers by Caines, Huang and Malham [88], under a smallness as-
sumption on the coefficients or on the time interval) or by Schauder arguments (as in Theorem
4.1, due to Lasry and Lions [104, 103]). Carmona and Delarue [44] use a stochastic maximum
principle to derive an MFG system which takes the form of a system of forward-backward
stochastic differential equations of a McKean-Vlasov type.

Uniqueness: Concerning the uniqueness of the solution, one can distinguish two kinds
of regimes. Of course the Banach fixed point argument provides directly uniqueness of the
solution of the MFG system. However, as explained above, it mostly concerns local in time
results. For the large time uniqueness, one can rely on the monotonicity conditions (4.12)
and (4.13). These conditions first appear in Lasry and Lions [104, 103].

Nash equilibria for the N−player games: the use of the MFG system to obtain ε−Nash
equilibria (Theorem 4.4) has been initiated—in a slightly different framework—in a series of
papers due to Caines, Huang and Malham: see in particular [86] (for linear dynamics) and
[88] (for nonlinear dynamics). In these papers, the dependence with respect of the empirical
measure of dynamics and payoff occurs through an average, so that the CTL implies that
the error term is a order N−1/2 (instead of N−1/(d+4) as in Theorem 4.4). The genuinely non
linear version of the result given above is a variation on a result by Carmon and Delarue [44].

We discuss below the reverse statement: in what extend the MFG system pops up as the
limit of Nash equilibria.

Extensions: it is difficult to discuss all the extensions of the MFG systems since the number
of papers on this subject has grown exponentially in the last years. We give here only a brief
overview.

The ergodic MFG system has been introduced by Lasry and Lions in [105] as the limit,
when the number of players tends to infinity, of Nash equilibria in ergodic differential games.
As explained in Lions [108], this system also pops up as the limit, as the horizon tends to
infinity, of the finite horizon MFG system. We discuss this convergence in the next section,
in a slightly simpler setting.

The natural issue of boundary conditions has not been thoroughly investigated up to now.
For the PDE approach, the authors have mostly worked with periodic data (as we did above),
which completely eliminates this question. In the “probabilistic literature” (as in the work by
Caines, Huang and Malham), the natural set-up is the full space. Beside these two extreme
cases, little has been written (see however Cirant [48], for Neumann boundary condition in
ergodic multi-population MFG systems).

The interesting MFG systems with several populations were introduced in the early paper
by Caines, Huang and Malham [88] and revisited by Cirant [48] (for Neuman boundary
conditions) and by Kolokoltsov, Li and Yang [95] (for very general diffusions, possibly with
jumps).

A very general MFG model for a single population is described in Gomes, Patrizi and
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Voskanyan [67] and Gomes and Voskanyan[68], in which the velocity of the population is a
nonlocal function of the (repartition of) actions of the players.

5 Second order MFG systems with local coupling

In this part, we concentrate on the MFG system with a local coupling:

(i) −∂tu− ν∆u+H(x,Du) = f(x,m(x, t)) in Td × (0, T )

(ii) ∂tm− ν∆m− div (DpH(x,Du)m) = 0 in Td × (0, T ) (5.1)

(iii) m(0, x) = m0(x) , u(x, T ) = G(x).

Here, the Hamiltonian H : Td × Rd → R is as before but the map f : Td × [0,+∞) → R
is now a local coupling between the value function of the optimal control problem and the
density of the distribution of the players. We will usually set ν = 1. Our aim is first to show
that the problem has a unique solution under suitable assumptions on H and a monotonicity
condition on f . Then we explain that the system (5.1) can be interpreted as an optimality
condition of two optimal control problems of partial differential equations. We complete the
section by the analysis of the long time average of the system and its link with the ergodic
MFG system.

5.1 Existence of a solution

Let us assume that the coupling f : Td× [0,+∞)→ R is smooth (say, C3) and that the initial
and terminal conditions m0 and G are C2+β.

Theorem 5.1. Under the above assumptions, if

• either the Hamiltonian is quadratic: H(x, p) =
1

2
|p|2, and the coupling f is bounded,

• or H is of the class C2 and globally Lipschitz continuous,

then (5.1) has at least one classical solution.

Remark 5.2. As we will see later, uniqueness holds if f is strictly increasing in m. Existence
of a solution actually holds for quadratic Hamiltonians without a condition on the growth
of f , provided that f is bounded below. The proof is, however, much more involved than the
one presented here (see [40]).

Proof. For simplicity we set ν = 1. We first assume that the Hamiltonian is quadratic and f
is bounded. Let us fix a smooth nonnegative kernel ξ : R → R with compact support such
that ˆ ∞

−∞
f(ξ)dξ = 1,

and let us set, ξε(s) = ε−1ξ(s/ε). We define, for any m ∈ P (Td),

f ε(x,m) = f(x, ξε ? m)
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As f ε is regularizing, Theorem 4.1 states that the system
(i) −∂tuε −∆uε +

1

2
|Duε|2 = f ε(x,mε) in Td × (0, T )

(ii) ∂tm
ε −∆mε − div (mεDuε) = 0 in Td × (0, T )

(iii) mε(0) = m0 , u
ε(x, T ) = G(x)

(5.2)

has at least one classical solution. In order to proceed, one needs estimates on this solution.
First note that, in view of the boundedness condition on f , the term f ε(x,mε) is uniformly
bounded. So, by the maximum principle, the (uε) are also uniformly bounded:

‖uε‖∞ ≤ C

(where C depend on ‖f‖∞ and T ). We now use the Hopf-Cole transform, which consists in
setting wε = e−u

ε/2. A straightforward computation shows that wε solves{
(i) −∂twε −∆wε + wεf ε(x,mε) = 0 in Td × (0, T )

(ii) wε(x, T ) = e−G(x)/2 (5.3)

Since the (uε) are uniformly bounded, so are the (wε). Then standard estimates on linear
equations (recalled in Theorem ??—take aij = δij, ai = bi = fi = f = 0, a = f ε(x,mε)) imply
Hlder bounds on wε and Dwε:

‖wε‖Cα,α/2 + ‖Dwε‖Cα,α/2 ≤ C,

where α and C depends only on the bound on f and on the C2+β regularity of G. As uε is
bounded, we immediately derive similar estimates for uε:

‖uε‖Cα,α/2 + ‖Duε‖Cα,α/2 ≤ C.

Next we estimate mε: as mε solves the linear equation (5.2)-(ii), standard estimate (recalled
in Theorem ??—take aij = δij, ai = uεxi , bi = fi = f = a = 0) imply that the (mε) are
bounded in Hlder norm:

‖mε‖Cα,α/2 ≤ C.

Accordingly the coefficients of (5.3) are bounded in Cα,α/2. Then Theorem ?? provides
C2+α,1+α/2 estimate of the solution wε, which can be rewritten as an estimate on uε:

‖uε‖C2+α,1+α/2 ≤ C.

In turn themε solve an equation with Hlder continuous coefficients, therefore one has C2+α,1+α/2

estimates on mε. So we can extract a subsequence of the (mε, uε) which converges in C2,1 to
(m,u), where (m,u) is a solution to (5.1).

Let us now explain the variant in which H is of class C2 and is globally Lipschitz contin-
uous. The technique of proof is basically the same: let (mε, uε) be a solution of the equation
with regularizing right-hand side:

(i) −∂tuε −∆uε +H(x,Duε) = f ε(x,mε) in Td × (0, T )
(ii) ∂tm

ε −∆mε − div (mεDpH(x,Duε)) = 0 in Td × (0, T )
(iii) mε(0) = m0 , u

ε(x, T ) = G(x)
(5.4)
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As DpH(x,Duε) is globally bounded, mε solves a linear equation with bounded coefficients:
therefore mε is bounded in Hlder norm. Then we come back to (5.4)-(i), which has a right-
hand side bounded in Hlder norm: this implies from Theorem ?? that the solution uε is
bounded in C2+α,1+α/2. One can then conclude as before. 2

5.2 Uniqueness of a solution

We now discuss uniqueness issues. For doing so, we work in a very general framework and
exhibit a structure condition on a coupled Hamiltonian H : Td × Rd × [0,+∞) → R for
uniqueness of classical solutions (u,m) : [0, T ]× Rd → R2 to the local MFG system:

(i) −∂tu− ν∆u+H(x,Du,m) = 0 in Td × (0, T )
(ii) ∂tm− ν∆m− div(m DpH(x,Du,m)) = 0 in Td × (0, T )

(iii) m(0) = m0, u(x, T ) = g(x) in Td
(5.5)

In the above system, ν is positive, H = H(x, p,m) is a convex Hamiltonian (in p) depending
on the density m, g : Td → T is smooth, m0 is a probability density on Rd.

Theorem 5.3. Assume that H = H(x, p,m) is a C2 function, such that
m ∂2

ppH
1

2
m ∂2

pmH

1

2
m (∂2

pmH)T −∂mH

 > 0 ∀(x, p,m) with m > 0 (5.6)

Then system (5.5) has at most one classical solution.

Remark 5.4. 1. Condition (5.6) implies that H = H(x, p,m) is uniformly convex with
respect to p and strictly decreasing with respect to m.

2. When H is separate: H(x, p,m) = H̃(x, p)−f(x,m), condition (5.6) reduces to D2
ppH̃ >

0 and Dmf > 0.

Example 5.5. Assume that H is of the form: H(x, p,m) =
1

2

|p|2

mα
, where α > 0. Then

condition (5.6) holds if and only if α ∈ (0, 2). Note however that existence of solutions is not
clear for H of the above form.

Proof. Note that H = 1
2
|p|2
mα

is convex in p, decreasing in m if α > 0. Moreover(
−∂mH

m

)
∂2
ppH −

1

4
∂2
pmH ⊗ ∂2

pmH =
α|p|2

2mα+2

Id
mα
− α2

4

p⊗ p
m2α+2

=
α|p|2Id
4m2α+2

− α2

4

p⊗ p
m2α+2

which is positive if and only if α ∈ (0, 2). 2

Before starting the proof of Theorem 5.3, let us reformulate condition (5.6) in a more
convenient way (omitting the x dependence for simplicity):
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Lemma 5.1. Condition (5.6) implies the inequality

(H(p2,m2)−H(p1,m1))(m2 −m1)
−〈p2 − p1,m2DpH(p2,m2)−m1DpH(p1,m1)〉 ≥ 0 ,

(5.7)

with equality if and only if (m1, p1) = (m2, p2).

Remark 5.6. In fact the above implication is almost an equivalence, in the sense that, if
(5.7) holds, then 

m ∂2
ppH

1

2
m ∂2

pmH

1

2
m (∂2

pmH)T −∂mH

 ≥ 0

Proof of Lemma 5.1. Set p̃ = p2 − p1, m̃ = m2 −m1 and, for θ ∈ [0, 1], pθ = p1 + θ(p2 − p1),
mθ = m1 + θ(m2 −m1). Let

I(θ) = (H(pθ,mθ)−H(x, p1,m1))m̃− 〈p̃,mθDpH(Duθ,mθ)−m1DpH(Du1,m1)〉

Then I(0) = 0 and

I ′(θ) = −
(
p̃T m̃

) mθ ∂
2
ppH

1

2
mθ ∂

2
pmH

1

2
mθ (∂2

pmH)T −∂mH

( p̃
m̃

)

Hence if condition (5.6) holds and (p1,m1) 6= (p2,m2), then

0 < I(1) = (H(p2,m2)−H(p1,m1))(m2−m1)−〈p2− p1,m2DpH(p2,m2)−m1DpH(p1,m1)〉.

2

Proof of Theorem 5.3. Let (u1,m1) and (u2,m2) be solutions to (5.5). Let us set

m̃ = m2 −m1, ũ = u2 − u1, H̃ = H(x,Du2,m2)−H(x,Du1,m1),

d̃iv = div(m2DpH(x,Du2,m2))− div(m1DpH(x,Du1,m1))

Then

d

dt

ˆ
Td

(u2(t)− u1(t))(m2(t)−m1(t))

=

ˆ
Td

(∂tu2 − ∂tu1)(m2 −m1) + (u2 − u1)(∂tm2 − ∂tm1)

=

ˆ
Td

(−ν∆ũ+ H̃)m̃+ ũ(ν∆m̃+ d̃iv)

=

ˆ
Td
H̃ m̃− 〈Dũ,m2DpH(Du2,m2)−m1DpH(Du1,m1)〉 ≤ 0
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by condition (5.6) and Lemma 5.1. Since u1(·, T ) = u2(·, T ) = G(·) and m1(·, 0) = m2(·, 0) =
m0(·), we have

0 =

[ˆ
Td

(u2(t)− u1(t))(m2(t)−m1(t))

]T
0

.

Integrating
d

dt

ˆ
Td

(u2(t)− u1(t))(m2(t)−m1(t)) between 0 and T gives

ˆ T

0

ˆ
Td
H̃ m̃− 〈Dũ,m2DpH(Du2,m2)−m1DpH(Du1,m1)〉 = 0.

In view of Lemma 5.1 again, this implies that Dũ = 0 and m̃ = 0, so that m1 = m2 and
u1 = u2. 2

5.3 Optimal control interpretation

Here we show that the MFG system (5.1) can be viewed as an optimality condition for two
optimal control problems: the first one is an optimal control of Hamilton-Jacobi equations
and the second one concerns the optimal control of the Fokker-Planck equation.

In order to do so, let us first introduce some assumptions and notations: without loss of
generality, we suppose that f(x, 0) = 0: indeed we can always subtract f(x, 0) to both sides
of (5.1). Let

F (x,m) =


ˆ m

0

f(x, ρ)dρ if m ≥ 0

0 otherwise

As f is nondecreasing with respect to the second variable, F = F (x,m) is convex with respect
to m. We denote by F ∗ = F ∗(x, α) its convex conjugate:

F ∗(x, α) = sup
m∈R

(αm− F (x,m)) ∀(x, α) ∈ Td × R .

Note that F ∗ is convex and nondecreasing with respect to the second variable. We also
introduce the convex conjugate H∗(x, ξ) of the map H = H(x, p) with respect to the second
variable:

H∗(x, ξ) = sup
p∈Rd

(〈ξ, p〉 −H(x, p)) ∀(x, ξ) ∈ Td × Rd .

We assume throughout this section that F ∗ and H∗ are smooth enough to perform the com-
putations.

The first optimal control we consider is the following: the distributed control parameter
is α : Td × [0, T ]→ R and the state parameter is u. We aim at minimizing the criterium

J HJ(α) =

ˆ T

0

ˆ
Td
F ∗ (x, α(x, t)) dxdt−

ˆ
Td
u(0, x)dm0(x).
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over Lipschitz continuous maps α : Td× (0, T )→ Rd, where u is the unique classical solution
to the backward Hamilton-Jacobi equation{

−∂tu(x, t)−∆u(x, t) +H(x,Du(x, t)) = α(x, t) in Td × (0, T )
u(x, T ) = G(x) in Td (5.8)

The second optimal control problem is related with Fokker-Planck equation: the (distributed
and vector valued) control is now v : [0, T ] × Td → Rd and the state is m. It consists in
minimizing the criterium

J FP (v) =

ˆ T

0

ˆ
Td
m(x, t)H∗ (x,−v(x, t)) + F (x,m(x, t)) dxdt+

ˆ
Td
G(x)m(T, x)dx,

where the pair (m, v) solves the Fokker-Planck equation

∂tm−∆m(x, t) + div(mv) = 0 in Td × (0, T ), m(0) = m0. (5.9)

Theorem 5.7. Assume that (m̄, ū) is of class C2(Td × [0, T ]), with m̄(x, 0) = m0 and
ū(x, T ) = G(x). Suppose furthermore that m̄(x, t) > 0 for any (x, t) ∈ Td × [0, T ]. Then
the following statements are equivalent:

(i) (ū, m̄) is a solution of the MFG system (5.1).

(ii) The control ᾱ(x, t) := f(x, m̄(x, t)) is optimal for J HJ and the solution to (5.8) is given
by ū.

(iii) The control v̄(x, t) := −DpH(x,Dū(x, t)) is optimal for J FP , m̄ being the solution of
(5.9).

Remark 5.8. 1. The optimal control problem of Hamilton-Jacobi equation can be rewrit-
ten as

inf
u

ˆ T

0

ˆ
Td
F ∗ (x,−∂tu(x, t)−∆u(x, t) +H(x,Du(x, t))) dxdt−

ˆ
Td
u(0, x)dm0(x)

under the constraint that u sufficiently smooth, with u(·, T ) = G(·). Remembering that
H is convex with respect to the last variable and that F is convex and increasing with
respect to the last variable, it is clear that the above problem is convex.

2. The optimal control problem of the Fokker-Planck equation is also a convex problem,
up to a change of variables which appears frequently in optimal transportation theory:
let us set w = mv. Then the problem can be rewritten as

inf
(m,w)

ˆ T

0

ˆ
Td
m(x, t)H∗

(
x,−w(x, t)

m(x, t)

)
+ F (x,m(x, t)) dxdt+

ˆ
Td
G(x)m(T, x)dx,

where the pair (m,w) solves the Fokker-Planck equation

∂tm−∆m(x, t) + div(w) = 0 in Td × (0, T ), m(0) = m0. (5.10)

This problem is convex because the constraint (5.10) is linear and the map (m,w) →
mH∗

(
x,−w

m

)
is convex on Td × (0,+∞).
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3. In fact the two optimal control problems just defined are conjugate in the Fenchel-
Rockafellar sense (see, for instance, [52] Ekeland).

Proof. The proof is done by verification. We will show only the equivalence between (i) and
(ii): the equivalence between (i) and (iii) can be established in a symmetrical way, by using
the reformulation given in Remark (5.8). Let us first assume that (m̄, ū) is a solution of (5.1).
Let α be a Lipschitz continuous map and u the corresponding solution of (5.8). Then, by
(5.8),

J HJ(α) =

ˆ T

0

ˆ
Td
F ∗ (x,−∂tu(x, t)−∆u(x, t) +H(x,Du(x, t))) dxdt−

ˆ
Td
u(0, x)dm0(x)

≥ J HJ(ᾱ) +

ˆ T

0

ˆ
Td
∂αF

∗(x, ᾱ) (−∂t(u− ū)−∆(u− ū) + 〈DpH(x,Dū)), D(u− ū)〉)

−
ˆ
Td

(u− ū)(0, x)dm0(x)

where, to get the inequality, we have used the convexity of the map

u→ F ∗ (x,−∂tu(x, t)−∆u(x, t) +H(x,Du(x, t)))

which holds because F ∗ is convex and nondecreasing with respect to the second variable.
Now we note that, by equality ᾱ(x, t) := f(x, m̄(x, t)) and property of Legendre transform,
we actually have ∂αF

∗(x, ᾱ(x, t)) = m̄(x, t). So

J HJ(α) ≥ J HJ(ᾱ) +

ˆ T

0

ˆ
Td
m̄ (−∂t(u− ū)−∆(u− ū) + 〈DpH(x,Dū)), D(u− ū)〉)

−
ˆ
Td

(u− ū)(0, x)dm0(x)

Integrating by parts we get

J HJ(α) ≥ J HJ(ᾱ) +

ˆ T

0

ˆ
Td

(u− ū) (∂tm̄−∆m̄− div(m̄DpH(x,Dū)))

+

ˆ
Td

(u− ū)(T, x)m(x, T )dx

≥ J HJ(ᾱ)

where the last inequality comes from the equation satisfied by m̄ and the fact that u(x, T ) =
ū(x, T ) = G(x). So we have proved that ᾱ is optimal for J HJ .

Conversely, let us assume that the control ᾱ is optimal in J HJ . Let us set m̄(x, t) =
∂αF

∗(x, ᾱ(x, t)), i.e., ᾱ(x, t) := f(x, m̄(x, t)). We want to show that the pair (ū, m̄) is a
solution to (5.1). For this, let a ∈ C1(Td × [0, T ]) and, for h 6= 0, let uh be the solution of
(5.8) associated to the control ᾱ+ ha. Then (uh− ū)/h converge to some w in C2,1, where w
solves the linearized system{

−∂tw(x, t)−∆w(x, t) + 〈DpH(x,Dū(x, t)), w(x, t)〉 = a(x, t) in Td × (0, T )
w(x, T ) = 0 in Td (5.11)
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Using the optimality of ᾱ, we obtain

0 = dJ HJ(ᾱ)(a) =

ˆ T

0

ˆ
Td
m̄ (−∂tw −∆w + 〈DpH(x,Dū)), Dw〉)−

ˆ
Td
w(0, x)dm0(x).

We integrate by parts to get, as w(x, T ) = 0,

0 =

ˆ T

0

ˆ
Td
w (∂tm̄−∆m̄− div(m̄DpH(x,Dū)))−

ˆ
Td
w(0, x)(m0(x)−m(x, 0))dx. (5.12)

Note that if ones fixes w ∈ C3 such that w(x, T ) = 0, we can always define a in such a way
that (5.11) holds. By density, this implies that relation (5.12) also holds for any w ∈ C3 such
that w(x, T ) = 0 and therefore that m̄ is a weak solution of (5.1)-(ii) with m̄(x, 0) = m0(x).
2

5.4 The long time average

In this section we study the long time average of solutions of the MFG system (5.1). We

concentrate on the simple case H(x, p) =
1

2
|p|2. We also suppose that the coupling f =

f(x,m) is bounded and strictly increasing with respect to the last variable:

∂f

∂m
(x,m) > 0. (5.13)

As in the previous section, we suppose without loss of generality that f is non negative.
Moreover, we assume that the initial density m0 is positive and smooth.

To emphasize the fact that we are interested in the behavior of the solution as the horizon
T tends to +∞, we denote by (uT ,mT ) the solution to

(i) −∂tu−∆u+
1

2
|Du|2 = f(x,m(x, t)) in Td × (0, T )

(ii) ∂tm−∆m− div (mDu) = 0 in Td × (0, T )
(iii) m(0) = m0 , u(x, T ) = G(x)

(5.14)

It is expected that the MFG ergodic system should play a key role in this problem. The
ergodic system, with unknowns (λ̄, ū, m̄), is

(i) λ̄−∆ū+
1

2
|Dū|2 = f(x, m̄)

(ii) −∆m̄− div(m̄Dū) = 0

(iii)

ˆ
Td
ū dx = 0 ,

ˆ
Td
m̄ dx = 1

(5.15)

Let us first remark that the above system is well-defined:

Proposition 5.9. Under the assumptions of this section, system (5.15) has a unique classical

solution (λ̄, ū, m̄). Moreover m̄ = e−ū/

(ˆ
Td
e−ū
)
> 0.
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The proof can be established by usual fixed point arguments so we omit it.

In order to understand to what extent the solution (λ̄, ū, m̄) of (5.15) drives the behavior
of (uT ,mT ), let us introduce the scaled functions

υT (x, s) := uT (x, sT ) ; µT (x, s) := mT (x, sT ) (x, s) ∈ Td × [0, 1] . (5.16)

Theorem 5.10. As T → +∞, the map (x, s)→ υT (x, s)/T converges to the (space indepen-
dent) map (x, s)→ (1− s)λ̄ in L2(Td × (0, 1)).

Remark 5.11. With more estimates than presented here, one can show that the map µT

converges to m̄ in Lp(Td × (0, 1)), for any p < d+2
d

.

The proof of Theorem 5.10 requires several intermediate steps. The starting point is the
usual estimate, which is crucial in establishing the uniqueness of the solution to (5.14).

Lemma 5.2. For any 0 ≤ t1 < t2 ≤ T we have[ˆ
Td

(uT − ū)(mT − m̄)dx

]t2
t1

+

ˆ t2

t1

ˆ
Td

(mT + m̄)

2
|DuT −Dū|2 + (f(x,mT )− f(x, m̄))(mT − m̄) dxdt = 0

Proof. Since T is fixed, we simply write m and u instead of mT and uT . We first integrate
over Td× (t1, t2) the equation satisfied by (u− ū) multiplied by (m− m̄). Since

´
Td(m(t, x)−

m̄(x))dx = 0 and ū does not depend on time, we get, after integration by parts:
ˆ t2

t1

ˆ
Td
−∂tu(m− m̄) + 〈D(m− m̄), D(u− ū)〉+

1

2
(m− m̄)(|Du|2 − |Dū|2)

=

ˆ t2

t1

ˆ
Td

(f(x,m)− f(x, m̄))(m− m̄) .

In the same way we integrate over Td × (t1, t2) the equation satisfied by (m− m̄) multiplied
by (u− ū):

ˆ t2

t1

ˆ
Td

(u− ū)∂tm+ 〈D(m− m̄), D(u− ū)〉+ 〈mDu− m̄Dū,D(u− ū)〉 = 0 .

We now compute the difference between the second equation and the first one:
ˆ t2

t1

ˆ
Td
∂t[(u− ū)(m− m̄)] + 〈mDu− m̄Dū,D(u− ū)〉

−1

2
(m− m̄)(|Du|2 − |Dū|2) + (f(x,m)− f(x, m̄))(m− m̄) = 0 .

To complete the proof we just note that

〈mDu− m̄Dū,D(u− ū)〉 − 1

2
(m− m̄)(|Du|2 − |Dū|2) =

(m+ m̄)

2
|Du−Dū|2 .

2
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Another crucial point is given by the following lemma, which exploits the fact that system
(5.14) has an Hamiltonian structure. Note that this is directly related to the optimal control
interpretation of the MFG as explained in the previous section.

Lemma 5.3. There exists a constant MT such that

1

2

ˆ
Td
mT (t) |DuT (t)|2 dx +

´
Td〈Du

T (t), DmT (t)〉 dx

−
´
Td F (x,mT (t)) dx = MT ∀t ∈ [0, T ]

where F (x,m) =
´ m

0
f(x, ρ) dρ.

Proof. We multiply (5.14)-(i) by ∂tm
T (t) and (5.14)-(ii) by ∂tu

T (t). Summing the two equa-
tions we get, at (t, x),

−∆uT∂tm
T +

1

2
|DuT |2 ∂tmT − f(x,mT )∂tm

T = ∆mT∂tu
T + div(mTDuT )∂tu

T

Integrating with respect to x gives:
ˆ
Td

(
〈DuT , ∂tDmT 〉+ 〈DmT , ∂tDu

T 〉
)
dx

+
´
Td
[

1
2
|DuT |2 ∂tmT +mT 〈DuT , ∂tDuT 〉

]
dx−

´
Td f(x,mT )∂tm

T dx = 0

This means that

d

dt

{ˆ
Td
〈DuT , DmT 〉 dx+

1

2

ˆ
Td
mT |DuT |2 dx−

ˆ
Td
F (x,mT ) dx

}
= 0 ,

hence the conclusion. 2

We deduce the following

Corollary 5.4. We have

(i) MT is bounded with respect to T .

(ii) |DuT (0)| is bounded in L2(Td).

Proof. On one hand we have (since f ≥ 0 and u(T ) = G(x))

MT =

ˆ
Td
〈Du(T ), Dm(T )〉 dx+

1

2

ˆ
Td
m(T )|Du(T )|2 dx−

ˆ
Td
F (x,m(T )) dx

≤ −
ˆ
Td

∆u(T )m(T ) dx+
1

2

ˆ
Td
m(T )|Du(T )|2 dx

≤ (‖∆G‖∞ + ‖DG‖2
∞)‖m(T )‖L1(Td) = C .

On the other hand we have

MT =

ˆ
Td
〈Du(0), Dm0〉 dx+

1

2

ˆ
Td
m0|Du(0)|2 dx−

ˆ
Td
F (x,m0) dx
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where, since m0 > 0,∣∣∣∣ˆ
Td
〈Du(0), Dm0〉dx

∣∣∣∣ ≤ 1

4

ˆ
Td
m0|Du(0)|2 dx+

ˆ
Td

|Dm0|2

m0

dx .

Hence

MT ≥ 1

4

ˆ
Td
m0|Du(0)|2 dx− C .

In particular MT is bounded both from above and from below. We also deduce from our last
inequality that ˆ

Td
|Du(0)|2 dx ≤ C ,

so that |Du(0)| is bounded in L2(Td). 2

Combining Corollary 5.4 with Lemma 5.2 we get:

Lemma 5.5.

ˆ T

0

ˆ
Td

(mT + m̄)

2
|DuT −Dū|2 + (f(x,mT )− f(x, m̄))(mT − m̄) dxdt ≤ C (5.17)

In particular

lim
T→+∞

1

T

ˆ T

0

ˆ
Td
|DuT −Dū|2 dxdt = 0 . (5.18)

Proof. Using Lemma 5.2, we have

ˆ T

0

ˆ
Td

(mT + m̄)

2
|DuT −Dū|2 + (f(x,mT )− f(x, m̄))(mT − m̄) dxdt

=

ˆ
Td

(uT (0)− ū)(m0 − m̄)dx−
ˆ
Td

(uT (T )− ū)(mT (T )− m̄)dx

Recalling that uT (T ) = G and the bounds assumed on G, the last term is bounded. If we set
ũT =

´
Td u

T dx, we have

ˆ
Td
uT (0)(m0 − m̄)dx =

´
Td(u

T (0)− ũT (0))(m0 − m̄)dx (5.19)

≤ C (‖m0‖∞ + ‖m̄‖∞) ‖DuT (0)‖L2(Td) (5.20)

and using Corollary 5.4 we conclude that this is bounded. Therefore, we obtain that (5.17)
holds. 2

Rewriting Lemma 5.5 in terms of υT and µT we obtain:

Corollary 5.6. The maps (DυT ) and (f(·, µT (·, ·)) converge to Dū and f(·, m̄(·)) in L2(Td×
(0, 1)) and in L1(Td × (0, 1)) as T → +∞.
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Proof. Since m̄ is bounded below by a positive constant, Lemma 5.5 implies that
ˆ 1

0

ˆ
Td
|DυT −Dū|2 dxdt ≤ C

T

Whence the convergence of (DυT ). From assumption (5.13), there exists δ > 0 such that

∂f

∂m
(x,m) ≥ δ ∀(x,m) ∈ Td × [0, 2‖m̄‖∞].

So, from (5.17),

C

T
≥
ˆ T

0

ˆ
Td

(f(x, µT )− f(x, m̄))(µT − m̄) dxdt

≥
¨
{µT≥2‖m̄‖∞}

∣∣f(x, µT )− f(x, m̄)
∣∣ ‖m̄‖∞ dxdt+ δ

¨
{µT<2‖m̄‖∞}

∣∣µT − m̄∣∣ .
Therefore

‖f(·, µT )− f(·, m̄)‖1

≤
¨
{µT≥2‖m̄‖∞}

∣∣f(x, µT )− f(x, m̄)
∣∣+

¨
{µT<2‖m̄‖∞}

∣∣f(x, µT )− f(x, m̄)
∣∣

≤
¨
{µT≥2‖m̄‖∞}

∣∣f(x, µT )− f(x, m̄)
∣∣+ sup

0≤m≤2‖m̄‖∞

∣∣∣∣ ∂f∂m
∣∣∣∣¨
{µT<2‖m̄‖∞}

∣∣µT − m̄∣∣
≤ C

T

(
1

‖m̄‖∞
+

1

δ
sup

0≤m≤2‖m̄‖∞

∣∣∣∣ ∂f∂m
∣∣∣∣
)

which implies the convergence of f(·, µT ) to f(·, m̄) in L1. 2

Proof of Theorem 5.10. We now prove the convergence of υT/T to λ̄(1− s). Let us integrate
the equation satisfied by υT on Td × (t, 1):

1

T

(ˆ
Td
υT (x, t)dx−

ˆ
Td
G(x)dx

)
+1

2

´ 1

t

´
Td |Dυ

T |2dxds (5.21)

=
´ 1

t

´
Td f(x, µT (s))dxds (5.22)

where, from Corollary 5.6, DυT → Dū in L2 and f(·, µT (·))→ f(·, m̄) in L1. So

lim
T→+∞

1

T

ˆ
Td
υT (x, t)dx = (1− t)

ˆ
Td

[
−1

2
|Dū|2 + f(x, m̄)

]
dx = (1− t)λ̄ ,

the last equality being obtained by integrating over Td equation (5.15)-(i). Using Poincaré-
Wirtinger inequality, we get, setting 〈υT 〉 =

´
Td υ

Tdx and υ̃T = υT − 〈υT 〉,
ˆ 1

0

ˆ
Td

∣∣υ̃T − ū∣∣2 ≤ C

ˆ 1

0

ˆ
Td
|D(υT − ū)|2 → 0.

This shows the convergence in L2 of υ̃T to ū and, since 〈υ
T 〉
T
→ (1 − t)λ̄, the convergence in

L2 of 1
T
υT to (1− t)λ̄. 2
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5.5 Comments

Other existence results of classical solutions of second order MFG systems with local coupling
can be found in Cardaliaguet, Lasry, Lions and Porretta [40] (for quadratic Hamiltonian,
without conditions on the coupling f) and for more general Hamiltonians under various struc-
ture conditions on the coupling in a series of papers by Gomes, Pires and Sanchez-Morgado
[66, 69, 71] and Gomes and Pimentel [73]. The case of MFG system with congestion is
considered in Gomes and Mitake [74].

Even for some data, it is not known if there always exists a classical solution to the MFG
system. To overcome this issue, concepts of weak solutions have been introduced in Lasry
and Lions [103] and in Porretta [117].

The general uniqueness criterium given in Theorem 5.3 has been introduced by Lions [108],
who explains the sharpness of the condition.

The fact that the MFG system with local coupling possesses a variational structure is
pointed out in Lasry and Lions in [103]. This plays a key role for the first order MFG system
with local coupling, since this allows to build solutions in that setting.

Finally the long time behavior of the MFG system is described in section 5.4 has been
first discussed by Lions in [108] and sharpened in Cardaliaguet, Lasry, Lions and Porretta
[41]. Other results in that direction can be found in Gomes, Mohr and Suza [63] (for discrete
MFG systems), Cardaliaguet, Lasry, Lions and Porretta [40] (for MFG system with a non-
local coupling), Cardaliaguet [37] (for the first order MFG with a nonlocal coupling) and in
Cardaliaguet and Graber [36] (for the first order MFG with local coupling). For second order
MFG systems, the rate of this convergence is exponential (see [40, 41]).
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