Adaptive evolution : a population approach
Benoit Perthame
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Adaptive dynamic : selection principle

{ %n(az,t) = n(x, t)R(x, Q(t)),
o(t) = fan(z, .
o given T, n(x) =0 6(x — ), R(z,0) =0, o(Z).

e They are stable by perturbation of the weight p (strong topology)

© o(t) = o(DR(F, o(#)).

e But they are unstable by approximation in measures (weak
topology), and by mutation (structural)...



Adaptive dynamic : mutations

Off-springs undergo small mutations that change slightly the trait

{ %n(af;,t) — An = n(x, t)R(a:, Q(t)),
o(t) = fan(e, .

g, 6) = n(w, OR(z,0(0)) + | Mz, )b(yIn(y, Oy,
o(t) = fpan(x, t)dr.
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Adaptive dynamic : mutations

Off-springs undergo small mutations that change slightly the trait

{ %n(w,t) — An = n(x, t)R<x, Q(t)),
o(t) = fan(e, .

We assume that mutations are RARE and introduce a scale ¢ for
'small’ mutations

y

5%72/5(33, t) — e2Ane = n(x, t)R(ZI% Qa(ﬂ)»

| 0:(1) = Jpane(z, t)dz.



Population model of adaptive dynamics : mutations

This is not far from Fisher/KPP equation for invasion
fronts/chemical reaction

6%”5(337 t) o €2ATL5 — ’I”Lg(CU, t>(1 T né’(xat))a

=O}

WKRB, large deviations, level sets, geometric motion



Population model of adaptive dynamics : mutations

This is not far from Fisher/KPP equation for invasion
fronts/chemical reaction

0
6&77,5(:5, t) — €2An€ — né(xy t)(]- - ’ng(ﬂf,t)),

in the limit

n(xz,t)(1 —n(x,t) = 0.



Population model of adaptive dynamics : mutations

The situation is very different for the nonlocal equation

y

5%”5(33, t) — e2Ane = ne(x, t)R<9U> Qs(t)>7

\ 0= (1) :/Rdna(xaﬂdw-



Population model of adaptive dynamics : mutations

The situation is very different for the nonlocal equation

y

5%77/5(33, t) — e2Ane = ne(x, t)R<CU> Qa(t)>7

\ 0= (1) :/Rdna(xaﬂdw-

In the limit one can expect

0= n(w,t)R(w, Q(t))a

n(z, t) = 0dr (), r(t) C {R(- e(t) = 0}.



Asymptotic method

Question. What tools to describe Dirac concentrations in PDEs 7

o
(27e)d/2

ne(x) = e~ lo—[%/(2e) 5:6 06(x — )

ng(aj) — e—(|x—f|2—|—€|nO(€))/(2€) — 55(13 _ E)
e—0
More generally (Hopf-Cole/WKB)
ne(x) = eve(@)/e 00(x — )
e—0
with the conditions

Pe 2 ¥ Max(z) = 0 = ¢(7)

E—r



Asymptotic method

¢, Sm&n)

. _RAlx., 3%

R, :‘1

Theorem Suppose z € R, Ry >0, Rp < 0. Then, for subsequences

ne(, ) — 2(0)8(x = F(1)), 0 3, 8() = [ n(a,t)de.

Can one give a law for the dynamics of z(t) 7



Asymptotic method

Theorem Suppose z € R, Ry >0, Rp < 0. Then, for subsequences
ne(z,t) — B0 = 7(1)), 0: — 81) = [ nla,t)d,
e.—0 er.—0

and the 'fittest’ trait x(¢) is characterised by the Eikonal equation
with constraints

maxz p(z,t) =0 = ¢(t,z(t))

Definition This situation is called monomorphism

Difficulty Solutions to H.-J. eq. are not smooth



Asymptotic method

Theorem Suppose x € R, Ry >0, Ry, < 0. Then, for subsequences

ne(,t) — BB = 3(1)), 0: — &(t) = [ n(a, t)da,
€k €k

and the 'fittest’ trait x(¢) is characterised by the Eikonal equation
with constraints

Se(@,t) = R(z,2(t)) + |Vo(z, t)|?
maxg o(x,t) = 0 = p(t,x(t))
However %go(a_j(t), t) =0= (%go(f(t), t>

R(f(t), é(t)) =0 (Pessimism Principle)



Asymptotic method

This problem should be understood as follows
max o(x,t) =0, Vt is a constraint,
o(t) is a Lagrange multiplier.

This is not an obstacle problem !
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Asymptotic method

Theorem In RY, set

ne(x,t) = eve(@t)/e

e After extraction, o — ¢ (locally uniformly), o-(t) — o(t)
e.—0 er.—0

( Zo(a,t) = R(z,8(t)) + [Ve(z, 1)) 2

| maxz p(a,1) = 0 ( — (L, 5(1)) )

e And ns(x,t) — n(x,t) weakly in measures,
ep—0

supp(n(t)> C {p(t) = 0}



Asymptotic method

Proof
1. 0-(t) is BV (and converges after extraction) and its limit o(¢) is

non-decreasing

2. Because ne(z,t) = e?=(@:t)/e we have

o,
a%pe(xat) - R(-’fUa Qs(t)) + \V%(fv,t)lz — e
and ¢: is Lipschitz continous in x (difficulty in t)

(gives the H.-J. equation in viscosity sense)

3. om < /ng(x,t)dac < o (gives the constraint)



Asymptotic method

Conclusion :
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Asymptotic method

Theorem (G. Barles, BP) Uniqueness With reasonable
assumptions there exist a unique lipschitz continuous solution (g, p)
to the constraint H.-J. equation

Sp(x,t) = b(x) — 2(t)d(z) + |Ve|?,

(

max o(z,t) =0 ( = p(t, ff(t)))

Open question Extend uniqueness to

0 _ b(z) 2
P =17 0 o(t)d(z) + V|~




Asymptotic method

Proof of uniqueness : the difficulty

The L° contraction property is lost! Define
M(t) := max[pi(z,t) — po(z,1)]

%M(t} < R(zpr(t), 01(8)) — Rz (1), 02()) < Cloi(t) — 0a(t)

But the constraint cannot be used here to control |p1(t) — 02(t)| by
M(t).



Asymptotic method

Proof of uniqueness : idea. R(x,0) =b(x) —d(x)o
Work on
t
v(t) = (@) +d(@) | o(s)ds

( Sy(a,t) = b(z) + VY — Vd(z) [§o(s)ds|?,

{

| maxe(z,t) =0 (= e(tE(1))
Define

M(t) := max[y(z,t) — o(z,1)]

SM@) < lpag — V() [ 01()ds? ~ pag = Va(erp) [ oa(s)ds?



Asymptotic method

SM@) < lpag — V() [ 01()ds? ~ pag = Va(erp) [ oa(s)ds?

Use that solutions are Lipschitz and the specific form of R

%M(t) < C( /Ot o1(s)ds — /Ot @z(s)ds‘

But we may choose ¢(t,z1) = 0 and get
t t
M(t) 2 Y1(t@1) —va(ten) = dan)| [ er(s)ds — [ ea(s)ds]
The opposite inequality holds true similarly and thus

d _
aM(t) < CM(t).



Asymptotic method

Numerical tests : b(x) = 5+«

]

Direct simulation (1500 points)

H.-J. solution (200 points)



Asymptotic method

Numerical tests : b(x) = .5+ (2 — x)

Direct simulation (1500 points) H.-J. solution (200 points)



Asymptotic method

Numerical tests : min(.45 + .2, .55 + .4 x z)

Direct simulation (1500 points) H.-J. solution (200 points)



Survival threshold

Next ingredient is the notion of survival threshold.

on(t, x)
ot

—eAn(t,z) = n(t,z)

R(ag, [n(t)]) B \/’Fmg(t,w)

Motivated by
e Population really vanishes; some traits are not represented
e [ he notion of 'individual’ is somehow included in the parameter n

because n(t,z) really vanishes at a level related to n



Survival threshold

Next ingredient is the notion of survival threshold.

on(t, x)
ot

—eAn(t,z) = n(t,z)

R(ag, [n(t)]) B \/ﬁng(t,a?)

Motivated by

e Population really vanishes; some traits are not represented

e [ he notion of 'individual’ is somehow included in the parameter n
e A similar notion represents 'demographic stochasticity’

e compatibility with Monte-Carlo simulations



Survival threshold

on(t t nn(t,x
n2)  Ante) =™ ’“")R(x, [n(t)]) — VAt =)
ot €
and choose a threshold of the form
n = e*”st/g, pst < 0 (constants).

The formal constrained H.-J. equation is a free boundary problem

f@(p _ |vs0|2 _I_ R in Q(t) = {(;U,t), s.t. p > _SOSt}7
< gp = —0 |n ﬁca

\@29051: in Q.

Open questions : prove it rigorously ; other scales



on(t, ) n(t, iU)

—eAn(t,x) =

(s, 1n(0)]) — VA na(t, x)

ot

n = eg"st/g, wst < 0 (constants),

Formal derivation ne = e¥</¢, then

o Vv
7S —enp: — [Ve|? = R(z, [n(1)]) -
ot \n(t, x)
Ope > Pst—pe
25— D — Vel = Rz, [n(®)]) —e %
Pst—¥e .
e when ¢et < e then e 26 — 0 (disappears)
Pst—Pe

e when st > e then e 2¢ — oo i.€e. g - —00



Survival threshold

Theorem Fix R(xz) <0 then
e — p(t, )
e—0
the free boundary problem

92 =|VeP+R@) in Q@)= {(r1), st o> st
3 90 = —00 In Q )

p = pst in L2

characterized by one of the equivalent statements

e it is the minimal solution

e the Dirichlet boundary condition should be satisfied

p =@st on  0(1).

e ¢ = is a truncation to —oco of the global solution in R,



Survival threshold

When R(xz) changes sign.

e [ he previous truncation formula is wrong

e [ he additional Dirichlet boundary condition is not enough, one
should maybe impose also a 'state constraint’ boundary condition in
Q(t)

e [ he semi-relaxed limits can be compared to two relatively close
functions of 'optimal control type’' (given by an iterative 'cleaning’).

This implies at least that

e In opposition to the case R < 0, the solution is changed drastically
(see numerics)

e The limit does not depend on the specific power /n



Survival threshold

M) Aoy =" gy -

ot

Related to another asymptotic (other scales) :

Bernouilli problem (see Lorz, Markowich, BP)

—An(z) +n(z) = R(x) >0, zze€2

n(z) =0 x € 0%, %:ﬁ x € 052.



Numerical results
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Numerical results
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Model with two nutrients : no survival threshold

1) = [r@n(e,de,  02(t) = [ va(@In(e, )da

L

Direct simulation (1500 points) H.-J. solution (200 points)
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Numerical results

And the dynamics looks like
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Open questions

e Uniqueness for a general R(x, o)
e Case of multiple nutrients (See Champagnat and Jabin)

R := R(z, 01,09, .-, 0F), 0; = / i(z)n(e, t)dz.

e Survival threshold (R(x, ), other scales)
e EXxplain branching
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