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Asymptotic method

We have considered the asymptotic probem
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(x, t)dx.

In the limit one can expect

0 = n(x, t)R
(
x, %(t)

)
,

n(x, t) = %δΓ(t), Γ(t) ⊂
{
R(·, %(t)) = 0

}
.



Asymptotic method

Theorem (Weak form) In Rd, set

nε(x, t) = eϕε(x,t)/ε.

• After extraction, ϕε −→
εk→0

ϕ (locally uniformly), %ε(t) −→
εk→0

%̄(t)


∂
∂tϕ(x, t) = R

(
x, %̄(t)

)
+ |∇ϕ(x, t)

)
|2

maxxϕ(x, t) = 0
(

= ϕ(t, x̄(t))
)
.

• And nε(x, t) ⇀
εk→0

n(x, t) weakly in measures,

supp
(
n(t)

)
⊂ {ϕ(t) = 0}



Asymptotic method

Numerical tests : b(x) = .5 + x(2− x)
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Asymptotic method

Numerical tests : min(.45 + x.2, .55 + .4 ∗ x)
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Asymptotic method

Question for this course :
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(x, t)dx.

In the limit one can expect

0 = n(x, t)R
(
x, %(t)

)
,

n(x, t) = %δΓ(t), Γ(t) ⊂
{
R(·, %(t)) = 0

}
.

Are all the points equivalent on Γ(t) ?

Are these pointwise Dirac, of distributed on the hypersurfaces ?

Can one describe better their dynamics ?



OUTLINE OF THE LECTURE

DYNAMICS OF THE FITTEST TRAIT

I. A simple case of canonical equation

II. Regularity for concave initial data

III. Canonical equation (general)



A simple case

Therefore in high dimension it makes sense to study the case when
R(x, ·) is CONCAVE

An not only the monotonic case in 1D



A simple case


d
dtn(x, t) = n(x, t)R

(
x, %(t)

)
,

%(t) =
∫
Rd n(x, t)dx.

• There are many steady states. For any x̄

n̄(x) = %̄ δ(x− x̄).

choosing %̄ such that

R(x̄, %̄) = 0.



A simple case


d
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%(t) =
∫
Rd n(x, t)dx.

• There are many steady states. For any x̄

n̄(x) = %̄ δ(x− x̄), R(x̄, %̄) = 0.

• They are stable by perturbation of the weight %̄ (strong topology)

d

dt
%(t) = %(t)R(x̄, %(t)).

• But they are unstable by approximation in measures (weak

topology)... a direct way to see this
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A simple case

Replace n̄0(x) = %̄0 δ(x− x̄0) by a concentrated gaussian

n0
ε(x) = eϕ

0
ε(x)/ε ≈ %̄0 δ(x− x̄0), maxϕ0

ε(x) = ϕ0
ε(x̄0) ≈ 0

We expect

• fast dynamic on %̄(t)

• a slow dynamics on nε(x, t)

Therefore we rescale as ε ddtnε(x, t) = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd nε(x, t)dx.



A simple case  ε ddtnε(x, t) = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd nε(x, t)dx.

Then, set

nε(x, t) = eϕε(x,t)/ε

d

dt
ϕε(x, t) = R

(
x, %ε(t)

)
, max

x∈R
ϕε(x, t) = o(1).

Since ϕε is obviously smooth. In the limit

d

dt
ϕ(x, t) = R

(
x, %̄(t)

)
, max

x∈R
ϕ(x, t) = 0.



A simple case

∂

∂t
ϕ(x, t) = R

(
x, %(t)

)
, max

x∈R
ϕ(x, t) = 0.

Assume

ϕ0(x), R(x, ·) are CONCAVE and smooth

Then ϕε(x, t), ϕ(x, t) are also concave and smooth in x.

Can we go further ? Is %ε(t) smooth ?

Define x̄ε(t) as the maximum point of ϕε(t)

∇ϕε(x̄ε(t), t) = 0,



A simple case

Claim
d

dt
x̄ε(t) =

(
−D2ϕε(x̄ε(t), t)

)−1
· ∇R

(
x̄ε(t), %̄ε(t)

)
.

Indeed, differentiate in time ∇ϕε(x̄ε(t), t) = 0

d

dt
x̄ε(t) ·D2ϕε(x̄ε(t), t) +∇

∂

∂t
ϕε(x̄ε(t), t) = 0,

and using

∂

∂t
ϕε(x, t) = R

(
x, %ε(t)

)
,

we find
d

dt
x̄ε(t) ·D2ϕε(x̄ε(t), t) = −∇R

(
x̄ε(t), %̄ε(t)

)
.



A simple case

Therefore xε(t) is at least uniformly Lipschitz continuous,

Therefore xε(t) −→
ε→0

x̄(t) uniformly (for some subsequence)

Furthermore

max
x

ϕ(x, t) = 0 = ϕ(x̄(t), t), ∇ϕ(x̄(t), t) = 0,
∂

∂t
ϕ(x̄(t), t) = 0

∂

∂t
ϕ(x, t) = R

(
x, %̄(t)

)
,

and thus

R
(
x̄(t), %̄(t)

)
= 0

and %̄(t) is Lipschitz and

d

dt
x̄(t) =

(
−D2ϕ(x̄(t), t)

)−1
· ∇R

(
x̄(t), %̄(t)

)
.



A simple case

Conclusions

1. x̄(t) moves toward increasing values of R(x, %̄(t))

2. Not a usual WKB expansion.

%ε(t) =
∫
nε(x, t)dx =

∫
e
ϕε(x,t)−ϕε(t,x̄ε)

ε dx e
ϕε(t,x̄ε)

ε

≈
∫
e−C

|x−xε|2
ε dx e

ϕε(t,x̄ε)
ε ≈ C

√
ε
d
e
ϕε(t,x̄ε)

ε

Gaussian type : ϕε
(
t, x̄ε(t)

)
= O(ε ln(ε)).



Strong theory
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd nε(x, t)dx.

A smoothness regime exists with the assumptions

−K1I ≤ D2R
(
x, %

)
≤ −K2I (idendity matrix),

−L1I ≤ D2ϕ0 ≤ −L2I, L1 L2large.

Theorem With these assumptions, the solution to the

Hamilton-Jacobi equation

∂

∂t
ϕε(x, t) = R

(
x, %ε(t)

)
+ |∇ϕε(x, t)|2 + ε∆ϕε

satisfies −L1I ≤ D2ϕε(x, t) ≤ −L2I.



Canonical equation

Proof (1D)

∂

∂t
ϕ′′(t, x) = R′′

(
x, %(t)

)
+ 2|ϕ′′(t, x)|2 + 2∇ϕ.∇ϕ′′

M(t) = max
x

ϕ′′(t, x)

d

dt
M(t) ≤ −K2 + 2M(t)2

therefore M(t) ≤ −
√
K2/2 (if initially true). Similarly

d

dt
min
x
ϕ′′(t, x) ≥ −K1 + 2[min

x
ϕ′′(t, x)]2

and this controls from below.



Strong theory

As in the simple case, one can build the maximum point x̄ε(t) of
ϕε(t) and

∇ϕε(x̄ε(t), t) = 0,

and the equation

d

dt
x̄ε(t) ·D2ϕε(x̄ε(t), t) +∇

∂

∂t
ϕε(x̄ε(t), t) = 0,

and using the H.-J. equation

∂

∂t
∇ϕε(x̄ε(t), t) = ∇R

(
x, %ε(t)

)
+ 2D2ϕε(x̄ε(t), t).∇ϕε(x̄ε(t), t) +O(ε).

We still find
d

dt
x̄ε(t) ·D2ϕε(x̄ε(t), t) = −∇R

(
x̄ε(t), %̄ε(t)

)
.



Strong theory

Therefore, for some subsequence,

xε(t) −→
ε→0

x̄(t) ( uniformly)

ϕε(x, t) −→
ε→0

ϕ(x, t) ∈W3,∞
x


∂
∂tϕ(x, t) = R

(
x, %(t)

)
+ |∇ϕ(x, t)|2

maxxϕ(x, t) = 0 = ϕ(x̄(t), t),

and

nε(x, t) ⇀ %̄(t)δ(x− x̄(t)),



Canonical equation

Theorem (A. Lorz, S. Mirrahimi, BP) With the concavity and

smoothness assumptions

(i) nε(x, t) ⇀ %̄(t)δ(x− x̄(t)),

(ii) x̄(t), %̄(t) are ’smooth’

(iii) R
(
x̄(t), %̄(t)

)
= 0

(iv) d
dtx̄(t) =

(
−D2ϕ(x̄(t), t)

)−1
.∇R

(
x̄(t), %̄(t)

)
Remark One can extract %̄(t) from (iii) and (iv) is an ODE with a

unique solution once ϕ̄ is known.



Canonical equation

Consequence 1 : Through the matrix
(
−D2ϕ(x̄(t), t)

)−1
, the

microscopic shape of the Dirac plays a role



Canonical equation

Consequence 2 : Long time behavior

d

dt
x̄(t) =

(
−D2ϕ(x̄(t), t)

)−1
.∇R

(
x̄(t), %̄(t)

)
d

dt
R
(
x̄(t), %̄(t)

)
= ∇R

(
x̄(t), %̄(t)

)(
−D2ϕ(x̄(t), t)

)−1
.∇R

(
x̄(t), %̄(t)

)

+R%
(
x̄(t), %̄(t)

) d
dt
%̄(t)

= 0

Therefore d
dt%̄(t) ≥ 0,

%̄(t) −→
t→∞

%̄∞



Canonical equation

Consequence 2 : Long time behavior (cont’d)

∇R
(
x̄∞, %̄∞

)(
−D2ϕ

)−1
.∇R

(
x̄∞, %̄∞

)
→ 0, ∇R

(
x̄∞, %̄∞

)
= 0.

∇R
(
x̄(t), %̄∞

)
≈ 0.

For a concave function this implies

x̄(t) −→ x̄∞

with the characterization

max
x

R(x, %̄∞) = 0 = R(x̄∞, %̄∞)

= min
ρ≤%̄∞

maxR(x, %̄∞).



Canonical equation

Consequence 2 : Long time behavior (cont’d)

∇R
(
x̄∞, %̄∞

)
= 0, R

(
x̄∞, %̄∞

)
= 0

The limits ε→ 0, t→∞ is the same as the direct limit t→∞ !



Canonical equation

Consequence 3 : What happens for several Dirac masses ?

For 2 Dirac masses

n(x, t) = %1(t)δ(x− x̄1(t)) + %2(t)δ(x− x̄2(t))

then

R
(
x̄1(t), %̄(t)

)
= 0, R

(
x̄2(t), %̄(t)

)
= 0,

d

dt
x̄i(t) =

(
−D2ϕ(x̄i(t), t)

)−1
.∇R

(
x̄i(t), %̄(t)

)
, i = 1, 2

These are 4 equations for 3 unknowns...



Canonical equation

Incompatible with the concavity assumption because
ϕε(x, t) = ε lnnε(x, t) should have two maxima.

One can go around and use the ansatz

nε = n1
ε + n2

ε = eϕ
1
ε/ε + eϕ

2
ε/ε

One indeed observes a single Dirac mass :

file:///Users/perthame/Ex-Powerbook/images_bio/talk_concentration/movies/Dirac_disapp.avi


Open question

• Is there a broader smothness regime to derive the canonical

equation ?

• Is there another rescaling ?

• Banching conditions : ϕ vanishes at fourth order, is it possible to

use another transform ?
∂
∂tϕ(x, t) = R

(
x, I1(t), I2(t)

)
+ |∇ϕ(x, t)

)
|2

maxxϕ(x, t) = 0
(

= ϕ(t, x̄1(t)) = ϕ(t, x̄2(t))
)
.

Two Lagrange multipliers, one constraint.


