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OUTLINE OF THE LECTURE

Interaction between a physiological trait and space

I. Space and physiological trait

II. Selection of dispersal (bounded domain)

III. Selection of dispersal (full space)

See also A. Arnold, L. Desvillettes, C. Prevost, talk of K.-Y. Lam



Setting the model

Adaptation to the evironment in a spatial ecology model

• x ∈ Ω space variable

• θ ∈ Θ physiological trait

∂tn(x, θ, t)

dispersion/motility︷ ︸︸ ︷
= D∂2

xxn(x, θ, t) +

mutations︷ ︸︸ ︷
α∂2

θθn(x, θ, t) +

reproduction︷ ︸︸ ︷
n(x, θ, t)

(
K(x, θ)− ρ(x, t)

)
ρ(x, t) =

∫ ∞
0

n(x, θ, t) dθ

This is still an advantage on reproductive rate.

Question : (Bouin, Mirrahimi) What is the speed of a traveling

wave ?



Evolution of Dispersal

Question Selection without a proliferative advantage ?

The context of Hastings, Dockery, Lou, Kim :

• no advantage regarding the reproductive rate K(x)

• motility of individuals is subject to selection and mutations

Called : Spatial sorting



Evolution of Dispersal

We model it for x ∈ Ω, θ > 0 + Neuman

∂tn(x, θ, t)

dispersion/motility︷ ︸︸ ︷
= θ∂2

xxn(x, θ, t) +

reproduction︷ ︸︸ ︷
n(x, θ, t)

(
K(x)− ρ(x, t)

)mutations on motility︷ ︸︸ ︷
+ε2∂2

θθn(x, θ, t)

ρ(x, t) =
∫ ∞

0
n(x, θ, t) dθ

Remark : Parameters as θ are not given they are selected

Question : which dispersal rate θ is selected ?



Evolution of Dispersal

We can again ask the question of rare mutations

ε∂tnε(x, θ, t) = θ∂2
xxnε(x, θ, t) + nε(x, θ, t)

(
K(x)− ρε(x, t)

)
+ ε2∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
nε(x, θ, t) dθ

Can we argue with the same argument as for proliferative

advantage ?



Evolution of Dispersal

We can again ask the question of rare mutations

ε∂tnε(x, θ, t) = θ∂2
xxnε(x, θ, t) + nε(x, θ, t)

(
K(x)− ρε(x, t)

)
+ ε2∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
nε(x, θ, t) dθ

For ε small, nε(x, θ, t) ≥ 0 θ∂2
xxnε(x, θ, t) + nε(x, θ, t)

(
K(x)− ρε(x, t)

)
= 0

+Neuman boundary condition

the first eigenvalue H
(
θ, 〈ρε(·, t)〉

)
vanishes. Therefore

nε(x, θ, t) ≈ N(x, t)δ(θ = θ(t)),



Evolution of Dispersal

We can again ask the question of rare mutations

ε∂tnε(x, θ, t) = θ∂2
xxnε(x, θ, t) + nε(x, θ, t)

(
K(x)− ρε(x, t)

)
+ ε2∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
nε(x, θ, t) dθ

When a mutant has an advantage, it diffuses everywhere and

invades the domain Ω

Therefore we expect (as before) that

nε(x, θ, t) ≈ N(x, t)δ(θ = θ(t)),



Evolution of Dispersal

The Gaussian approximation to nε(x, θ, t) ≈ N(x, t)δ(θ = θ(t)),

nε(x, θ, t) ≈ Nε(x, t)e
ϕε(θ,t)

ε ,

a corrector as in homogenization.

The dominant terms in the expansion are

∂tϕ(θ, t) = |∇θϕ|2 + θ∂2
xxNε(x, θ, t) +Nε

(
K(x)− ρε(x, t)

)
+O(ε)

Define the effective Hamiltonian H(θ, t) as the principal eigenvalue θ∂2
xxNε(x, θ, t) +Nε (K(x)− ρε(x, t)) = H

(
θ, 〈ρε(·, t)〉

)
Nε x ∈ Ω

+Neuman boundary condition



Evolution of Dispersal

We get

∂tϕ(θ, t) = |∇θϕ|2 + θ∂2
xxNε(x, θ, t) +Nε

(
K(x)− ρε(x, t)

)
+O(ε)

θ∂2
xxNε(x, θ, t) +Nε (K(x)− ρε(x, t)) = H

(
θ, 〈ρε(·, t)〉

)
Nε x ∈ Ω

therefore the limit is ∂tϕ(t, θ) = |∇θϕ|2 +H
(
θ, 〈ρ̄(·, t)〉

)
maxθ ϕ(t, θ) = 0 = ϕ(t, θ(t))

To be compared to the ’usual constrained H.-J. equation ∂tϕ(t, θ) = |∇θϕ|2 +R
(
θ, %(t)

)
maxθ ϕ(t, θ) = 0 = ϕ(t, θ(t))



Evolution of Dispersal
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Evolution of Dispersal

How do we handle this ? Along the dynamics

H
(
θ(t), 〈ρ̄(·, t)〉

)
= 0 (pessimism principle)

ρε ≈ Nε(x, θ(t), t) := N(x, t)

we can identify the limit of Nε(x, θ, t) as the solution to −θ(t)∂2
xxN = N

(
K(x)−N(x, t)

)
, x ∈ Ω

+Neuman boundary condition

What useful information do we conclude from this analysis ?

d

dt
θ(t) = (−D2ϕ)−1.∇θH

(
θ(t), 〈ρ̄(·, t)〉

)
Which behaviour ?
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Evolution of Dispersal

Theorem When K 6= Cst,

∇θH
(
θ(t), 〈ρ̄(·, t)〉

)
< 0.



Evolution of Dispersal

Proof We can normalize the eigenvalue problem in x as

θ∂2
xxNε(x, θ, t) +Nε (K(x)− ρε(x, t)) = H

(
θ, 〈ρε(·, t)〉

)
Nε,

∫
x
N2
ε dx = Cst

Then

−θ
∫
x
|∇Nε(x, θ, t)|2dx+

∫
x
N2
ε (K(x)− ρε(x, t)) dx = H

(
θ, 〈ρ(·, t)〉

)
−
∫
x
|∇Nε|2dx− 2θ

∫
x
∇Nε,θ∇Nε + 2

∫
x
NεNε,θ (K − ρε) dx = Hθ

(
θ, 〈ρ(·, t)〉

)
But at θ̄(t) one has

−θ
∫
x
∇Nε,θ∇Nε +

∫
x
NεNε,θ (K − ρε) dx = H

(
θ̄, 〈ρ(·, t)〉

)
= 0.

Therefore

−
∫
x
|∇N |2dx = Hθ

(
θ, 〈ρ(·, t)〉

)
< 0.



Evolution of Dispersal

d

dt
θ(t) = (−D2ϕ)−1.∇θH

(
θ(t), 〈ρ̄(·, t)〉

)
∇θH

(
θ(t), 〈ρ̄(·, t)〉

)
< 0

Conclusion

• θ(t) decreases. Do not move in a bounded domain !

• Already known, but here we give the dynamics

Intuition :

• A mutant with small dispersal diffuses less

• wins advantage by staying near the maximum of K(x)



Accelerating waves

Conclusion Do not move in a bounded domain !

One can ask the same question for invasion fronts : Ω = Rd



Accelerating waves

Example of the cane toads invasion in Australia



Accelerating waves

In full space the solution is an invasion front à la Fisher/KPP for

∂tn(x, θ, t) = θ∂2
xxn(x, θ, t) + rn(x, θ, t) (1− ρ(x, t)) + α∂2

θθn(x, θ, t)

ρ(x, t) =
∫ ∞

0
n(x, θ, t) dθ, n(x = +∞, t) = 0

Many rescalling possible

They always show that large values of θ are selected at the front of

the wave.



Accelerating waves (scale 1)

Scaling 1 : Front in x, θ ∈ (0,Θ)

ε∂tnε(x, θ, t) = ε2θ∂2
xxnε(x, θ, t) + rnε(x, θ, t) (1− ρε(x, t)) + α∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
n(x, θ, t) dθ, nε(x = +∞, t) = 0

On the front, nε ≈ Q(θ)eλ(x−ct)/ε

[θλ2 + cλ+ r]Q− α∂2
θθQ = 0

In other words, the principal eigenvalue is cλ which gives both

c = c∗(λ), Q(θ, λ) = eigenfunction



Accelerating waves (scale 1)

It remains to compute λ by the standard approach through H.-J.

equation (Barles, Evans, Souganidis)

nε(x, θ, t) ≈ eu(x,t)/εNε(x, θ, t)

We find

∂tuεNε(x, θ, t) + θ|∂xuε|2Nε = r(1− ρε)N + α∂2
θθNε

Therefore in the front Nε ≈ Q and

max
(
u, ∂tu− c∗(∂xu)∂xu

)
= 0

In other words

c∗(∂xu) = effective Hamiltonian



Accelerating waves (scale 1)

Conclusion We can compute the speed of the front thanks to this

H.-J. equation

With θ ∈ (0,Θ)

c∗(∂xu) ≥ 2r

√
Θ

2
front is faster than the average

c∗(∂xu) −→
α→0

2r
√

Θ



Accelerating waves (scale 2)

Scaling 2 : Front in x, small mutations

ε∂tnε(x, θ, t) = ε2θ∂2
xxnε(x, θ, t) + rnε(x, θ, t) (1− ρε(x, t)) + αε2∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
n(x, θ, t) dθ, nε(x = +∞, t) = 0

Rationale behind this rescaling

θ ≈
√
αrt, xfront ≈

√
θ t ≈ (αr)1/4t3/2

(not the hyperbolic scaling)

(t, x, θ)→ (t/ε, x/ε3/2, θ/ε).



Accelerating waves (scale 2)

Scaling 2 : Front in x, small mutations

ε∂tnε(x, θ, t) = ε2θ∂2
xxnε(x, θ, t) + rnε(x, θ, t) (1− ρε(x, t)) + αε2∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
n(x, θ, t) dθ, nε(x = +∞, t) = 0

Use the Hopf-Cole/WKB change of variable nε = euε/ε
∂tu = θ|∂xu|2 + α|∂θu|2 + r(1− ρ(x, t))

maxθ u(x, θ, t) ≤ 0 0 = u
(
x, θ̄(x, t), t

)
The constraint can be inactive (extinction)

max
θ

u(x, θ, t) < 0 ρ(x, t) = 0



Accelerating waves (scale 2)

Scaling 2 : Front in x, small mutations
∂tu = θ|∂xu|2 + α|∂θu|2 + r(1− ρ(x, t))

maxθ u(x, θ, t) ≤ 0 0 = u
(
x, θ̄(x, t), t

)
What is the canonical equation ! New phenomena : The canonical is

a PDE

∂tu = θ|∂xu|2 + α|∂θu|2 + r(1− ρ(x, t)) := R(x, θ, t)

∂θu(x, θ̄(t), t) = 0.

∂

∂t
θ̄(x, t) = −

∂θtu

∂θθu
,

∂

∂x
θ̄(x, t) = −

∂θxu

∂θθu



Accelerating waves (scale 2)

Scaling 2 : Front in x, small mutations

Rθ = |∂xu|2 + 2θ∂xu∂xθu+ 2α∂θu∂θθu

∂

∂t
θ̄(x, t) = −

∂θtu

∂θθu
,

∂

∂x
θ̄(x, t) = −

∂θxu

∂θθu

The canonical is a Burgers type equation

d

dt
θ̄(x, t) = −

|∂xu|2 + 2θ̄(x, t)∂xu∂xθu

∂θθu

d

dt
θ̄(x, t)− 2∂xu θ̄(x, t)

∂

∂x
θ̄(x, t) =

|∂xu|2

−∂θθu
> 0

Numerically shocks are observed on the fittest traits.



Accelerating waves (scale ”)

Scaling 3 : Traveling wave in x, small mutations

ε∂tnε(x, θ, t) = θ∂2
xxnε(x, θ, t) + rnε(x, θ, t) (1− ρε(x, t)) + αε2∂2

θθnε(x, θ, t)

ρε(x, t) =
∫ ∞

0
n(x, θ, t) dθ, nε(x = +∞, t) = 0

?

Other examples Selection of competitive/colonize phenotype in

tumor growth (Orlando, Gatenby, Brown).
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