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Adaptive dynamic : selection principle


d
dtn(x, t) = n(x, t)R

(
x, %(t)

)
,

%(t) =
∫
Rd n(x, t)dx.

• given x̄, n̄(x) = %̄ δ(x− x̄), R(x̄, %̄) = 0, %̄(x̄).

• They are stable by perturbation of the weight %̄ (strong topology)

d

dt
%(t) = %(t)R(x̄, %(t)).

• But they are unstable by approximation in measures (weak

topology), and by mutation (structural)...



Adaptive dynamic : mutations

Off-springs undergo small mutations that change slightly the trait
∂
∂tn(x, t)−∆n = n(x, t)R

(
x, %(t)

)
,

%(t) =
∫
Rd n(x, t)dx.


∂
∂tn(x, t) = n(x, t)R

(
x, %(t)

)
+
∫
M(x, y)b(y)n(y, t)dy,

%(t) =
∫
Rd n(x, t)dx.
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We assume that mutations are RARE and introduce a scale ε for

’small’ mutations
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Adaptive dynamic : mutations

Off-springs undergo small mutations that change slightly the trait
∂
∂tn(x, t)−∆n = n(x, t)R

(
x, %(t)

)
,

%(t) =
∫
Rd n(x, t)dx.

We assume that mutations are RARE and introduce a scale ε for

’small’ mutations
ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd nε(x, t)dx.



Population model of adaptive dynamics : mutations

This is not far from Fisher/KPP equation for invasion
fronts/chemical reaction

ε
∂

∂t
nε(x, t)− ε2∆nε = nε(x, t)

(
1− nε(x, t)

)
,

. {nε = 1} {nε = 0}

WKB, large deviations, level sets, geometric motion
G. Barles, L. C. Evans, W. Fleming, P. E. Souganidis, S. Osher, J.
Sethian...



Population model of adaptive dynamics : mutations

This is not far from Fisher/KPP equation for invasion
fronts/chemical reaction

ε
∂

∂t
nε(x, t)− ε2∆nε = nε(x, t)

(
1− nε(x, t)

)
,

. {nε = 1} {nε = 0}

in the limit

n̄(x, t)(1− n̄(x, t) = 0.



Population model of adaptive dynamics : mutations

The situation is very different for the nonlocal equation


ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(x, t)dx.



Population model of adaptive dynamics : mutations

The situation is very different for the nonlocal equation


ε ∂∂tnε(x, t)− ε

2∆nε = nε(x, t)R
(
x, %ε(t)

)
,

%ε(t) =
∫
Rd
nε(x, t)dx.

In the limit one can expect

0 = n(x, t)R
(
x, %(t)

)
,

n(x, t) = %δΓ(t), Γ(t) ⊂
{
R(·, %(t)) = 0

}
.



Asymptotic method

Question. What tools to describe Dirac concentrations in PDEs ?

nε(x) =
%̄

(2πε)d/2
e−|x−x̄|

2/(2ε) −→
ε→0

%̄δ(x− x̄)

nε(x) = e−(|x−x̄|2+ε lnO(ε))/(2ε) −→
ε→0

%̄δ(x− x̄)

More generally (Hopf-Cole/WKB)

nε(x) = eϕε(x)/ε −→
ε→0

%̄δ(x− x̄)

with the conditions

ϕε −→
ε→0

ϕ, max
x

ϕ(x) = 0 = ϕ(x̄)



Asymptotic method

Theorem Suppose x ∈ R, Rx > 0, R% < 0. Then, for subsequences

nε(x, t) −→
εk→0

%̄(t)δ(x = x̄(t)), %ε −→
εk→0

%̄(t) =
∫
n(x, t)dx,

Can one give a law for the dynamics of x̄(t) ?



Asymptotic method

Theorem Suppose x ∈ R, Rx > 0, R% < 0. Then, for subsequences

nε(x, t) −→
εk→0

%̄(t)δ(x = x̄(t)), %ε −→
εk→0

%̄(t) =
∫
n(x, t)dx,

and the ’fittest’ trait x̄(t) is characterised by the Eikonal equation

with constraints
∂
∂tϕ(x, t) = R

(
x, %̄(t)

)
+ |∇ϕ(x, t)|2

maxxϕ(x, t) = 0 = ϕ(t, x̄(t))

Definition This situation is called monomorphism

Difficulty Solutions to H.-J. eq. are not smooth



Asymptotic method

Theorem Suppose x ∈ R, Rx > 0, R% < 0. Then, for subsequences

nε(x, t) −→
εk→0

%̄(t)δ(x = x̄(t)), %ε −→
εk→0

%̄(t) =
∫
n(x, t)dx,

and the ’fittest’ trait x̄(t) is characterised by the Eikonal equation

with constraints
∂
∂tϕ(x, t) = R

(
x, %̄(t)

)
+ |∇ϕ(x, t)|2

maxxϕ(x, t) = 0 = ϕ(t, x̄(t))

However ∂
∂tϕ

(
x̄(t), t

)
= 0 = ∂

∂xϕ
(
x̄(t), t

)
R
(
x̄(t), %̄(t)

)
= 0 (Pessimism Principle)



Asymptotic method

This problem should be understood as follows

max
x

ϕ(x, t) = 0, ∀t is a constraint,

%̄(t) is a Lagrange multiplier.

. This is not an obstacle problem !
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Asymptotic method

Theorem In Rd, set

nε(x, t) = eϕε(x,t)/ε.

• After extraction, ϕε −→
εk→0

ϕ (locally uniformly), %ε(t) −→
εk→0

%̄(t)


∂
∂tϕ(x, t) = R

(
x, %̄(t)

)
+ |∇ϕ(x, t)

)
|2

maxxϕ(x, t) = 0
(

= ϕ(t, x̄(t))
)
.

• And nε(x, t) ⇀
εk→0

n(x, t) weakly in measures,

supp
(
n(t)

)
⊂ {ϕ(t) = 0}



Asymptotic method

Proof

1. %ε(t) is BV (and converges after extraction) and its limit %(t) is

non-decreasing

2. Because nε(x, t) = eϕε(x,t)/ε we have

∂

∂t
ϕε(x, t) = R

(
x, %ε(t)

)
+ |∇ϕε(x, t)|2 − ε∆ϕε

and ϕε is Lipschitz continous in x (difficulty in t)

(gives the H.-J. equation in viscosity sense)

3. %m ≤
∫
nε(x, t)dx ≤ %M (gives the constraint)



Asymptotic method

Conclusion :

.

nε L1

ϕε C0
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Asymptotic method

Theorem (G. Barles, BP) Uniqueness With reasonable

assumptions there exist a unique lipschitz continuous solution (%̄, ϕ)

to the constraint H.-J. equation
∂
∂tϕ(x, t) = b(x)− %̄(t)d(x) + |∇ϕ|2,

max
x

ϕ(x, t) = 0
(

= ϕ(t, x̄(t))
)

Open question Extend uniqueness to

∂

∂t
ϕ(x, t) =

b(x)

1 + %̄(t)
− %̄(t)d(x) + |∇ϕ|2.



Asymptotic method

Proof of uniqueness : the difficulty

The L∞ contraction property is lost ! Define

M(t) := max
x

[ϕ1(x, t)− ϕ2(x, t)]

d

dt
M(t) ≤ R(xM(t), %1(t))−R(xM(t), %2(t)) ≤ C|%1(t)− %2(t)|

But the constraint cannot be used here to control |%1(t)− %2(t)| by

M(t).



Asymptotic method

Proof of uniqueness : idea. R(x, %) = b(x)− d(x)%
Work on

ψ(t) := ϕ(x, t) + d(x)
∫ t

0
%(s)ds.


∂
∂tψ(x, t) = b(x) + |∇ψ −∇d(x)

∫ t
0 %(s)ds|2,

max
x

ϕ(x, t) = 0
(

= ϕ(t, x̄(t))
)

Define

M(t) := max
x

[ψ1(x, t)− ψ2(x, t)]

d

dt
M(t) ≤ |pM −∇d(xM)

∫ t
0
%1(s)ds|2 − |pM −∇d(xM)

∫ t
0
%2(s)ds|2



Asymptotic method

d

dt
M(t) ≤ |pM −∇d(xM)

∫ t
0
%1(s)ds|2 − |pM −∇d(xM)

∫ t
0
%2(s)ds|2

Use that solutions are Lipschitz and the specific form of R

d

dt
M(t) ≤ C

∣∣∣ ∫ t
0
%1(s)ds−

∫ t
0
%2(s)ds

∣∣∣
But we may choose ϕ(t, x1) = 0 and get

M(t) ≥ ψ1(t, x1)− ψ2(t, x1) ≥ d(x1)
[ ∫ t

0
%1(s)ds−

∫ t
0
%2(s)ds

]
The opposite inequality holds true similarly and thus

d

dt
M(t) ≤ C̄M(t).



Asymptotic method

Numerical tests : b(x) = .5 + x
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Asymptotic method

Numerical tests : b(x) = .5 + x(2− x)
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Asymptotic method

Numerical tests : min(.45 + x.2, .55 + .4 ∗ x)
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Survival threshold

Next ingredient is the notion of survival threshold.

∂n(t, x)

∂t
− ε∆n(t, x) =

n(t, x)

ε
R
(
x, [n(t)]

)
−

√
n̄n(t, x)

ε

Motivated by

• Population really vanishes ; some traits are not represented

• The notion of ’individual’ is somehow included in the parameter n̄

• A because n(t, x) really vanishes at a level related to n̄

• compatibility with Monte-Carlo simulations



Survival threshold

Next ingredient is the notion of survival threshold.

∂n(t, x)

∂t
− ε∆n(t, x) =

n(t, x)

ε
R
(
x, [n(t)]

)
−

√
n̄n(t, x)

ε

Motivated by

• Population really vanishes ; some traits are not represented

• The notion of ’individual’ is somehow included in the parameter n̄

• A similar notion represents ’demographic stochasticity’

• compatibility with Monte-Carlo simulations



Survival threshold

∂n(t, x)

∂t
− ε∆n(t, x) =

n(t, x)

ε
R
(
x, [n(t)]

)
−

√
n̄ n(t, x)

ε

and choose a threshold of the form

n̄ = eϕst/ε, ϕst < 0 (constants).

The formal constrained H.-J. equation is a free boundary problem
∂ϕ
∂t = |∇ϕ|2 +R in Ω(t) := {(x, t), s.t. ϕ > −ϕst},
ϕ = −∞ in Ωc

,

ϕ ≥ ϕst in Ω.

Open questions : prove it rigorously ; other scales



∂n(t, x)

∂t
− ε∆n(t, x) =

n(t, x)

ε
R
(
x, [n(t)]

)
−

√
n̄ n(t, x)

ε

n̄ = eϕst/ε, ϕst < 0 (constants),

Formal derivation nε = eϕε/ε, then

∂ϕε

∂t
− ε∆ϕε − |∇ϕε|2 = R

(
x, [n(t)]

)
−

√
n̄√

n(t, x)

∂ϕε

∂t
− ε∆ϕε − |∇ϕε|2 = R

(
x, [n(t)]

)
− e

ϕst−ϕε
2ε

• when ϕst < ϕε then e
ϕst−ϕε

2ε → 0 (disappears)

• when ϕst > ϕε then e
ϕst−ϕε

2ε →∞ i.e. ϕε → −∞



Survival threshold

Theorem Fix R(x) ≤ 0 then

ϕε −→
ε→0

ϕ(t, x)

the free boundary problem
∂ϕ
∂t = |∇ϕ|2 +R(x) in Ω(t) := {(x, t), s.t. ϕ > −ϕst},
ϕ = −∞ in Ωc

,

ϕ ≥ ϕst in Ω.

characterized by one of the equivalent statements
• it is the minimal solution
• the Dirichlet boundary condition should be satisfied
ϕ = ϕst on ∂Ω(t).
• ϕ = is a truncation to −∞ of the global solution in Rd.



Survival threshold

When R(x) changes sign.

• The previous truncation formula is wrong

• The additional Dirichlet boundary condition is not enough, one
should maybe impose also a ’state constraint’ boundary condition in
Ω(t)

• The semi-relaxed limits can be compared to two relatively close
functions of ’optimal control type’ (given by an iterative ’cleaning’).

This implies at least that

• In opposition to the case R ≤ 0, the solution is changed drastically
(see numerics)

• The limit does not depend on the specific power
√
n



Survival threshold

∂n(t, x)

∂t
− ε∆n(t, x) =

n(t, x)

ε
R(x)−

√
n̄n(t, x)

ε

Related to another asymptotic (other scales) :

Bernouilli problem (see Lorz, Markowich, BP)


−∆n(x) + n(x) = R(x) ≥ 0, x ∈ Ω

n(x) = 0 x ∈ ∂Ω, ∂n
∂ν = n̄ x ∈ ∂Ω.



Numerical results

Effect of the survival threshold



Numerical results
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Model with two nutrients : no survival threshold

%1(t) =
∫
ψ1(x)n(x, t)dx, %2(t) =

∫
ψ2(x)n(x, t)dx

See Champagnat and Jabin

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Direct simulation (1500 points) H.-J. solution (200 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

density n phase ϕ

file:///Users/perthame/Ex-Powerbook/images_bio/talk_concentration_prep/talk_concentrations/Two_species_movie.gif


Numerical results

And the dynamics looks like
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Open questions

• Uniqueness for a general R(x, %)

• Case of multiple nutrients (See Champagnat and Jabin)

R := R(x, %1, %2, ..., %I), %i =
∫
ψi(x)n(x, t)dx.

• Survival threshold (R(x, %), other scales)
• Explain branching
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