Adaptive evolution : a population approach
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Asymptotic method

We have considered the asymptotic probem

(

6%%5(%, t) — e2Ane = n(x, t)R(CI% QE(t)>7

\ o=(t) = /Rdng(:c,t)da:.

In the limit one can expect

0= n(w,t)R(OC, Q(t))7

n(z,t) = 00 (), r(t) C {R(o()) = 0}.



Asymptotic method

Theorem (Weak form) In R, set

ne(x,t) = eve(@t)/e

e After extraction, o — ¢ (locally uniformly), o-(t) — o(t)
e.—0 er.—0

( Zo(a,t) = R(z,8(t)) + [Ve(z, 1)) 2

| maxz p(a,1) = 0 ( — (L, 5(1)) )

e And ns(x,t) — n(x,t) weakly in measures,
ep—0

supp(n(t)> C {p(t) = 0}



Asymptotic method

Numerical tests : b(x) = .5+ (2 — x)

Direct simulation (1500 points) H.-J. solution (200 points)



Asymptotic method

Numerical tests : min(.45 + .2, .55 + .4 x z)

Direct simulation (1500 points) H.-J. solution (200 points)



Asymptotic method

Question for this course :

y

cdne(x,t) — 2 An. = ne(z, ) R(z, 0-(t)),

\ o:(t) = /Rdng(:c,t)da:.

In the limit one can expect

0 = n(z, )R(=, o(1)),

n(z,t) = 00 (), r(t) C {R( () = 0}.
Are all the points equivalent on ' (¢) ?
Are these pointwise Dirac, of distributed on the hypersurfaces 7
Can one describe better their dynamics ?



OUTLINE OF THE LECTURE

DYNAMICS OF THE FITTEST TRAIT
I. A simple case of canonical equation
II. Regularity for concave initial data

III. Canonical equation (general)



A simple case

T herefore in high dimension it makes sense to study the case when
R(xz,-) is CONCAVE

An not only the monotonic case in 1D



A simple case

In(z,t) = n(z, ) R(z, o(t)),
o(t) = Jpan(a, t)dz.
e [ here are many steady states. For any x

n(x) =0 6(x — ).
choosing p such that

R(%,5) = 0.



A simple case

In(z,t) = n(z, ) R(z, o(t)),
o(t) = Jpan(a, t)dz.
e [ here are many steady states. For any x

n(z) =0 é(z — ), R(z,0) = 0.
e They are stable by perturbation of the weight p (strong topology)

£ o(t) = o(OR(, o(1))



A simple case

4n(z,t) = n(z, ) R(z, o(t)),
o(t) = fpan(z,t)de.
e [ here are many steady states. For any x

n(z) =0 é(z — ), R(z,0) = 0.
e They are stable by perturbation of the weight p (strong topology)

= o(t) = o(DR(, o(1)).

e But they are unstable by approximation in measures (weak
topology)... a direct way to see this



A simple case

Replace 7n9(z) = 2° 6(z — z°) by a concentrated gaussian

nQ(x) = e?° /e 2 30 5z —79),  maxQ(x) = ¥2(@°) ~ 0

We expect
e fast dynamic on p(t)
e a slow dynamics on ng(x,t)

Therefore we rescale as

{ sﬁns(x,t) - ng(:z;,t)R(a:, Qg(t))’
0:(t) = [pame(zx,t)dx.



A simple case

{ e%ng(a:,t) = ng(az,t)R(ﬂC, Q€(t>)7

o:(t) = fRd ne(x,t)dx.

Then, set
ne(z,t) = ee(®t/e
Coe(a,1) = R(w,0:(0),  maxpe(a,1) = o(1).
dt r€R
Since ¢ is obviously smooth. In the limit
d

aw(a?,t) = R(CB, é(t)), ?eaﬁw(w’t) —0.



A simple case

0

—o(e,t) = R(z,0(t)),  maxe(a,t) =0.
Assume
0O (2), R(x, ) are CONCAVE and smooth

Then ¢:-(x,t), ¢(x,t) are also concave and smooth in x.

Can we go further? Is p-(t) smooth?

Define z-(t) as the maximum point of ¢:(t)

Vipe(zc(1),t) = 0,



A simple case

Claim
d

ﬁig(t) = ( — DQ@s(fs(t), t>>_1 : VR(fe(t)a és(t))

Indeed, differentiate in time Vp:(z:(t),t) =0

d_ . 5 B
afce(t) - D= (Ze(t),t) + va%(mg(t), t) = 0,

and using
2 e(a,t) = Rz, 0:(),
ot

we find
%@@ D2 (Z:(t),1) = ~VR(Z:(t), 2:-(1) ).



A simple case

Therefore x-(t) is at least uniformly Lipschitz continuous,
xe(t) — x(t) uniformly (for some subsequence)
g

—0
Furthermore
0
Maxo(xz,t) =0 = ¢(z(t),1), Ve(z(t),t) =0, aso(a?(t),t) =0
@ o, t) = R(z,3(1)),
ot
and thus

R(z(t),2(t)) =0

and po(t) is Lipschitz and

%f(t) = (- D2p(E(t). 1)) - VR(2(1), 5(1)).



A simple case

Conclusions
1. z(¢t) moves toward increasing values of R(x, o(t))

2. Not a usual WKB expansion.

we (x,t) —pe (t,Te) we (t,Te)

0e(t) = /ng(ac,t)d:c = /6 B dr e ¢

 z—ael? e (t,Te) e (t,Te)
%/ece dr e ¢ %C\@de £

Gaussian type : gog(t,:T;g(t)) = O(elIn(e)).



Strong theory

(

cdne(x,t) — 2 An. = ne(z, ) R(z, 0-(t)),

\ 0:(t) = [gane(z,t)dx.
A smoothness regime exists with the assumptions
_KqI < DQR(ac, g) < Kol (idendity matrix),
—L1I < D20 < —L,I, Ly Lolarge.
Theorem With these assumptions, the solution to the
Hamilton-Jacobi equation
0

&S‘)e(%t} = R(az, Qg(t)) -+ ‘vwg(aﬁ,tﬂz + Ao,

satisfies —L1I < D?pc(x,t) < —Lol.



Canonical equation

Proof (1D)

() = B (2, 0(0)) + 216 (t, 2) 2 + 2V 0.V

M(t) = max o' (t, x)
d 2
@M(t) < —Kp+2M(t)

therefore M (t) < —\/K2/2 (if initially true). Similarly

d _ 1 . /! 2
- 1N (t,x) > —K1‘|‘2[m1!”90 (¢, )]

and this controls from below.



Strong theory

As in the simple case, one can build the maximum point z:(¢) of
we(t) and

v¢5(58(t)7t) — 07
and the equation

EB(1) - D20 (:(1), 1)+ Vo pe(Fo(),8) = O,

and using the H.-J. equation

0 G (:(8),8) = VR(, 0:(1)) + 2D%=(7:(8), 1) Ve (3=(), ) + O(e).

ot
We still find

%zgw - D20e(Ze(t), 1) = —VR(Z=(t), 2:(t) ).



Strong theory

Therefore, for some subsequence,

xe(t) — () ( uniformly)
e—0
pe(x,t) — p(z,t) € W™
e—0

{ Ge(x,t) = R(z,0(t)) + |Vo(z, t)|?
maxz p(z,t) = 0 = p(z(t), 1),
and

ne(xz,t) = o(t)é(z — (1)),



Canonical equation

Theorem (A. Lorz, S. Mirrahimi, BP) With the concavity and
smoothness assumptions

(i) ne(z,t) = o(t)6(x —x(1)),

(ii) z(t), o(t) are 'smooth’

(i) R(a‘:(t),a(t)) =0

(v) 43(t) = (= D2p(@(1), 1)) .VR((), a(t))

Remark One can extract p(t) from (iii) and (iv) is an ODE with a
unique solution once ¢ is known.



Canonical equation

—1
Consequence 1 : Through the matrix (— D%o(f(t),t)) , the
microscopic shape of the Dirac plays a role
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Canonical equation

Consequence 2 : Long time behavior
d_, . 5 1 o
L3 = (= D?p@(1),1)) ".VR(z(1), a(t))

d

~R(3(1),2(1)) = VR(3(1),20)) (- D?p(3(®), D) .VR(z(), 2())

—rn =) @ =
+Ro(Z(1), 2(1)) - 3(1)
=0
Therefore %@(t) > 0,

o(t) — 000
t—00



Canonical equation

Consequence 2 : Long time behavior (cont’d)
VR (%0, o0 ) ( = D%).VR(Zo0,800) = 0, VR(Tso, ) = 0.
VR(:E(t), 500) ~ 0.

For a concave function this implies
2(t) — Too
with the characterization

max R(z, 0cc) = 0 = R(Foo, Ooo)

= min max R(x, 0c0).
P< 000



Canonical equation

Consequence 2 : Long time behavior (cont’d)

VR(Zoo, 80 ) = 0, R(Zoo, o) = 0

The limits e — 0, t — oo is the same as the direct Iimit t — oo'!



Canonical equation

Consequence 3 : What happens for several Dirac masses 7

For 2 Dirac masses
n(z,t) = 01(t)6(x —x1(1)) + 02(t)d(x — x2(2))
then
R(z1(1),2(t)) =0,  R(Z2(t),2(t)) =0,

%fz‘(t) = (— Dzw(fi(t),t)>_1.VR(gEZ-(t), 5@))) i=1, 2

These are 4 equations for 3 unknowns...



Canonical equation

Incompatible with the concavity assumption because
ve(x,t) = elnnes(x,t) should have two maxima.

One can go around and use the ansatz

1 2
nezng'_l_ng:egoé"/g_l_esoé"/s

One indeed observes a single Dirac mass :



file:///Users/perthame/Ex-Powerbook/images_bio/talk_concentration/movies/Dirac_disapp.avi

Open question

e Is there a broader smothness regime to derive the canonical
equation ?

e Is there another rescaling ?

e Banching conditions : ¢ vanishes at fourth order, is it possible to
use another transform ?

[ Zo(z,t) = R(w, I1(t), (1)) + | Vep(z, 1) ) 2
| max; p(a,t) = 0 ( = o(t,71(1)) = @(t, F2(t)) )

Two Lagrange multipliers, one constraint.

7\




