Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proofs 000000 000000

On the continuity of the solution to drift-diffusion equations

Luis Silvestre

University of Chicago

August 6, 2013

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proofs 000000 000000

Introduction

Basic linear equations Nonlinear equations Sub-critical vs super-critical

Hölder regularity

Classical diffusion Fractional diffusion

The super-critical case

Shocks No shocks

Proofs

Discontinuity Continuity

|--|

drift-diffusion equations

We look at functions \boldsymbol{u} which solve the equation with drift and classical diffusion

$$u_t + \mathbf{b} \cdot \nabla u - \triangle u = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Where b is a vector field (depending on space and time).

Hölder regularity 000 000 The super-critical case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proofs 000000 000000

fractional drift-diffusion equations

We look at functions u which solve the equation with drift and fractional diffusion

$$u_t + \mathbf{b} \cdot \nabla u + (-\triangle)^{\mathbf{s}} u = 0.$$

Where b is a vector field (depending on space and time). And $s \in (0, 1)$.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Proofs 000000 000000

The fractional Laplacian

$$\widehat{(-\triangle)^s}u(\xi) = |\xi|^{2s}\widehat{u}(\xi)$$

$$(-\triangle)^{s}u(x) = C_{n,s} \int_{\mathbb{R}^n} \frac{u(x) - u(x+y)}{|y|^{n+2s}} \,\mathrm{d}y$$

It is the infinitesimal generator of α -stable Levy processes.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Proofs 000000 000000

The fractional Laplacian

$$\widehat{(-\triangle)^s}u(\xi)=|\xi|^{2s}\widehat{u}(\xi)$$

$$(-\triangle)^{s}u(x) = C_{n,s} \int_{\mathbb{R}^n} \frac{u(x) - u(x+y)}{|y|^{n+2s}} \,\mathrm{d}y$$

It is the infinitesimal generator of α -stable Levy processes.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proofs 000000 000000

The fractional Laplacian

$$\widehat{(-\triangle)^s}u(\xi)=|\xi|^{2s}\widehat{u}(\xi)$$

$$(-\triangle)^{s}u(x) = C_{n,s}\int_{\mathbb{R}^n} \frac{u(x) - u(x+y)}{|y|^{n+2s}} \,\mathrm{d}y$$

It is the infinitesimal generator of α -stable Levy processes.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proofs 000000 000000

The question

For what kind of vector fields b, is the solution u going to remain smooth?

The characterization should be in terms of *b* having a bounded norm in some space like L^p , C^{α} , *BMO*, etc...

Can we get better regularity results when we assume that the drift *b* is **divergence free**?

The super-critical case

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Proofs 000000 000000

Nonlinear equations

An a priori estimate for a linear drift-diffusion equation with minimal assumptions on the drift b can be applied to nonlinear equations, where b depends on the solution u.

Introduction

Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Some scalar nonlinear equations with fractional diffusion.

Conservation Laws: $u_t + \operatorname{div} F(u) + (-\triangle)^s u = 0.$

Studied recently by Biler, Funaki, Woyczynski, Jourdain, Méléard, Droniou, Imbert, Czubak, Chan, Achleitner, Alibaud, Kiselev, Nazarov, Shterenberg, ...

Hamilton-Jacobi equation: $u_t + H(\nabla u) + (-\Delta)^s u = 0$. Studied recently by Droniou, Gallouët, Vovelle, Imbert, Ka

Woyczynski, ...

Proving regularity of the solution is relatively simple in the subcritical (s > 1/2) case, **interesting** in the critical case s = 1/2, and **false** in the supercritical case (s < 1/2).

Introduction 0000 Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Some scalar nonlinear equations with fractional diffusion.

Conservation Laws: $u_t + \operatorname{div} F(u) + (-\triangle)^s u = 0.$

Studied recently by Biler, Funaki, Woyczynski, Jourdain, Méléard, Droniou, Imbert, Czubak, Chan, Achleitner, Alibaud, Kiselev, Nazarov, Shterenberg, . . .

Hamilton-Jacobi equation: $u_t + H(\nabla u) + (-\triangle)^s u = 0.$

Studied recently by Droniou, Gallouët, Vovelle, Imbert, Karch, Woyczynski, . . .

Proving regularity of the solution is relatively simple in the subcritical (s > 1/2) case, **interesting** in the critical case s = 1/2, and **false** in the supercritical case (s < 1/2).

Introduction 0000 Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Some scalar nonlinear equations with fractional diffusion.

Conservation Laws: $u_t + \operatorname{div} F(u) + (-\triangle)^s u = 0.$

Studied recently by Biler, Funaki, Woyczynski, Jourdain, Méléard, Droniou, Imbert, Czubak, Chan, Achleitner, Alibaud, Kiselev, Nazarov, Shterenberg, . . .

Hamilton-Jacobi equation: $u_t + H(\nabla u) + (-\triangle)^s u = 0.$

Studied recently by Droniou, Gallouët, Vovelle, Imbert, Karch, Woyczynski, . . .

Proving regularity of the solution is relatively simple in the subcritical (s > 1/2) case, **interesting** in the critical case s = 1/2, and **false** in the supercritical case (s < 1/2).

Introduction

Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Some scalar nonlinear equations with fractional diffusion and divergence free drifts.

Surface quasi-geotrophic equation: $\theta_t + (R^{\perp}\theta) \cdot \nabla \theta + (-\Delta)^{s}\theta = 0.$

Studied recently by Constantin, Wu, Majda, Tabak, Fefferman,

Caffarelli, Vasseur, Kiselev, Nazarov, Volberg, Hongjie Dong,

Dabkowski, Cordoba, Cordoba, Vicol, Dong Li, and many more.

Flow in porous media: $\theta_t + u \cdot \nabla \theta + (-\triangle)^s \theta = 0$, where $u = (0, -\theta) - \nabla p$ is divergence free

Studied recently by Cordoba, Faraco, Gancedo, Castro, Orive, ... Other active scalar equations: $\theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0$, where $u = T \theta$ is divergence free. Studied recently by Kiselev, Cordoba, Gancedo, Constantin, Wu, Friedlander, Vicol

Proving regularity of the solution is relatively simple in the subcritical (s > 1/2) case, **interesting** in the critical case s = 1/2, and **open for all** in the supercritical case (s < 1/2), the supercritical case s = 1/2.

Introduction

Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Some scalar nonlinear equations with fractional diffusion and divergence free drifts.

Surface quasi-geotrophic equation: $\theta_t + (R^{\perp}\theta) \cdot \nabla \theta + (-\triangle)^s \theta = 0.$

Studied recently by Constantin, Wu, Majda, Tabak, Fefferman,

Caffarelli, Vasseur, Kiselev, Nazarov, Volberg, Hongjie Dong,

Dabkowski, Cordoba, Cordoba, Vicol, Dong Li, and many more.

Flow in porous media: $\theta_t + u \cdot \nabla \theta + (-\triangle)^s \theta = 0$, where $u = (0, -\theta) - \nabla p$ is divergence free

Studied recently by Cordoba, Faraco, Gancedo, Castro, Orive, \ldots

Other active scalar equations: $\theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0$, where $u = T\theta$ is divergence free. Studied recently by Kiselev, Cordoba, Gancedo, Constantin, Wu, Friedlander, Vicol, ...

Proving regularity of the solution is relatively simple in the subcritical (s > 1/2) case, **interesting** in the critical case s = 1/2, and **open for all** in the supercritical case (s < 1/2).

Introduction

Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Some scalar nonlinear equations with fractional diffusion and divergence free drifts.

Surface quasi-geotrophic equation: $\theta_t + (R^{\perp}\theta) \cdot \nabla \theta + (-\triangle)^s \theta = 0.$

Studied recently by Constantin, Wu, Majda, Tabak, Fefferman,

Caffarelli, Vasseur, Kiselev, Nazarov, Volberg, Hongjie Dong,

Dabkowski, Cordoba, Cordoba, Vicol, Dong Li, and many more.

Flow in porous media:
$$\theta_t + u \cdot \nabla \theta + (-\triangle)^s \theta = 0$$
, where $u = (0, -\theta) - \nabla p$ is divergence free

Studied recently by Cordoba, Faraco, Gancedo, Castro, Orive, ... Other active scalar equations: $\theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0$, where $u = T\theta$ is divergence free.

Studied recently by Kiselev, Cordoba, Gancedo, Constantin, Wu, Friedlander, Vicol, \ldots

Proving regularity of the solution is relatively simple in the subcritical (s > 1/2) case, **interesting** in the critical case s = 1/2, and **open for all** in the supercritical case (s < 1/2).

Introduction 0000 Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

A priori estimate + linear estimates

Let us take a conservation law with fractional diffusion:

$$u_t + \operatorname{div} F(u) + (-\triangle)^s u = 0.$$

A priori estimate: $u \in L^{\infty}$, from the maximum principle.

Linearization: The function *u* satisfies the drift-diffusion equation

 $u_t + b \cdot \nabla u + (-\triangle)^s u = 0$, with $b_i = F'_i(u)$.

An estimate for drift-diffusion equations may give some extra regularity estimate for u.

Introduction

Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Scaling of the equation

Suppose *u* solves

$$\partial_t u + b \cdot \nabla u + (-\triangle)^s u = 0.$$

Then $u_r(x, t) = u(rx, r^{2s}t)$ solves

$$\partial_t u_r + r^{2s-1}b(rx, r^{2s}t) \cdot \nabla u_r + (-\triangle)^s u_r = 0.$$

An assumption $b \in X$ is

- Critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = ||b||_X$ for any *r*.
- **Sub-critical** if $||r^{2s-1}b(rx, r^{2s}t)||_X = r^{\alpha}||b||_X$ for some $\alpha > 0$.
- Super-critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = r^{-\alpha}||b||_X$ for some $\alpha > 0$.

Introduction

Hölder regularity 000 000 The super-critical case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proofs 000000 000000

Scaling of the equation

Suppose *u* solves

$$\partial_t u + b \cdot \nabla u + (-\triangle)^s u = 0.$$

Then $u_r(x, t) = u(rx, r^{2s}t)$ solves

$$\partial_t u_r + r^{2s-1}b(rx, r^{2s}t) \cdot \nabla u_r + (-\triangle)^s u_r = 0.$$

An assumption $b \in X$ is

- Critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = ||b||_X$ for any r.
- **Sub-critical** if $||r^{2s-1}b(rx, r^{2s}t)||_X = r^{\alpha}||b||_X$ for some $\alpha > 0$.
- Super-critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = r^{-\alpha}||b||_X$ for some $\alpha > 0$.

Introduction

Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Scaling of the equation

Suppose *u* solves

$$\partial_t u + b \cdot \nabla u + (-\triangle)^s u = 0.$$

Then $u_r(x, t) = u(rx, r^{2s}t)$ solves

$$\partial_t u_r + r^{2s-1}b(rx, r^{2s}t) \cdot \nabla u_r + (-\triangle)^s u_r = 0.$$

An assumption $b \in X$ is

- Critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = ||b||_X$ for any r.
- Sub-critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = r^{\alpha}||b||_X$ for some $\alpha > 0$.
- Super-critical if $||r^{2s-1}b(rx, r^{2s}t)||_X = r^{-\alpha}||b||_X$ for some $\alpha > 0$.

Hölder regularity 000 000 The super-critical case 000 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proofs 000000 000000

What to expect

In the **sub-critical** case, the diffusion is **stronger** than the drift in small scales. In the **super-critical** case, the diffusion is **weaker** than the drift in small scales. In the **critical** case, the diffusion and the drift are balanced at all scales.

In general we would expect the solution to a drift-diffusion equation to be

- Differentiable in the sub-critical case.
- Hölder continuous in the critical case.
- Possibly discontinuous in the super-critical case.

Hölder regularity 000 000 The super-critical case 000 0

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proofs 000000 000000

What to expect

In the **sub-critical** case, the diffusion is **stronger** than the drift in small scales. In the **super-critical** case, the diffusion is **weaker** than the drift in small scales. In the **critical** case, the diffusion and the drift are balanced at all scales.

In general we would expect the solution to a drift-diffusion equation to be

- Differentiable in the sub-critical case.
- Hölder continuous in the critical case.
- Possibly discontinuous in the super-critical case.

Hölder regularity 000 000 The super-critical case 000 0

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proofs 000000 000000

What to expect

In the **sub-critical** case, the diffusion is **stronger** than the drift in small scales. In the **super-critical** case, the diffusion is **weaker** than the drift in small scales. In the **critical** case, the diffusion and the drift are balanced at all scales.

In general we would expect the solution to a drift-diffusion equation to be

- **Differentiable** in the sub-critical case.
- Hölder continuous in the critical case.
- Possibly **discontinuous** in the super-critical case.

Outline	Introduction	Hölder regularity	The super-critical case	Proofs
	00000 0000 00●	000	000	000000

Critical spaces for b

Depending on the power s of the Laplacian, the critical spaces for b vary.

- If s < 1/2, $b \in L^{\infty}([0, T], C^{1-2s})$ is critical.
- If s = 1/2, $b \in L^{\infty}([0, T], L^{\infty})$ is critical.
- If s > 1/2, $b \in L^{\infty}([0, T], L^{n/(2s-1)})$ is critical.

Introduction 00000 0000 Hölder regularity •00 000 The super-critical case

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proofs 000000 000000

Hölder regularity for elliptic drift-diffusion equations

Theorem (Stampacchia (1965) - Safonov (2010))

If u solves

$$b\cdot
abla u - riangle u = 0$$
 in B_1

for an arbitrary vector field $\mathbf{b} \in \mathbf{L}^n$, then u is Hölder continuous in $B_{1/2}$ and there is an estimate

$$||u||_{C^{\alpha}(B_{1/2})} \leq C ||u||_{L^{2}(B_{1})}.$$

The constants C and α in Safonov's estimate depend on $||b||_{L^n}$ only. In Stampacchia's proof there is an implicit smallness condition.

Introduction 00000 0000 000 Hölder regularity

The super-critical case

Proofs 000000 000000

Hölder regularity for parabolic drift-diffusion equations, with classical diffusion and no assumption on divergence.

Open problem

If *u* solves

$$u_t + b \cdot \nabla u - \triangle u = 0$$

for an arbitrary vector field $b \in L^{\infty}([0, T], L^n)$, will *u* become immediately Hölder continuous?

Introduction 00000 0000 000

Hölder regularity for classical diffusion and divergence free drift

Theorem (Friedlander, Vicol (2011). Sverak, Seregin, S., Zlatos (2011))

If u solves

$$u_t + b \cdot \nabla u - \triangle u = 0$$

for an divergence-free vector field $b \in L^{\infty}([0, T], BMO^{-1})$, then u becomes immediately Hölder continuous.

Note that BMO^{-1} and L^n have the same scaling: if $u_r(x) = u(rx)$ then

$$||u_r||_{BMO^{-1}} = r^{-1} ||u||_{BMO^{-1}} \qquad ||u_r||_{L^n} = r^{-1} ||u||_{L^n}.$$

The proof goes along the lines of DeGiorgi-Nash-Moser.

Introduction 00000 0000 0000 Hölder regularity •••• •••• The super-critical case

Proofs 000000 000000

Hölder regularity for s = 1/2 and arbitrary divergence.

Theorem (S. 2010)

If u solves

$$u_t + \mathbf{b} \cdot \nabla u + (-\triangle)^{1/2} u = 0$$

for an arbitrary bounded vector field b, then u becomes immediately Hölder continuous.

This theorem is the key to show that either the Hamilton-Jacobi equation or conservation laws have smooth solutions in the critical case s = 1/2.

The proof uses a new idea to obtain an improvement of oscillation lemma, which is then iterated to get the Hölder continuity. The proof uses strongly that the operator is non local.

Introduction 00000 0000 0000 Hölder regularity ○○○ ○●○ The super-critical case

Proofs 000000

Hölder regularity for divergence-free drifts and s = 1/2.

Theorem (Caffarelli and Vasseur. Annals of Math 2006)

If u solves

$$u_t + \mathbf{b} \cdot \nabla u + (-\triangle)^{1/2} u = 0$$

for an arbitrary divergence free vector field b in $L^{\infty}(BMO)$, then u becomes immediately Hölder continuous.

The proof also follows the ideas from De Giorgi-Nash-Moser theorem.

This result implies the well posedness of the critical surface quasi-geostrophic equation. There is an independent proof given by Kiselev, Nazarov and Volberg, and another by Constantin and Vicol.

Introduction 00000 0000 Hölder regularity ○○○ ○○● The super-critical case

Proofs 000000 000000

A result for $s \in (0, 1/2)$

Theorem (Constantin, Wu, AIHP 2009)

If u solves

$$u_t + b \cdot \nabla u + (-\triangle)^s u = 0$$

for some divergence-free vector field $b \in L^{\infty}(C^{1-2s})$, then u becomes immediately Hölder continuous.

Theorem (S. 2010)

If u solves

$$u_t + b \cdot \nabla u + (-\triangle)^s u = 0$$

for some vector field $b \in L^{\infty}(C^{1-2s})$, then u becomes immediately Hölder continuous.

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

ヘロン 不得 とくほ とくほ とうせい

Proofs 000000 000000

Singularities with fractional diffusion

Theorem (S., Vicol, Zlatos 2012)

For any $s \in (0, 1/2)$ and $\alpha < 1 - 2s$, there exists a divergence free vector field $b \in C^{\alpha}(\mathbb{R}^2)$, constant in time, so that a solution to

$$u_t + b \cdot \nabla u + (-\triangle)^s u = 0$$

is smooth at time zero but becomes discontinuous at positive time.

Theorem (S., Vicol, Zlatos 2012)

For any $s \in [1/2, 1)$ and p < 2/(2s - 1), there exists a divergence free vector field $b \in L^p(\mathbb{R}^2)$, constant in time, so that a solution to

$$u_t + b \cdot \nabla u + (-\triangle)^s u = 0$$

is smooth at time zero but becomes discontinuous at positive time.

Introduction 00000 0000 0000 Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

The opposite claim

arXiv.org > math > arXiv:1007.3919

Search or Ar

2

Mathematics > Analysis of PDEs

Remarks on a fractional diffusion transport equation with applications to the dissipative quasi-geostrophic equation

(Submitted on 22 Jul 2010 (v1), last revised 5 Dec 2011 (this version, v5))

In this article I study Hölder regularity for solutions of a transport equation based in the dissipative quasi-geostrophic equation. Following a recent idea of A. Kiselev and F. Nazarov, I will use the molecular characterization of local Hardy spaces in order to obtain information on Hölder regularity of such solutions. This will be done by following the evolution of molecules in a backward equation.

Comments: 29 pages Subjects: Analysis of PDEs (math.AP) Cite as: arXiv:1007.3919v5 [math.AP]

Submission history

From: [view email] [v1] Thu, 22 Jul 2010 15:45:04 GMT (22kb) [v2] Fri, 22 Oct 2010 06:28:32 GMT (21kb) [v3] Mon, 14 Mar 2011 09:32:28 GMT (21kb) [v4] Tue, 12 Apr 2011 12:59:56 GMT (26kb) [v5] Mon, 5 Dec 2011 11:01:29 GMT (27kb)

The author himself found a mistake in mid October, 2012.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Singularities with classical diffusion

Theorem (S., Vicol, Zlatos 2012)

For any p < 2, there exists a **divergence free** vector field $b \in L^{\infty}(L^{p}(\mathbb{R}^{2}))$, so that a solution to

 $u_t + b \cdot \nabla u - \Delta u = 0$

is smooth at time zero but becomes discontinuous at positive time.

The same result would not hold for b constant in time

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

Proofs 000000 000000

Continuity with classical diffusion

Theorem (S., Vicol, Zlatos 2012)

Let $b \in L^1(\mathbb{R}^2)$ be a divergence free vector field independent of time. Let u be the solution to

 $u_t + b \cdot \nabla u - \Delta u = 0$

in $\mathbb{R}^2 \times (0, +\infty)$ with smooth initial data. Then u remains continuous for all positive time.

Notes:

- The result would not be true if we drop the zero divergence assumption.
- The result would not be true in higher dimensions.
- The result would not be true for fractional diffusion (as we saw before).

Introduction 00000 0000 Hölder regularity 000 000 The super-critical cas

Construction of singularity for $b \in L^{\infty}$ and s < 1/2.

We will use the following vector field (independent of time)

$$b(x_1, x_2) = \begin{cases} (0, -1) & \text{if } x_2 > |x_1|, \\ (0, 1) & \text{if } x_2 < -|x_1|, \\ (1, 0) & \text{if } x_1 > |x_2|, \\ (-1, 0) & \text{if } x_1 < -|x_2|. \end{cases}$$

The function u will satisfy the following symmetries (which are preserved by the equation):

$$u(x_1, x_2) = -u(x_1, -x_2),$$

 $u(x_1, x_2) = u(-x_1, x_2).$

Outline

Hölder regularity 000 000 The super-critical case

Comparison principle in the upper half plane

Let u be a solution and v a subsolution of the equation

$$u_t + b \cdot \nabla u + (-\triangle)^s u = 0$$

 $v_t + b \cdot \nabla v + (-\triangle)^s v \le 0$ for $x_2 > 0$.

Assume both u and v are odd in x_2 , and that at time zero

$$u(x_1, x_2, 0) \ge v(x_1, x_2, 0)$$
 if $x_2 > 0$.

Then for all positive time t > 0,

$$u(x_1, x_2, t) \ge v(x_1, x_2, t)$$
 if $x_2 > 0$.

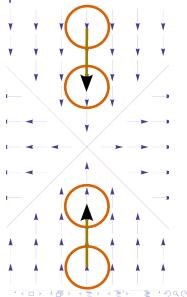
It is not a classical maximum principle because $(-\triangle)^s$ is nonlocal. The oddness of the functions plays a role in the proof.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical cas

The effect of transport

Let u(x, 0) be a smooth function, positive in $B_1(0, 4)$, negative in $B_1(0, -4)$, and zero everywhere else.

If we ignore the effect of dissipation and concentrate on the drift, initially the function is just transported vertically towards $\{x_2 = 0\}$. After two seconds, the circles would move to $B_1(0,2)$ and $B_1(0,-2)$.



Outline

Hölder regularity 000 000 The super-critical case

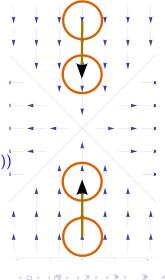
The effect of diffusion in the first two seconds

Let $u(x,0) = \eta(x - (0,4)) - \eta(x - (0,-4))$ for some non negative smooth η supported in B_1 .

We can build a subsolution in the upper half plane for $t \in [0, 2]$. $v(x, t) = e^{-Ct} (\eta(x - (0, 4 - t)) - \eta(x - (0, -4 + t)))$

Thus $u \ge v$ for $t \in [0, 2]$ and $x_2 > 0$.

The constant C is chosen to compensate the effect of dissipation.

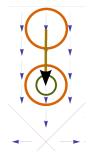


900

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

After the two seconds

With divergence free drifts, we can never produce a self similar solution. Nonetheless, we can produce a self similar sub-solution.



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We observe that for some constant C, we obtain

$$v(x,2) \ge e^{-C}v(2x,0) = e^{-C}(\eta(2x-(0,4)) - \eta(2x-(0,-4)))$$

So, we can rescale and start over after t = 2

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

Supercritical scaling

The idea is to iterate the process and find a sequence of constants C_k and a subsolution v such that

$$v(x, 4-2^{2-k}) \ge e^{-C_k}v(2^kx, 0)$$

But the equation is not invariant by scaling. In fact, $u_k = u(2^k x, 2^k t)$ satisfies the equation

$$\partial_t u_k + b \cdot \nabla u_k + 2^{(2s-1)k} (-\triangle)^s u_k = 0$$

For s < 1/2, the effect of the dissipation will decrease exponentially in small scales and we will obtain

$$C_k = C \sum_{i=0}^{k-1} 2^{(2s-1)k}$$

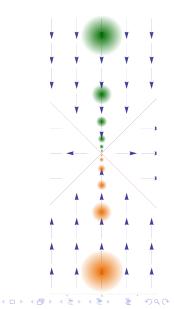
which is bounded independently of k.

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

The shock

Effectively, we are finding a sequence of circles on the upper half plane $\{x_2 > 0\}$ where u is bounded below by a positive quantity, and their symmetric ones in $\{x_2 < 0\}$ where u is bounded above by a negative quantity.

At time t = 4 these circles meet at x = 0and there is a discontinuity in u.

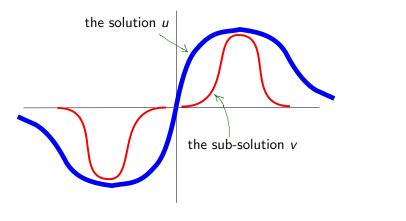


Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Another picture of the discontinuity

This is the graph of the values of u on the vertical axis $\{x_1 = 0\}$.

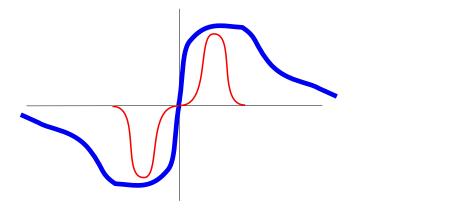


Hölder regularity 000 000 The super-critical case

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Another picture of the discontinuity

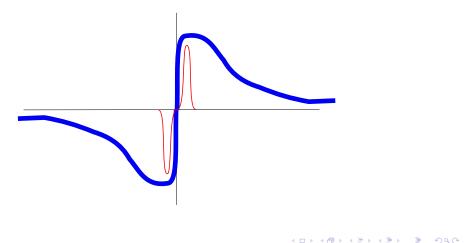
This is the graph of the values of u on the vertical axis $\{x_1 = 0\}$.



Hölder regularity 000 000 The super-critical case

Another picture of the discontinuity

This is the graph of the values of u on the vertical axis $\{x_1 = 0\}$.



Outline

Hölder regularity 000 000 The super-critical case

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The case of continuity: how time independence helps

If *u* solves

$$u_t + \mathbf{b}(\mathbf{x}) \cdot \nabla u - \Delta u = 0$$

then u_t solves the same equation.

Since div b = 0, we have the energy estimate both for u and u_t .

$$\left. \begin{array}{l} u \in L^{2}([0, T], H^{1}) \\ u_{t} \in L^{2}([0, T], H^{1}) \end{array} \right\} \Rightarrow u \in C([0, T], H^{1})$$

Moreover, from the maximum principle, we can get a bound for u and u_t in L^{∞} .

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

Elliptic case

Fact

A function in H^1 which satisfies the maximum principle in every ball is continuous.

More precisely. If for every ball $B \subset B_1$, $\sup_B u = \sup_{\partial B} u$ and $\inf_B u = \inf_{\partial B} u$, then u has a modulus of continuity depending on its \dot{H}^1 norm only

$$\underset{B_r}{\operatorname{osc}} u \leq \frac{C}{\sqrt{-\log r}} \|\nabla u\|_{L^2}.$$

This can be used to show that solutions to elliptic PDEs are continuous, as in the joint paper with Sverak, Seregin and Zlatos.

The idea can be traced back to Lebesgue 1907.

Introduction 00000 0000 Hölder regularity 000 000 The super-critical case

Proofs

Proof of the fact

Let $A(r) = \operatorname{osc}_{\partial B_r} u = \operatorname{osc}_{B_r}$, which is increasing. We have

$$C = \int_{B_1} |\nabla u|^2 \ge \int_{\varepsilon}^1 \int_{\partial B_1} \frac{|\partial_{\theta} u(r\theta)|^2}{r} + |\partial_r u(r\theta)|^2 \, \mathrm{d}\theta \, \mathrm{d}r$$
$$\ge \int_{\varepsilon}^1 \frac{c}{r} \left(\int_{\partial B_1} |\partial_{\theta} u(r\theta)| \, \mathrm{d}\theta \right)^2 \, \mathrm{d}r \ge c \int_{\varepsilon}^1 \frac{A(r)^2}{r} \, \mathrm{d}r$$
$$\ge c(-\log \varepsilon) A(\varepsilon)^2.$$

Outline	Introduction	Hölder regularity	The super-cr
	00000	000	000
	0000	000	0
	000		

Parabolic difficulty

The estimate $u \in C([0, T], H^1)$ plus the **parabolic maximum** principle is not enough to obtain a modulus of continuity.

In fact, for any function $f \in H^1(\mathbb{R}^2) \setminus C(\mathbb{R}^2)$, u(x,t) = f(x) is a counterexample.

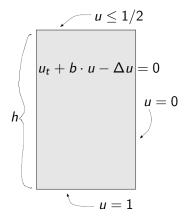
We need to use the equation further.

Introduction 00000 0000 000 Hölder regularity 000 000 The super-critical case

Proofs 0000000

Another estimate independent of the drift

There exists an h > 0, independent of b, so that the solution to the equation in $[0, h] \times B_1$ with u(0, x) = 1 and u(t, x) = 0 for all $x \in \partial B_1$, satisfies $u \le 1/2$ on $\{h\} \times B_1$.



The proof is based on a pointwise estimate on the fundamental solution originally due to John Nash.

Introduction 00000 0000 Hölder regularity 000 000 The super-critical cas

Proofs 000000

Almost elliptic maximum principle

Lemma

On each time slice t, the function u solving

$$u_t + b \cdot \nabla u - \triangle u = 0$$

satisfies an approximate maximum principle

$$\sup_{B_r} u \leq \sup_{\partial B_r} u + C \|u_t\|_{L^{\infty}} r^2,$$

for a constant C independent of b.

The main ingredient of the proof is the previous Lemma, which says that in the parabolic maximum principle the bottom cannot dominate the value of the maximum in parabolic cylinders with certain proportions.