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Abstract

In this chapter, we consider the 3D incompressible Euler equa-
tions. We present classical and recent results on the issue of global
existence/finite-time singularity. We also introduce the theories
of lower dimensional model equations of the 3D Euler equations
and the vortex patch problem.

1 Introduction

The goal of these lecture notes is to introduce to the readers classical
results as well as recent developments in the theory of 3D incompressible
Euler equations. We will focus on the global existence/finite time singu-
larity issue. We will start with the basic properties of the incompressible
fluid flows, and then discuss the local and global well-posedness of the
incompressible Euler equations. Of particular interest is the global ex-
istence or possible finite time blow-up of the 3D incompressible Euler
equation. This is one of the most outstanding open problems in the past
century. Here, we carefully examine the nature of the nonlinear vor-
tex stretching term for the 3D Euler equation as well as several model
problems for the 3D Euler equation. We put extra effort in taking into
account the local geometrical properties and possible depletion of nonlin-
earity. By going through the nonlinear analysis of various fluid models,
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we can gain valuable insights into the fluid dynamic prolems being stud-
ied. Through the analysis, we can also learn how various functional
analysis and PDE techniques are being used for realistic applications,
and what are their strengths and limitations. We especially emphasize
the interplay between the physical and geometric properties of the fluid
flows and modern nonlinear PDE techniques. By going through these
analyses systematically, we can have a good understanding of the state
of the art of nonlinear PDE methods and their applications to fluid dy-
namics problems.

This chapter is organized as follows:

1. Introduction

2. Derivation and Exact Solutions

3. Local Well-posedness of the 3D Euler Equation

4. The BKM Blow-up Criterion

5. Recent Global Existence Results

6. Lower Dimensional Models for the 3D Euler Equation

7. Vortex Patch

2 Derivation and Exact Solutions

2.1 Derivation of the Euler Equations

The equation that governs the evolution of inviscid and incompressible
flow is the Euler equation. Here we first derive the 3D Euler equation
briefly. For more detailed derivations, the readers should consult other
text books in fluid mechanics, such as Chorin-Marsden [12], Lamb [31],
Marchioro-Pulvirenti [36], or Lopes Filho-Nussenzveig Lopes-Zheng [33].

We consider a domain Ω which is filled with a fluid, such as water.
In classical continuum mechanics, the fluid can be seen as consisting of
infinitesimal particles. At each time t, each particle has a one to one
correspondence to the coordinates x = (x1, x2, x3) ∈ Ω. The fluid can
be described by its density ρ, velocity u = (u1, u2, u3) and pressure p at
each such point x ∈ Ω. Under the above assumptions, we can denote the
position of any particle at time t by X(α, t) which starts at the position
α ∈ Ω at t = 0. Its evolution is governed by the following differential
equation:

dX(α, t)

dt
= u(X(α, t), t),

X(α, 0) = α. (2.1)
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To study the dynamics of the fluid, we must establish relations between
ρ, u and p. We do this by considering two basic mechanical rules: the
conservation of mass, and the conservation of momentum.

The conservation of mass claims that, for any fixed region W ⊆ Ω
which doesn’t change with time,

d

dt

∫

W

ρ(x, t) dx = −
∫

∂W

ρ(x, t)u(x, t) · n(x, t) dσ (2.2)

for all time t, where n(x, t) is the outer unit normal vector to ∂W , and
dσ is the area unit on ∂W . Using the Gauss theorem we arrive at

d

dt

∫

W

ρ(x, t) dx = −
∫

W

∇ · (ρ(x, t)u(x, t)) dx

which implies ∫

w

(ρt + ∇ · (ρu)) dx = 0.

If we assume the continuity of the integrand ρt + ∇ · (ρu), by the arbi-
trariness of W , we get

ρt + ∇ · (ρu) = 0. (2.3)

Since otherwise, there would be a point x0 such that the integrand is not
0. Without loss of generality, we assume (ρt + ∇ · (ρu)) (x0) > 0. Then
by continuity, there is r > 0 such that ρt + ∇ · (ρu) > 0 for any x ∈
B(x0, r). This leads to a contradiction by taking we take W = B(x0, r).
Equation (2.3) is called the continuity equation.

Let J be the determinant of the Jacobian matrix, ∂X
∂α . It can ben

proved by direct calculations (the reader should try to prove this as an
exercise, see also Chorin-Marsden [12]) that

dJ

dt
= (∇ · u)J, J(0) = 1.

We assume that the flow is incompressible. Incompressibility implies
that the flow is volume preserving. Using the above equation one can
show that the velocity is divergence-free, i.e.

∇ · u = 0 (2.4)

In this case, we have the determinant of the Jacobian matrix, J , to be
identically equal to one, i.e J ≡ 1. If the initial density is constant, i.e.
ρ(x, 0) ≡ ρ0, equation (2.3) implies that density is constant globally, i.e.

ρ(x, t) ≡ ρ0.

Remark 2.1. -
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1. The above derivation of the mass conservation equation is under
the assumption that ρ, u and ∂W are all smooth enough, e.g., C1.

2. One can also derive (2.3) in a Lagrangian way, i.e., by considering
an evolving region Ωt that is a collection of particles. See e.g.
Lopes Filho-Nussenzveig Lopes-Zheng [33].

3. Yet another way is through the variational formulation. See e.g.
Marchioro-Pulvirenti [36].

The conservation of momentum means

d

dt

∫

Ωt

ρu dx = F(Ωt) , (2.5)

where F(Ωt) is the force acting on Ωt. Here Ωt ≡ ∪α∈Ω0
X(α, t) for

some Ω0 ⊆ Ω is a collection of particles that is carried by the flow. We
first assume that the interaction in the fluid is local, i.e., all the forces
between points inside Ωt cancel each other by Newton’s third law. This
assumption implies

F(Ωt) =

∫

∂Ωt

f dσ

for some f . Our second assumption is that the fluid is ideal, which
means that f = −pn, where n is the unit outer normal to ∂Ωt. Now the
momentum relation becomes

d

dt

∫

Ωt

ρu dx =

∫

∂Ωt

−pn dσ = −
∫

Ωt

∇p dx ,

where the second equality follows from the Gauss theorem
∫

Ω

∂if dx =

∫

∂Ω

fni dσ.

To derive a pointwise equation similar to (2.3), we need to put the d
dt

inside the integration in the term

d

dt

∫

Ωt

ρu dx.

Note that since Ωt = X(Ω0, t) depends on t, it is not the same as

∫

Ωt

(ρu)t dx.

Instead of näıvely putting the differentiation inside, we proceed as fol-
lows. We first change variables from the Eulerian variable x to the La-
grangian variable α. Since the flow is incompressible, the determinant
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of the Jacobian matrix is equal to one, i.e., det(Xα) = 1. Thus we have

d

dt

∫

Ωt

ρu dx =
d

dt

∫

Ω0

ρ(X(α, t), t)u(X(α, t), t) dα

=

∫

Ω0

d

dt
ρ(X, t)u(X, t) + ρ(X, t)

d

dt
u(X, t) dα

=

∫

Ω0

(ρt + u · ∇ρ)u + ρ (ut + u · ∇u) dα

=

∫

Ω0

ρ(ut + u · ∇u) dα

=

∫

Ωt

ρ(ut + u · ∇u) dx.

where the first equality follows from the fact that the flow map α 7→
X(α, t) is one-to-one and has Jacobian 1, and the fourth equality follows
from (2.3) and the incompressibility condition. Now we have

∫

Ωt

ρ(ut + u · ∇u) dx = −
∫

Ωt

∇p dx.

Finally, by the arbitrariness of Ωt, we get

ρ(ut + u · ∇u) = −∇p. (2.6)

by an argument that is similar to the one leading to (2.3). (2.6) is the
balance of momentum.

If we further assume that the flow has constant initial density, then
we have ρ(x, t) ≡ ρ0, and equation (2.6) is equivalent to:

ut + u · ∇u = −∇p

where p is the ”rescaled” pressure p/ρ0.
Under these assumptions, we obatin the 3D Euler equation as follows:

ut + u · ∇u = −∇p, (2.7)

∇ · u = 0.

In the remaining part of this lecture note, we will focus on (2.7).
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2.2 The Vorticity-Stream function formulation

2.2.1 Vorticity

We consider the Taylor expansion of the velocity u(x, t) at some point
x.

u(x+ h, t) = u(x, t) + ∇u · h+O(h2)

= u(x, t) +
∇u + ∇ut

2
h+

∇u−∇ut

2
h+O(h2)

≡ u(x, t) + S(x, t)h+ Ω(x, t)h+O(h2).

where S is symmetric and Ω is anti-symmetric. In 3D, it’s easy to see
that there is a vector ω such that

Ω(x, t)h =
1

2
ω(x, t) × h.

This implies that locally, the flow is rotating around an axis ξ(x, t) ≡
ω(x,t)
|ω(x,t)| . The vector field ω(x, t) is called “vorticity”. And it is easy to

check that
ω(x, t) = ∇× u(x, t).

2.2.2 Vorticity-Stream function formulation

By taking ∇× on both sides of the 3D Euler equation (2.7), we have

ωt + u · ∇ω = ω · ∇u = S · ω. (2.8)

which is the vorticity formulation. The last equality follows from the
fact that

Ω · ω =
1

2
ω × ω ≡ 0,

since by definition we have

1

2
ω × h ≡ Ω · h

for any vector h. Now there are two unknowns ω and u, so we have to
find the relation between them to close the system. This relation is the
so-called Biot-Savart law.

u(x) =
1

4π

∫

R3

x− y

|x− y|3
× ω(y) dy. (2.9)

Note that we need u(x) to vanish at ∞ for the above formula to hold.
To derive the Biot-Savart law, first define a vector valued function Ψ,
called “stream function”, such that

−4Ψ = ω.
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Now it is easy to check that

u = ∇× Ψ

satisfies
∇× u = ω.

( Hint: Use the identity

−∇× (∇×) + ∇(∇·) = 4,

and then try to show
‖∇ (∇ · Ψ)‖2

L2 = 0

using the same identity. Details are left as exercises. Or see Bertozzi-
Majda [35]).

Now the Biot-Savart law (2.9) follows from the formula

Ψ =
1

4π

∫
1

|x− y|ω(y) dy,

where 1
4π

1
|x| is the fundamental solution for the Poisson equation

−4u = f

in 3D.
Besides (2.8), another important form of the vorticity evolution is

the “stretching formula”.

ω(X(α, t), t) = ∇αX(α, t)ω0(α) (2.10)

where ω0(α) = ω(X(α, 0), 0) = ω(α, 0), and X is defined by (2.1). To
prove it, just differentiate both sides with respect to time, which yields

ωt + u · ∇ω = ∇αu(X(α, t), t)ω0(α)

= ∇u · (∇αX · ω0)

= ∇u · ω(x, t),

which is just (2.8). One catch: this “proof” actually uses the uniqueness
of the solution to the system (2.8), (2.9).

For the convenience of future references, we will denote the differ-
entiation in time along the Lagrangian trajectory as D

Dt , which has the
property:

D

Dt
w = wt + u · ∇w.

D
Dt is also called material derivative.
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2.2.3 2D Euler equations

In some physical cases, such as the flow passing around a cylinder with
infinite length, we can assume that u3 ≡ 0 and u, p depend on x1, x2

only. In this case, the Euler equations (2.7) remains the same form, but
the vorticity-stream function form reduces to

ωt + u · ∇ω = 0 (2.11)

and

u(x) =
1

2π

∫
(x− y)⊥

|x− y|2
ω(y) dy (2.12)

where ω is a short-hand for ω3.

One important difference between 2D and 3D Euler equations is that,
the right hand side is 0 in (2.11), which means the vorticity is conserved
along Lagrangian trajectory pathes. This point can be illustrated more
clearly by looking at the “stretching formula” in 2D, which is

ω(X(α, t), t) = ω0(α). (2.13)

This difference plays an important role in the theory of 2D Euler
equations, which is far more complete than its 3D counterpart.

2.3 Conserved Quantities

2.3.1 Local conserved quantities

First we consider those quantities that are carried by a collection of flow
particles.

Let C0 be a closed curve in R3. We define

Ct = ∪α∈C0
X(α, t).

and the circulation

ΓCt ≡
∮

Ct

u · ds.

Theorem 2.2. ( Kelvin’s Circulation Theorem ). ΓCt ≡ ΓC0
.

Proof. We first prove the following.

d

dt

∫

Ct

u · ds =

∫

Ct

Du

Dt
· ds.
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To prove it, let α(β) be a parametrization of the loop C0, with 0 ≤ β ≤ 1.
Then Ct is parametrized as X(α(β), t). Thus

d

dt

∫

Ct

u · ds =
d

dt

∫ 1

0

u(X(α(β), t), t) · ∂
∂β

X(α(β), t) dβ

=

∫ 1

0

Du

Dt
(X(α(β), t), t) · ∂

∂β
X(α(β), t) dβ

+

∫ 1

0

u(X(α(β), t), t) · ∂
∂β

u(X(α(β), t), t) dβ

where we have used the relation

∂X

∂t
(α, t) = u(X(α, t), t).

Note that the first term is just
∫

Ct

Du

Dt
· ds,

we just need to show that the second term is 0. This is easy, since we
have ∫ 1

0

u · ∂
∂β

u ds =
1

2

∫ 1

0

∂

∂β
(u · u) ds = 0,

which follows from the fact that Ct is a close loop.
Now we prove the circulation theorem. We have

d

dt

∫

Ct

u · ds =

∫

Ct

Du

Dt
· ds = −

∫

Ct

∇p · ds = −
∫

Ct

psds = 0

since Ct is closed. Thus ends the proof.

Next let C0 be a general curve and Ct = X(C0, t). Then as long as
the flow is still regular, Ct is still a curve in R3. Ct is called a vortex
line if the following is satisfied

C0 is tangent to ω0(α) at any α ∈ C0. (2.14)

One can verify that as long as (2.14) is satisfied, the same tangency
condition is satisfied at every moment t, i.e.,

Ct is tangent to ω(x, t) at any x ∈ Ct.

A collection of vortex lines is called a “vortex tube”. One readily
sees that vorticity is always tangent to the side surface of a vortex tube.

The above properties make vortex tube/line very important objects
in the theories/numerical simulations/physical experiments of the 3D
Euler equation, as we will reveal later in this lecture note.



10 Thomas Y. Hou, Xinwei Yu

2.3.2 Global conserved quantities

The most well-known global conserved quantities are the following (
we will indicate the dimension and region/manifold, Td stands for d-
dimensional periodic torus):

1. The integral of velocity. ( Rd and Td , d = 2, 3 ).

d

dt

∫
u dx = 0.

2. Kinetic energy. ( Rd, Td, smooth bounded domain, d = 2, 3 ).

d

dt

∫
|u|2 dx = 0.

Remark 2.3. In the Rd case, caution must be taken. We actually
need that the kinetic energy

∫
|u|2 dx to be finite. In 3D this

requirement is reasonable, while in 2D it is not.

3. Center of vorticity. ( R2 , if uω decays fast enough at ∞ ).

x̄ =

∫

R2

xω dx = const.

4. Moment of inertia. ( R2 , if uω decays fast enough at ∞).

I =

∫

R2

|x|2 ω dx = const.

5. Functions of vorticity. ( d = 2 ).

∫

Ωt

f(ω) dx =

∫

Ω0

f(ω0) dα

for any measurable f and material domain Ωt. In particular, we
see that the Lp norm of ω is conserved for 1 ≤ p ≤ ∞.

6. Other quantities. ∫

R3

x× ω dx

∫

R3

x× (x× ω) dx;

helicity ∫

R3

u · ω dx;

and spirality
ω · γ
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where γ = u + ∇φ with φ solving

D

Dt
φ = − |u|2 /2 + p.

This quantity is conserved along particle trajectories.

2.4 Special Flows

2.4.1 Axisymmetric Flow

In this subsection we introduce the axisymmetric flow, i.e., when written
in cylindrical coordinates x1 = r cos θ, x2 = r sin θ and x3 = z, the
velocity u and the pressure p depend only on r and z. Unlike the 2D
Euler equations, this particular flow retains some 3D characters and is
often referred to as the 2 1

2 -D equations.
We introduce the cylindrical frame of reference:

er = (cos θ, sin θ, 0)

eθ = (− sin θ, cos θ, 0)

ez = (0, 0, 1).

and can easily rewrite the 3D Euler equations in the new frame, with
u = u(r, z) and p = p(r, z), as

ut + (u · ∇̃)u +B = −∇̃p (2.15)

where
∇̃ = (∂r , 0, ∂z)

and

B =
uθ

r
(−uθ, ur, 0).

We leave the details (which can be found in e.g. Lopes Filho-Nussenzveig
Lopes-Zheng [33]) for this system to the reader as exercises.

1. Derive equations (2.15).

2. Prove that, in the moving frame (er, eθ, ez), we have

ω = ωrer + ωθeθ + ωzez

≡
(
−∂zu

θ
)
er + (∂zu

r − ∂ru
z) eθ +

(
∂ru

θ +
uθ

r

)
ez.

3. When uθ ≡ 0, (2.15) becomes axisymmetric flows without swirl.
Prove that the equations are

(
∂t + u · ∇̃

)
u = −∇̃p

∇̃ · (ru) = 0 (2.16)



12 Thomas Y. Hou, Xinwei Yu

Furthermore, one can reduce the equation into the r−z plane which
is 2D. Prove that the equation for ωθ ( note that ωr = ωz = 0 ) is

(∂t + u · ∇)

(
ωθ

r

)
= 0.

2.4.2 Radially ( circularly ) symmetric flow

In the 2D case. We consider ω0 ≡ ω0(r) which is circularly symmetric.
Then by exploring the invariance of the Laplacian we easily see that ψ
defined by

−4ψ = ω0

is also a circularly symmetric function. Thus

u = ∇⊥ψ

is always tangent to the contours ω0 ≡const. One can easily verify that

ω ≡ ω0,u ≡ u0

is a steady solution for the 2D Euler equations. The velocity is explicitly
given as

u =
x⊥

r2

∫ r

0

sω(s) ds, (2.17)

where r = |x|. These stationary solutions are called Rankine vortices.
The reader can try to derive the “radial symmetric biot savart law”
(2.17) as an exercise (Hint: it is easier to start from the stream function
Ψ).

Now consider the special case, where ω0 is supported inBR ≡ {x | |x| ≤ R},
with

∫
BR

ω0 = 0. Then it is easy to see that u is also supported in BR.
Such a vortex is called a confined eddy. The importance of this observa-
tion can be seen from the following property:

The superposition of two disjoint confined eddies is still a solution.

This gives us a way to construct very complicated exact solutions to the
2D Euler equations.

2.4.3 Jets and Strains

LetD(t) be any family of symmetric and trace-free matrices that smoothly
depends on t, and let ω solves

dω

dt
= D(t)ω

ω(0) = ω0.
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We introduce

u =
1

2
ω × x+D(t)x.

It is easy to check that we can define p such that u solves the 3D Euler
equations in the whole space. One thing that worths noting is that,
the velocity we defined above is growing unboundedly at ∞ and is thus
non-physical.

It is illustrating to study some special cases.

1. Jet. Take ω0 = 0 thus ω ≡ 0. Note that we can write D(t) to be
diagonal:

D(t) =



−γ1 0 0
0 −γ2 0
0 0 γ1 + γ2




and get
u = (−γ1x1,−γ2x2, (γ1 + γ2)x3).

2. Swirling jet. We take ω0 = (0, 0, a) and get

ω = (0, 0, ae(γ1+γ2)t),

and

u =

(
−γ1x1 −

1

2
a(t)x2,−γ2x2 +

1

2
a(t)x1, (γ1 + γ2) x3

)
.

3. Strain. We take ω0 = 0 and γ1 = −γ2 = γ.

u = (−γx1, γx2, 0) .

3 Local Well-Posedness of the 3D Euler Equa-
tion

First we consider the local well-posedness for classical solutions. By
classical solutions we mean solutions such that (2.7) holds in the classical
sense, i.e., all the derivatives are in the classical sense, the multiplications
are pointwise, and the equalities hold everywhere. Our main goal in this
section is to prove the following:

Theorem 3.1. If the initial velocity u0 ∈ Hm∩C2 for some m > 2+d/2,
then there is T > 0 such that there is a unique solution u ∈ Hm ∩C2 in
[0, T ].

To do this, we use the standard technique of mollifiers. In short, we
approximate (2.7) by a sequence of equations that can be shown to admit
global smooth solutions, and then establish the local in time existence
by taking limit.
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3.1 Analytical preparations

3.1.1 Sobolev spaces

The Sobolev spaces Hk, k ∈ Z, k ≥ 0 is defined as

Hk(Rd) =



f(x) |

∑

|α|≤k

‖∂αf‖2
L2 <∞





where α is a multi-index α = (α1, α2, . . . , αd). |α| ≡
∑
αi and ∂α ≡

∂|α|

∂x
α1

1
···∂x

αd
d

. Hk is a Banach space with norm

‖f‖Hk =


∑

|α|≤k

‖∂αf‖2
L2




1/2

.

If we consider the Fourier transform of f , we have

‖f‖Hk =


∑

|α|≤k

∥∥∥ξαf̂
∥∥∥

2

L2




1/2

where ξα ≡ ξα1

1 · · · ξαd

d . Now by some simple algebra we can obtain the
following equivalent norm

‖f‖Hk ∼
∥∥∥〈ξ〉k f̂

∥∥∥
L2

∼
∥∥∥(1 −4)

k/2
f
∥∥∥

L2

where 〈ξ〉 ≡ (1 + |ξ|2)1/2, and 4 is the Laplacian.
The point in writing the Hk norm this way is that, now we can take

k to be any real number instead of non-negative integers. Usually, when
k is not an integer, we replace it by s.

The following theorem is used extensively in PDE researches.

Theorem 3.2. The space C∞
0 (Rd) is dense in Hs(Rd).

The most important property of the Sobolev spaces is the embedding
theorems. We will not prove these theorems here, interested readers can
look up the proof in e.g. Adams [1], which is a classic and not very hard
to read.

Before introducing the theorems, we first recall what “embedding”
means. Consider two Banach spaces X and Y , with norms ‖·‖X and
‖·‖Y . Assume that there is a third space Z which is dense in both X
and Y . We say X is embedded in Y , if there is a constant C such that

‖·‖Y ≤ C ‖·‖X .



Introduction to Incompressible Inviscid Flows 15

This means that all the elements in X is also in Y . Furthermore, we say
X is compactly embedded in Y , if X is embedded in Y , and any bounded
subset of X ( in the X norm ) is precompact in Y ( with respect to the
Y norm ). That is, if {xn} ⊂ X is uniformly bounded, then there is a
subsequence which is Cauchy in Y . We denote embedding by ↪→.

Theorem 3.3. (Embeddings for Hs). Let Hs(Rd) be the Sobolev space.
We have

Hs+k ↪→ Ck

for all s > d/2 and k ∈ Z, nonnegative.

3.1.2 Hodge decomposition and the Leray projection

We denote by Hs(Rd) the Sobolev spaces, and let V s ⊂ Hs(Rd; Rd) be
the subspace of divergence-free vector fields.

Lemma 3.4. ( Hodge decomposition ). Let u be a vector field with
components in L2(Rd). There exists a unique decomposition u = u1+u2,
where u1 is divergence-free and u2 is a gradient. Furthermore u1 and u2

are orthogonal in L2. We denote by P the projection L2(Rd; Rd) 7→ V 0

which maps u to u1, then P commutes with derivatives, convolution and
is also a map from Hs to V s.

Proof. First we solve

4φ = ∇ · u

Thus

φ = 4−1(∇ · u) +H

where H is a harmonic function and 4−1 is the convolution with the
Green’s function of the Laplacian in Rd. Now define

u2 = ∇φ = (∇24−1) · u + ∇H

By going to the Fourier space, it is easy to see that the first term is in
L2. To make u2 ∈ L2, we must have ∇H ∈ L2, which means it must
vanish at ∞. But since each entry of ∇H is harmonic, we see that this
implies that ∇H ≡ 0.

Now we have

P =
(
I −∇24−1

)
· . (3.1)

It is easy to check the commutativity properties.

This operator P is often referred to as the Leray projection operator.
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3.1.3 The Aubin-Lions Lemma

For evolution PDEs, generally one can not treat time and space as equal,
so one need compactness results that has different requirement in space
and time. A standard result is the Aubin-Lions lemma.

First we prove a technical lemma. Let X ↪→ Y ↪→ Z be Banach
spaces that have embedding relations as indicated. Recall that X ↪→ Y
is compact means that for any {fn} that is uniformly bounded in X ,
there is a subsequence that is convergent in the norm of Y .

Lemma 3.5. Assume that X ↪→ Y is compact. then for every η > 0
there exists a constant Cη > 0 such that

‖v‖Y ≤ η ‖v‖X + Cη ‖v‖Z

for every v ∈ X.

Proof. The proof is standard. We prove by contradiction. Assume there
is a η > 0 and a sequence {vn} ⊂ X such that

‖vn‖Y > η ‖vn‖X + n ‖vn‖Z ,

then by taking wn ≡ vn/ ‖vn‖X we see that the same inequality holds
for wn. Now wn is bounded in X , which means there is a subsequence,
still denote as wn, such that

wn → w ∈ Y

in Y . Note that ‖wn‖Y ≤ C‖wn‖X ≤ C by the embedding assumption
and the fact that ‖wn‖X = 1. Now divide both sides of the equation for
wn by n, we have

wn → 0 in Z.

But on the other hand, we have

wn → w 6= 0

in Y and thus we have a contradiction, since the embedding, convergence
in Y to some limit implies convergence in Z to the same limit.

Lemma 3.6. ( Aubin-Lions ). Suppose that X ↪→ Y is compact. Let
T > 0. Let {un} be a bounded sequence in L∞ ([0, T ] ;X). Suppose this
sequence is equicontinuous as Z-valued functions defined on [0, T ]. Then
the same sequence is precompact in C ([0, T ] ;Y ).

Proof. First, it follows directly from Lemma 3.5 that each un is in
C ([0, T ] ;Y ). Second, by the conditions in the Lemma we see that we
can use the Arzela-Ascoli lemma on C ([0, T ] ;Z) and see that un is pre-
compact in it. Finally, still by Lemma 3.5 we see that un is precompact
in C ([0, T ] , Y ).
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Remark 3.7. A comparison with the Arzela-Ascoli lemma in analysis is
helpful. There we basically have a sequence that is uniformly bounded
and equicontinuous in C ([0, T ] , Y ) for some Y . Here the boundedness
condition, which is usually easier to establish, is strengthened, while the
harder condition equicontinuity is weakened.

3.1.4 Calculus Inequalities

Let u and v be in Hm(Rd) with m ∈ N.

Lemma 3.8. -

1. If u and v are bounded and continuous then there exists a constant
C > 0 such that

‖uv‖Hm ≤ C (‖u‖L∞ ‖Dmv‖L2 + ‖v‖L∞ ‖Dmu‖L2) .

2. If u, v and ∇u are bounded and continuous then there exists a con-
stant C > 0 such that
∑

0≤|α|≤m

‖Dα (uv) − uDαv‖L2 ≤ C
(
‖∇u‖L∞

∥∥Dm−1v
∥∥

L2
+ ‖v‖L∞ ‖Dmu‖L2

)
.

Proof. First we prove 1. It is enough to prove that
∥∥DαuDβv

∥∥
L2

≤ C (‖u‖L∞ ‖Dmv‖L2 + ‖v‖L∞ ‖Dmu‖L2)

where in the RHS (right hand side) we actually define

‖Dmv‖2
L2 =

∑

|α|=m

‖Dαv‖2
L2 ,

while in the LHS (left hand side) α, β are multi-indices with |α|+|β| = m.
We illustrate the idea of the proof by considering the scalar case. We

estimate

‖u′v′‖L2 =

(∫
(u′v′)

2
dx

)1/2

where α = β = 1 and m = 2. By Hölder’s inequality, we have

‖u′v′‖L2 ≤ ‖u′‖L4 ‖v′‖L4 .

Next we establish the Gagliardo-Nirenberg inequality

∥∥Diu
∥∥

L2r/i ≤ cr ‖u‖1−i/r
L∞ ‖Dru‖i/r

0

with 0 ≤ i ≤ r. In our case, i = 1, r = 2, the Gagliardo-Nirenberg
inequality reduces to

‖u′‖L4 ≤ c ‖u‖1/2
L∞ ‖u′′‖1/2

0 . (3.2)



18 Thomas Y. Hou, Xinwei Yu

The proof is easy. We have

‖u′‖4
L4 =

∫
(u′)

4
dx

=

∫
(u′)

3
du

≤ c

∣∣∣∣
∫
u (u′)

2
u′′ dx

∣∣∣∣

≤ c

∣∣∣∣
∫
u2 (u′′)

2
dx

∣∣∣∣
1/2 ∣∣∣∣

∫
(u′)

4
dx

∣∣∣∣
1/2

≤ c ‖u‖L∞ ‖u′′‖L2 ‖u′‖2
L4 .

which proves (3.2).
Now we have

‖u′v′‖L2 ≤ c ‖u‖1/2
L∞ ‖u′′‖1/2

L2 ‖v‖1/2
L∞ ‖v′′‖1/2

L2 .

By using Young’s inequality

ab ≤ ap

p
+
bq

q

where p, q > 0 with 1
p + 1

q = 1 we finish the proof.
The general cases of 1 and 2 are left as exercises.

3.1.5 Gronwall’s inequality

In dealing with evolution equations, we need to estimate various quan-
tities. In doing so we often end up with inequalities like

X(t) ≤ a(t) +

∫ t

0

b(s)X(s) ds

whereX(t) is the non-negative quantity we need to estimate, and a(t), b(t) ≥
0 with a(t) differentiable. The trick in getting an estimate for X is the
following. We also assume that everything is continuous.

Fix ε > 0, let Y ε(t) satisfy

Y ε(t) = a(t) + ε+

∫ t

0

b(s)Y ε(s) ds,

then it is easy to see that Y ε(t) is differentiable, and satisfies

(Y ε)′ (t) = a′(t) + b(t)Y ε(t)

Y ε(0) = a(0) + ε
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which gives

Y ε(t) = (a(0) + ε) e
� t
0

b(s) ds +

∫ t

0

a′(s)e
� t

s
b(τ) dτ ds.

Now by arbitrariness of ε we get what we need, as long as we have

X(t) ≤ Y ε(t)

for any ε > 0. To show this, consider W ≡ Y ε −X , which satisfies

W (t) ≥ ε+

∫ t

0

b(s)W (s) ds

W (0) = ε > 0.

By the continuity of W and the condition b(s) ≥ 0 it is easy to see that
W (t) ≥ ε for all t > 0. Thus we proved the following lemma.

Lemma 3.9. ( Grönwall’s lemma. ) If X(t), a(t), b(t) ≥ 0 are continu-
ous, a(t) differentiable, with

X(t) ≤ a(t) +

∫ t

0

b(s)X(s) ds,

then we can estimate X(t) by

X(t) ≤ a(0)e
�

t
0

b(s) ds +

∫ t

0

a′(s)e
�

t
s

b(τ) dτ ds.

3.2 Properties of mollifiers

Definition 3.10. Let ρ ∈ C∞
0 (Rd) be any radial function, i.e., ρ(x)

depends only on |x|. We choose ρ ≥ 0 with
∫

Rd ρ dx = 1. For any ε > 0,
define

ρε(x) = ε−dρ(x/ε).

Then we call the family {ρε} a family of mollifiers.
In the following, we will denote

M εf = (ρε ∗ f) (x).

for any function f .

Next we develop some main properties of the mollification operator
M ε.

Lemma 3.11. . For any function f such that M εf is well-defined, we
have
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1. M εf is smooth, i.e., C∞.

2. For all f ∈ C0(Rd), we have M εf → f uniformly on any compact
set Ω, and

‖M εf‖L∞ ≤ ‖f‖L∞ .

3. M εDα = DαM ε for any multi-index α.

4. For all f ∈ Lp, g ∈ Lq with 1/p+ 1/q = 1,

∫

Rd

(M εf) g dx =

∫

Rd

f (M εg) dx.

5. For all f ∈ Hs(Rd), M εf converges to f in Hs and the rate of
convergence in the Hs−1 norm is O(ε).

6. For all f ∈ Hs(Rd), k ∈ Z+ ∪ {0}, and ε > 0, we have

‖M εf‖s+k ≤ csk

εk
‖f‖s ,

∥∥M εDkf
∥∥

L∞ ≤ ck
εd/2+k

‖f‖L2 .

Proof. 1–4 are easy and omitted. Interested readers can try to prove
them or check Bertozzi-Majda [35]. To prove 5 and 6, it is important to
know the representation of M ε in the Fourier space:

M̂ εf(ξ) = ρ̂(εξ)f(ξ).

Note that by construction

ρ̂(0) =

∫
ρ dx = 1.

As ε→ 0, for any ξ, we have

ρ̂(εξ) ∼ 1 +O(ε).

It is clear now that why we can expect M εf → f at all.
Another key factor in proving 5 and 6 is the Fourier side characteri-

zation of Hs(Rd). Recall that

∣∣∣∇̂f(ξ)
∣∣∣ = c |ξ|

∣∣∣f̂(ξ)
∣∣∣

where c depends on the definition of Fourier transforms, e.g., if we define

f̂(ξ) =

∫
e−iξ·xf(x) dx
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then c = 1. The particular value of c is not important here. In the
following, we will just take c = 1. Now f ∈ Hs is equivalent to

〈ξ〉s f̂(ξ) ∈ L2

where 〈ξ〉 ≡
(
1 + |ξ|2

)1/2

.

With the above understanding, 5 and 6 are easy to prove. For ex-
ample, we prove the second estimate in 6. For any multi-index α with
|α| = k, we have

|(M εDαf) (x)| = c

∣∣∣∣
∫
eiξ·xρ̂(εξ)ξαf̂(ξ) dξ

∣∣∣∣

≤ c

∫

Rd

|ρ̂(εξ)| |ξ|k
∣∣∣f̂(ξ)

∣∣∣ dξ

. ‖f‖L2

(∫

Rd

|ρ̂(εξ)|2 |ξ|2k
dξ

)1/2

= ‖f‖L2

(∫

Rd

|ρ̂(η)|2 |η|2k
dη

)1/2

ε−k−d/2

. ε−k−d/2 ‖f‖L2

where η ≡ εξ and note that the integration is over Rd, thus the factor
ε−d/2. The integral on ρ̂ is bounded since ρ ∈ C∞

0 ⊂ Hk is a fixed
function.

The other inequalities in 5 and 6 can be proved similarly and are left
to the readers.

3.3 Global existence of the mollified equation

We consider the mollified equations:

∂tu
ε +M ε (((M εuε) · ∇) (M εuε)) = −∇pε

∇ · uε = 0

uε(x, 0) = u0(x). (3.3)

or, by using the Leray projection operator,

∂tu
ε + P (M ε (((M εuε) · ∇) (M εuε))) = 0,

Puε = uε,

uε(x, 0) = u0(x). (3.4)

where uε denotes the solution and is not necessarily of the form M εv for
some v. We will prove the global existence ( i.e., for all time t ∈ R+) of
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the mollified 3D Euler equations. Our strategy is to prove local existence
by treating (3.4) as an ODE in some Banach space, and then extend the
existence time to ∞. In the following of this section, we will omit the
superscipt ε and denote uε by u.

Lemma 3.12. Let m ∈ N. Then for every u0 ∈ V m and ε > 0 there
exists T ε > 0 and a solution uε ∈ C1 ([0, T ε) ;V m) to the problem (3.4),
or equivalently, (3.3).

Proof. Let

Fε(u) = −P (M ε (((M εu) · ∇) (M εu))) .

Then (3.4) becomes
duε

dt
= Fε(u

ε).

which is an ODE in a Banach space. The only thing we need to check
before applying the Picard iteration to get local in time existence is that

1. Fε : Vm 7→ Vm, and

2. Fε is locally Lipschitz in V m.

For the first claim, we have the following estimate:

‖Fε(u)‖Hm ≤ ‖M ε (((M εu) · ∇) (M εu))‖Hm

≤ C ‖M ε (∇ · (M εu⊗M εu))‖Hm

≤ C

ε
‖M εu⊗M εu‖Hm

≤ C

ε3/2
‖u‖2

Hm

where we have used the calculus inequalities (see Lemma 2.1.8) and
the following properties of the mollifiers: ‖M εDf‖Hm ≤ C ‖f‖Hm /ε ,
‖M εu‖L∞ ≤ C ‖u‖Hm /εd/2, which follows from Lemma 2.1.11(6).

Next we show that Fε is Lipschitz. Let v1 and v2 belong to V m, then

‖Fε(v1) − Fε(v2)‖Hm ≤ C

ε
(‖M εv1 ⊗M ε (v1 − v2)‖Hm + ‖M εv2 ⊗M ε (v1 − v2)‖Hm)

by adding and subtracting M ε (((M εv1) · ∇) (M εv2)). By using the cal-
culus inequality again (Lemma 2.1.8), we can bound the RHS by

C

ε3/2
(‖v1‖Hm + ‖v2‖Hm ) ‖v1 − v2‖Hm ≤ Cε ‖v1 − v2‖Hm

since ‖vi‖Hm (i=1,2) is bounded and ε is finite. This proves the local
Lipschitz condition of Fε.
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To extend the existence time to infinity we need to show that the
Lipschitz constant

C

ε3/2
(‖v1‖Hm + ‖v2‖Hm)

depends only on ε and initial conditions. We only need to show that for
any solution u, ‖u‖Hm is bounded by the Hm norm of the initial value
u0.

First, by integration by parts, it is easy to see that

‖u‖L2 ≤ ‖u0‖L2 .

The remaining is done by the following lemma:

Lemma 3.13. Let m ∈ N and u ∈ C1 ([0, T ) ;V m) be a solution of the
mollified 3D Euler equations (3.4). Then

‖u‖Hm ≤ ‖u0‖Hm eC
� t
0
‖∇Mεu‖L∞ dt

Proof. Let α be a multi-index, with |α| ≤ m. Applying Dα to both sides
of (3.3), multiplying them by Dαu and integrate, we have

1

2

d

dt

∫
|Dαu|2 dx = −

∫
Dαu · (M εDα (((M εu) · ∇) (M εu)))

= −
∫
DαM εu ·Dα (((M εu) · ∇) (M εu)) dx

= −
∫
DαM εu ·Dα (((M εu) · ∇) (M εu))

+

∫
DαM εu · (((M εu) · ∇)DαM εu) dx,

where the term involving the pressure vanishes after integrated by parts
due to the incompressibility condition, and the last equality comes from
the following argument:
∫
DαM εu·(((M εu) · ∇)DαM εu) dx =

1

2

∫
(M εu)·∇

(
|DαM εu|2

)
dx = 0

via integration by parts due to the incompressibility condition.
Now we sum over all 0 ≤ |α| ≤ m. Using the calculus inequality, we

have

d

dt
‖u‖2

Hm ≤ C ‖u‖Hm

∑

|α|≤m

‖Dα (((M εu) · ∇) (M εu)) − ((M εu) · ∇)DαM εu‖L2

≤ C ‖u‖Hm

(
‖∇M εu‖L∞

∥∥Dm−1DM εu
∥∥

L2
+ ‖DmM εu‖L2 ‖∇M εu‖L∞

)

≤ C ‖∇M εu‖L∞ ‖u‖2
Hm .

To finish the proof, we just need to apply the standard Gronwall’s in-
equality from Lemma 3.9.
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3.4 Local existence of the Euler equations

Now we are ready to give the local existence theorem.

Theorem 3.14. Let u0 ∈ V m for m ≥ 4. There exists T0 = T0 (‖u0‖Hm) >
0 such that for any T < T0, there exists a unique solution u ∈ C1 ([0, T ] ;V m)
of the 3D incompressible Euler equations with u0 as initial data.

Proof. By Lemma 3.13 we have

d

dt
‖uε‖2

Hm ≤ C ‖∇M εuε‖L∞ ‖uε‖2
Hm

Note that m ≥ 4 > 3/2 + 1, by Theorem 3.3, Hm is embedded into C1,
which means ‖∇M εuε‖L∞ ≤ ‖M εuε‖C1 . ‖M εuε‖Hm ≤ ‖uε‖Hm . Thus
we have

d

dt
‖uε‖Hm ≤ C ‖uε‖2

Hm

and the constant C here is independent of ε. Therefore we see that our
uε is uniformly bounded in L∞ ([0, T ] ;Hm) by

‖u0‖Hm

1 − CT ‖u0‖Hm

.

for any T < T0 ≡ (C ‖u0‖Hm)−1. To apply the Lions-Aubin lemma we
need to show that uε is Lipschitz in t in some larger space, which we
take to be Hm−1. In fact we have

‖∂tu‖Hm−1 = ‖Fε(u
ε)‖Hm−1

≤ C ‖∇ · (M εuε ⊗M εuε)‖Hm−1

≤ C ‖M εuε ⊗M εuε‖Hm

≤ C ‖M εuε‖L∞ ‖uε‖Hm

≤ C ‖uε‖2
Hm ,

where we have used the calculus inequality (Lemma 2.1.8) and the Sobolev
embedding theorem. Thus we see that uε is Lipschitz in t wrt Hm−1-
norm.

We fix Rk > 0 and use Lemma 3.6 ( The reason we need this step
is that we need Hm ↪→ Hm−1 to be compact, which won’t hold for
unbounded regions, as can be seen by taking X = H1(R), Y = L2(R)
and fn(x) = f(x − n) for some f ∈ H1. Obviously {fn} is bounded
in X but not convergent in Y . ) with X = Hm(B(0, Rk)), Y =
Z = Hm−1(B(0, Rk)). Taking Rk → ∞ and using a diagonal argu-
ment we see that uε has a subsequence, which we do not relabel, that
is strongly convergent in C

(
[0, T ] ;Hm−1

loc (R3)
)
. Denote the limit by u.
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Moreover, since m ≥ 4 > 3/2+2, we see that the convergence also holds
in C

(
[0, T ] ;C1

loc(R
3)
)
.

We rewrite the equation as

uε = u0 +

∫ t

0

F ε(uε) ds.

It is easy to see that

u = u0 +

∫ t

0

F (u) ds

where F (u) ≡ P (u · ∇u). Thus we have further that

u ∈ C1
(
[0, T ] ;C1

loc(R
3)
)

which implies that we can legitimately differentiate with respect to t.
Now taking d/dt on both side, we see that u satisfies

ut + P (u · ∇u) = 0

∇ · u = 0

u(·, 0) = u0

|u| → 0 as |x| → ∞.

The final step for existence is to recover the pressure. This follows
directly from the Leray decomposition.

Now we show the uniqueness. Suppose that there are two solutions
u1 and u2, then we immediately have

(u1 − u2)t + P (u1 · ∇u1 − u2 · ∇u2) = 0

with u1 − u2 = 0 at t = 0. Multiply to u1 − u2 and integrate, we can
easily derive

d

dt
‖u1 − u2‖2

L2 ≤ C(‖u1‖Hm + ‖u2‖Hm) ‖u1 − u2‖2
L2

by the calculus inequalities. Then by using Gronwall’s inequality, we
see that the only solution is u1 − u2 ≡ 0. Thus ends the proof for
uniqueness.

4 The BKM Blow-up Criterion

4.1 The Beale-Kato-Majda Criterion

One of the important points that should be noted is that the above
existence result is local in time, meaning that the solution may cease to
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be in Hm (also known as (aka) blow-up ) in some finite time. Thus it
is important to have some quantities to indicate such a blow-up. One of
them is the quantity ∫ T

0

‖ω(·, s)‖L∞ ds

proposed by T. Beale, T. Kato and A. Majda.
By the same method used in the last section, we can have the follow-

ing bound:

‖u(·, t)‖Hm ≤ Cec
�

t
0
‖∇u‖L∞ ds ‖u0‖Hm .

So it is clear that as long as ‖∇u‖L∞ is uniformly bounded in some time
interval (0, T ), then the solution exists upto T . In fact this is what Ebin,
Fischer and Marsden proved in their 1972 paper [23]. Thus the key is to
bound ‖∇u‖L∞ by ‖ω‖L∞ at the same time t. Recall the 3D Biot-Savart
law

u(x) =

∫
K(x− y)ω(y) dy

where K(z) is the matrix kernel

K(z) =
1

|z|3




0 −z3 z2
z3 0 −z1
−z2 z1 0


 .

If we differentiate under the integration formally, we would have

∇u(x) =

∫
∇K(x− y)ω(y) dy. (4.1)

The operator ∇K∗ in fact has nice properties. To see this, we recall
a theorem from Stein [44], which is also called the Calderon-Zygmund
Lemma.

Theorem 4.1. Let K ∈ L2(Rd). We suppose:

1. The Fourier transform of K is essentially bounded

∣∣∣K̂(x)
∣∣∣ ≤ B.

2. K is C1 outside the origin and

|∇K(x)| ≤ B/ |x|d+1
.

For f ∈ L1 ∩ Lp, let us set

(Tf)(x) =

∫

Rd

K(x− y)f(y) dy.
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Then there exists a constant Ap, so that

‖T (f)‖p ≤ Ap ‖f‖p , 1 < p <∞.

One can thus extend T to all of Lp by continuity. The constant Ap

depends only on p,B, and the dimension n. In particular, it does not
depend on the L2 norm of K.

The remark following the theorem in Stein [44] claims that the as-
sumption K ∈ L2 can be safely dropped in practice.

Now it is easy to check that our kernel ∇K satisfies the conditions in
the theorem, thus the Lp norm of ∇u is thus bounded by the Lp-norm of
ω. But here what we need is a L∞ bound. The key lies in the following
lemma. It will also become clear that the formal differentiation in (4.1)
is “almost legitimate”.

Lemma 4.2. Let u and ω be related with the Biot-Savart law, and u ∈
H3(R3), then

‖∇u‖L∞ ≤ C
(
1 + ln+ ‖u‖H3 + ln+ ‖ω‖L2

)
(1 + ‖ω‖L∞) . (4.2)

Proof. By the Biot-Savart law, u = K ∗ ω, where K is a matrix-valued

singular kernel, homogeneous of degree −2, behaves like O
(
|x|−2

)
at

∞. Since u ∈ H3(R3), we have ω ∈ H2(R3) and thus in C0,γ(R3) for
some 0 < γ < 1 by the Sobolev embedding theorems. Now we compute
∇u.

∂xju(x) =

∫

R3

K(y)∂xjω(x− y) dy

= −
∫

R3

K(y)∂yjω(x− y) dy

= − lim
δ→0

∫

|y|≥δ

K(y)∂yjω(x− y) dy

= lim
δ→0

(∫

|y|≥δ

∂yjK(y)ω(x− y) dy −
∫

|y|=δ

K(y)ω(x− y)
−yj

δ
dy

)

= pv

∫

R3

∂yjK(y)ω(x− y) dy + lim
δ→0

∫

|z|=1

K(z)ω(x− δz)zj dz

= pv

∫

R3

∂yjK(y)ω(x− y) dy + Cj · ω(x)

where Cj =
∫
|z|=1

K(z)zj dz is a matrix. Here pf
∫
fdx stands for

principle value integral. Note that we can also write Cj · ω as cj × ω for
some cj defined as

∫
|z|=1

z
|z|3

zj dz. The above computation shows that,

for our purpose, it is enough to estimate the formal ∇u as given in (4.1).
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Now to estimate ‖∇u‖L∞ by ω, we only need to bound the principal
value integral

pv

∫
∇K(y)ω(x− y) dy.

Note that for any a < b, we have the important cancellation property
∫

a≤|y|≤b

∇K(y) dy = 0.

Fix x ∈ R3 and 0 < δ < ε ≤ R <∞, we have
∣∣∣∣∣

∫

|y|≥δ

∇K(y)ω(x− y) dy

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

δ≤|y|≤ε

∇K(y) (ω(x− y) − ω(x)) dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

ε≤|y|≤R

∇K(y)ω(x− y) dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

|y|≥R

∇K(y)ω(x− y) dy

∣∣∣∣∣

≤ C ‖ω‖C0,γ

∫

δ≤|y|≤ε

|y|γ−3
dy

+ C ‖ω‖L∞

∫

ε≤|y|≤R

|y|−3 dy

+ C ‖ω‖L2

(∫

|y|≥R

|y|−6
dy

)1/2

≤ C ‖u‖H3 ε
γ + C ‖ω‖L∞ ln (R/ε) + CR−3/2 ‖ω‖L2

Finally, taking R3/2 = ‖ω‖L2 , and ε = 1 if ‖u‖H3 ≤ 1 and (‖u‖H3)
−1/γ

otherwise, we get the desired estimate.

The main result is almost straightforward now.

Theorem 4.3. ( Beale, Kato, Majda 1984). Let u0 ∈ V m with m ≥ 4.
Let u ∈ C1 ([0, T );Vm) be a solution of the 3D incompressible Euler
equations (2.7) with initial data u0. Let ω = ∇ × u be the associated
vorticity. Then T is the maximum time for u to be in the above function
class if and only if ∫ T

0

‖ω‖L∞ dt = ∞.

Proof. The “if” part is obvious. Since
∫ T

0 ‖ω‖L∞ = ∞, necessarily
‖ω‖L∞ → ∞ at t → T . Then ‖u‖W 1,∞ → ∞ as t → T and u can
not be in V m for m ≥ 4 by the embedding theorems.
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Now we deal with the “only if” part. First, as we have shown at the
beginning of this subsection,

‖u‖Hm ≤ Cec
�

T
0

‖∇u‖L∞ dt ‖u0‖Hm .

Furthermore, by applying the same method to the vorticity equation, we
can easily derive

‖ω‖L2 ≤ ‖ω0‖eC
� t
0
‖∇u‖L∞ ds.

Substituting the above two inequalities into (4.2) in Lemma 4.2 gives

‖∇u‖L∞ ≤ C

(
1 + (1 + ‖ω‖L∞)

∫ T

0

‖∇u‖L∞ dt

)

From this we have the estimate

‖∇u‖L∞ ≤ ‖∇u0‖L∞ eC
�T
0
‖ω‖L∞ dt

by the Grönwall’s lemma 3.9. Thus ends the proof.

Remark 4.4. An immediate result of applying the Beale-Kato-Majda
criterion is this. There is no finite-time blow-up in 2D Euler equations.

4.2 Improvements of the BKM Criterion

During the more than 20 years following the BKM criterion, there are
several improvements ([7, 8, 9, 42, 43], to name a few). In particular, in

Chae [9], the condition of
∫ T

0
‖ω‖∞dt = ∞ is sharpened to

∫ T

0

‖ω̃(t)‖2
Ḃ0

∞,1
dt = ∞.

where for any fixed orthonormal frame (e1, e2, e3),

ω̃ = ω1e1 + ω2e2

is the projection of the vorticity in the plane of e1−e2. The Besov space
Ḃ0

∞,1 is defined as f such that

∑

j∈Z

‖ϕj ∗ f‖L∞ <∞,

where the Schwarz function ϕ ∈ S satisfying

1. Suppϕ̂ ⊂
{
ξ ∈ Rd | 1

2 ≤ |ξ| ≤ 2
}
, (note this is why we can’t take

ϕ ∈ C∞
0 ).
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2. ϕ̂(ξ) ≥ C > 0 if 2
3 < |ξ| < 3

2 .

3.
∑

j∈Z
ϕ̂j(ξ) = 1 where ϕ̂j = ϕ̂(2−jξ).

We present the main idea of the proof here. The key to the proof is to
bound the growth of ω3 ≡ ω · e3 by ω̃ = ω1e1 + ω2e2.

Recall that the evolution of ω satisfies

ωt + u · ∇ω = S · ω

where S = 1
2 (∇u + ∇ut). Dot product with e3, we have

D
(
ω3
)

Dt
= ω · S · e3.

Now we estimate the right hand side. We have ( since this estimate is
independent of time, we omit t )

ω · S · e3 =
1

4π
pv

∫
ω(x) × ω(x+ y)

|y|3
· e3 − 3

y × ω(x+ y)

|y|5
· e3 (y · ω(x)) dy

=
1

4π
pv

∫ {
ω̃(x) × ω̃(x+ y)

|y|3
· e3

−3
y × ω̃(x+ y)

|y|5
· e3y3ω3(x)

− 3
y × ω̃(x+ y)

|y|5
· e3 (y · ω̃(x))

}
dy

= ω̃ · P(ω̃) · e3 + ω3e3 · P(ω̃) · e3.

where P is the matrix valued singular integral operator defined by

P(ω) = S =
1

2

(
∇u+ ∇ut

)

for ω and u related by the Biot-Savart law. This operator P is known
to be bounded on Ḃ0

∞,1. This combined with the fact that Ḃ0
∞,1 ↪→ L∞

yields

‖ω · S · e3‖L∞ .
∥∥ω3

∥∥
L∞ ‖P(ω̃)‖L∞ + ‖ω̃‖L∞ ‖P(ω̃)‖L∞

≤
∥∥ω3

∥∥
L∞ ‖P(ω̃)‖Ḃ0

∞,1
+ ‖ω̃‖L∞ ‖P(ω̃)‖Ḃ0

∞,1

.
∥∥ω3

∥∥
L∞ ‖ω̃‖Ḃ0

∞,1
+ ‖ω̃‖2

Ḃ0

∞,1
.

Then it is easy to get

∥∥ω3
∥∥

L∞ ≤
(∥∥ω3

0

∥∥
L∞ +

∫ t

0

‖ω̃‖2
Ḃ0

∞,1
ds

)
exp

(
C

∫ t

0

‖ω̃(s)‖Ḃ0

∞,1
ds

)
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by integrating the equation for ω3 along one particle trajectory X(α, t),
and then applying the Grönwall’s lemma.

Finally, using the Cauchy-Schwarz inequality, and the embedding
Ḃ0

∞,1 ↪→ L∞ again, we have

∫ T

0

‖ω‖L∞ dt ≤
∫ T

0

‖ω̃‖L∞ dt+

∫ T

0

∥∥ω3
∥∥

L∞ dt

≤
√
TAT +

[∥∥ω3
0

∥∥
L∞ + CA2

T

]
T exp

(
C
√
TAT

)

where AT ≡
(∫ T

0 ‖ω̃‖2
Ḃ2

∞,1
dt
)1/2

. Thus ends the proof for the necessity

part. The sufficient part is trivial from the embedding Hm ↪→ Ḃ0
∞,1 for

m > 5/2.
This result is sharper than the BKM criterion, but its disadvantage

is that it is not as applicable to numerical simulations as the BKM one.
For example, it is not always as easy to measure the Besov norm as the
L∞ norm accurately in numerical computations.

5 Recent Global Existence Results

In this chapter we review some recent results which are in the same line
with the BKM criterion. Due to the limited scope of this lecture note,
we will not be able to cover all relevant results in this area, even for
those results that are related to the Beale-Kato-Majda criterion.

5.1 Sufficient Conditions by Constantin-Fefferman-
Majda

In 1996, Constantin-Fefferman-Majda [14] proposed an non-blow-up con-
dition based on the BKM criterion. To understand the main idea, we

recall the BKM criterion: If
∫ T

0
‖ω(·, t)‖L∞ dt <∞, then no blow-up can

happen in [0, T ]. This implies that one should investigate the vorticity
magnitude |ω(x, t)|.

The first step would naturally be deriving the evolution equation for
this quantity. This equation is derived in Constantin [13]. It is

D

Dt
|ω| = α(x, t) |ω| . (5.1)

where

α(x, t) ≡ ξ(x, t) · ∇u(x, t) · ξ(x, t)
= ξ(x, t) · S(x, t) · ξ(x, t)
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where S(x, t) is the symmetric part of ∇u and ξ(x, t) = ω(x,t)
|ω(x,t)| is the

direction of ω(x, t).

Remark 5.1. Note that ξ is well defined only for those points where
ω(x, t) 6= 0. For those points where ω(x, t) = 0, ω(x, t) will always be 0
as long as the flow is not singular, along the trajectory path of the same
point, forward and backward in time. This can be seen from the formula

ω(X(α, t), t) = ∇αX · ω(α, 0).

and the fact that ∇αX is non-singular as long as the flow is not singular.
So at those points where vorticity vanishes, one can reasonably define
α(x, t) = 0.

(5.1) can be derived by applying the inner product of the vorticity
equation (2.8) with ξ, and using the fact that ∂xjξ · ξ = 0 since ξ · ξ = 1.
The proof is left as an exercise.

Next we recall that

∇u = pv

∫

R3

∇K(x− y)ω(y) dy + Cω(x).

where C is a third order tensor C = [C1, C2, . . . , Cd] where Cj =
∫
|z|=1

K(z)zj dz

as defined in the proof to Lemma 4.2. Note that, since Cjω = cj ×ω for
some cj ≡

∫
|z|=1

z
|z|3

zj dz,

ξ · (Cω) · ξ = 0.

Now it is easy to get

α(x, t) =
3

4π
pv

∫

R3

(ŷ · ξ(x)) det(ŷ, ξ(x+ y), ξ(x)) |ω(x+ y)| dy
|y|3

. (5.2)

where ŷ = y/ |y| is the direction of y, and det(a, b, c) is the determinant
of the matrix with columns a, b, c in that order. The constant 3

4π will
have no effect in the following argument, and will thus be neglected from
now on.

The main idea of Constantin-Fefferman-Majda’s argument comes
from the following observation. Consider the 2D Euler equations. We
know that no blow-up can ever occur. Put into the framework of (5.1)
and (5.2), we see that the reason can be interpreted as the fact that for
2D flows, ξ(x+ y) = ξ(x) = e3 for all x and y, which means α(x, t) ≡ 0.
This implies that, if the orientation of the vorticity vectors varies only
mildly, there would be no blow-up. Thus comes the following theorem.
First we give some definitions.
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Definition 5.2. ( Smoothly directed ). We say a set W0 is smoothly
directed if there exists ρ > 0 and r, 0 < r ≤ ρ

2 such that the following
three conditions are satisfied.

First, for every q ∈ W ∗
0 ≡ {q ∈ W0; |ω0(q)| 6= 0} and all time t ∈

[0, T ), the function ξ(·, t) has a Lipschitz extension ( denoted by the
same letter ) to the Euclidean ball of radius 4ρ centered at X(q, t),
denoted as B4ρ(X(q, t)), and

M = lim
t→T

sup
q∈W∗

0

∫ t

0

‖∇ξ(·, t)‖2
L∞(B4ρ(X(q,t))) dt <∞.

Secondly,
sup

B3r(Wt)

|ω(x, t)| ≤ m sup
Br(Wt)

|ω(x, t)|

holds for all t ∈ [0, T ) with m ≥ 0 constant. Here

Wt ≡ X(W0, t).

Thirdly, for all t ∈ [0, T ),

sup
B4ρ(Wt)

|u(x, t)| ≤ U.

Theorem 5.3. (Constantin-Fefferman-Majda 1996). Assume W0 is
smoothly directed. Then there exists τ > 0 and Γ such that

sup
Br(Wt)

|ω(x, t)| ≤ Γ sup
Bρ(Wt0 )

|ω(x, t0)|

holds for any 0 ≤ t0 < T and 0 ≤ t− t0 ≤ τ .

Noticing that, in (5.2), α(x, t) would also be zero when ξ(x + y) =
−ξ(x). This inspires the following pair of definition and theorem.

Definition 5.4. W0 is said to be regularly directed, if there exists ρ > 0
such that

sup
q∈W∗

0

∫ T

0

Kρ(X(q, t)) dt <∞

where

Kρ(x) =

∫

|y|≤ρ

(ŷ · ξ(x)) det(ŷ, ξ(x+ y), ξ(x)) |ω(x+ y)| dy
|y|3

.

Theorem 5.5. (Constantin-Fefferman-Majda 1996) Assume W0 regu-
larly directed. Then there exists a constant Γ such that

sup
q∈W0

|ω(X(q, t), t)| ≤ Γ sup
q∈W0

|ω0(q)|

holds for all t ∈ [0, T ].
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Remark 5.6. An easy corollary to either theorem is that, there will be
no blow-up up to time T .

The remaining of this subsection is devoted to the proof of Theorem
5.3. As will be seen during the proof, proving Theorem 5.5 is quite easy
and will thus be omitted.

We decompose
α(x) = αin(x) + αout(x)

where

αin(x) = pv

∫
χ

( |y|
ρ

)
(ŷ · ξ(x)) det(ŷ, ξ(x+ y), ξ(x)) |ω(x+ y)| dy

|y|3

and

αout(x) =

∫ (
1 − χ

( |y|
ρ

))
(ŷ·ξ(x)) det(ŷ, ξ(x+y), ξ(x)) |ω(x+ y)| dy

|y|3

with χ(r) being a smooth non-negative function satisfying χ(r) = 1
for r ≤ 1/2 and 0 for r ≥ 1. Then, recalling ω(x) = ∇ × u(x) and
ξ(x + y) |ω(x+ y)| = ω(x + y), we can do integration by parts in αout

and get

|αout(x)| . ρ−1

∫

|y|≥ρ/2

|u(x+ y)| dy
|y|3

.

Then by Cauchy-Schwarz and the conservation of
∫
|u|2 dx, we easily

reach
|αout(x)| . Cρ−5/2 ‖u0‖L2

which remains bounded.
To estimate αin, denote

Gρ(x) = sup
|y|≤ρ

|∇ξ(x + y)| .

Observe that det(ŷ, ξ(x+y), ξ(x)) = ŷ·(ξ(x+ y) × ξ(x)) = ŷ·((ξ(x+ y) − ξ(x)) × ξ(x))
which is bounded by Gρ(x) |y|. Thus we have

|αin(x)| ≤ Gρ(x)I(x)

with

I(x) ≡
∫
χ

( |y|
ρ

)
|ω(x+ y)| dy

|y|2
.

Next we split I = I1 + I2, where

I1(x) =

∫
χ

( |y|
δ

)
χ

( |y|
ρ

)
|ω(x+ y)| dy

|y|2
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and

I2(x) =

∫ [
1 − χ

( |y|
δ

)]
χ

( |y|
ρ

)
|ω(x+ y)| dy

|y|2

with δ ≤ ρ/2. Clearly we get

|I1(x)| ≤ CδΩδ

where
Ωδ(x) = sup

|y|≤δ

|ω(x+ y)|

by evaluating the integration through polar coordinates. To estimate I2,
we replace |ω(x+ y)| by ξ(x + y) · ω(x+ y) = ξ(x + y) · (∇× u(x+ y))
and invoke integration by parts, which gives

I2(x) =

∫
u(x+ y) ·

{
∇×

[
ξ(x+ y)

1

|y|2
χ

( |y|
ρ

)(
1 − χ

( |y|
δ

))]}
dy.

By putting ∇× on each of the four terms, we decompose I2 into four
terms as follows:

I2(x) = A+B +D + E.

It is easy to see that

|A| ≤ CGρ(x)

∫

|y|≤ρ

|u(x+ y)| dy
|y|2

,

|B| ≤ C

∫
|u(x+ y)|

[
1 − χ

( |y|
δ

)]
χ

( |y|
ρ

)
dy

|y|3
,

|D| ≤ C

ρ

∫

|y|≤ρ

|u(x+ y)| dy

|y|2

and

|E| ≤ C

δ

∫

δ
2
≤|y|≤δ

|u(x+ y)| dy
|y|2

.

If we denote
Uρ(x) = sup

|y|≤ρ

|u(x+ y)| ,

then we can easily estimate

|A| ≤ CρUρ(x)Gρ(x)

|D| , |E| ≤ CUρ(x)

and
|B| ≤ CUρ(x) log

(ρ
δ

)
.
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Putting them together, we have

|α(x)| ≤ Aρ(x)
[
1 + log

(ρ
δ

)]
+Gρ(x)δΩδ(x).

where

Aρ(x) = Cρ−5/2 ‖u0‖L2 + CGρ(x)Uρ(x)(1 + ρGρ(x)).

Studying what we have for a while, we see that if we can replace
Ωδ(x) by |ω(x)|, then by taking δ = |ω(x)|−1

, we will have

∫ T

0

|α| dt ≤
∫ T

0

Gρ(x)
2 dt <∞

by the smoothly directness of our setW0, since we have Uρ to be bounded
all the time. And this will effectively end the proof. So the final step
should be to relate Ωδ(x) with |ω(x)|, although the final proof doesn’t
go along the idea described above for technical reasons.

Consider a bunch of trajectories X(q, t) and a neighborhood

B4ρ ≡ {(x, t) : 0 ≤ t < T, ∃q ∈ W0, |X(q, t) − x| ≤ 4ρ} .

By the smoothly directness,

sup
(x,t)∈B4ρ

|u(x, t)| ≤ U <∞

and

M = lim
t→T

sup
q∈W∗

0

∫ t

0

G2
4ρ (X(q, s)) ds <∞.

Now define

Br(Wt) = {x; ∃q ∈W0, |x−X(q, t)| ≤ r}

with 2r ≤ ρ.
Let

τ =
r

4U

be a (possibly very short) time interval. Denote

wr(t) = sup
Br(Wt)

|ω(x, t)| .

By assumption
w3r(t) ≤ mwr(t).

Now consider x ∈ Br(Wt) for some t < T . The Lagrangian trajectory
passing through x at time t is denoted X(q′, t). Note that q′ may not be
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in W0. Nevertheless, if r ≤ ρ
2 and 0 ≤ t−s ≤ τ then X(q′, s) ∈ B2r(Ws),

i.e.,
|X(q, s) −X(q′, s)| ≤ 2r ≤ ρ

for some q ∈W0. Then it follows that

Gρ(X(q′, s)) ≤ G4ρ(X(q, s))

and

|α(X(q′, s))| ≤ A4ρ(X(q, s))
[
1 + log

ρ

δ

]
+G4ρ(X(q, s))δΩδ(X(q′, s)).

Denoting

A(s) = sup
q∈W∗

0

A4ρ(X(q, s))

G(s) = sup
q∈W∗

0

G4ρ(X(q, s)).

Then integrating (5.1) would give us

|ω(X(q′, t))| ≤ Ke
�

t
t0
{A(s)[1+log(ρ/δ)]+G(s)δΩδ(X(q′,s))} ds

.

where
K = wρ(t0).

Now we choose δ ≤ r, then X(q′, s) ∈ B2r(Ws) and by assumption

Ωδ(X(q′, s)) ≤ mwr(s),

which implies

wr(t) ≤ Ke
�

t
t0

{A(s)[1+log(ρ/δ)]+mδG(s)wr(s)} ds

for any 0 < δ ≤ r and 0 ≤ t− t0 ≤ τ .
To simplify, define

A = A(t, t0) =

∫ t

t0

A(s) ds

and

Q = Kρ

∫ T

0

G(s) ds.

Let

y(t) = max
t0≤s≤t

(
wr(s)

K

)
,

and
ρ

δ
= max

{
my(t)Q,

ρ

r

}
.
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Then we obtain

y(t) ≤
(ρ
δ

)A

e1+A.

Finally, we can choose τ such that

A(t, t0) ≤
1

2
.

This can be done since by assumption A is integrable. Now fix this τ ,
we have

y(t) ≤ max

{
me3Q;

ρ

mrQ

}
≡ Γ

and thus ends the proof.

5.2 Sufficient Conditions by Deng-Hou-Yu

The result by Constantin, Fefferman and Majda reveals the subtlety
between the smoothness of the vorticity direction field and the accumu-
lation rate of vorticity. But on the other hand, their theorems are not
quite applicable to various numerical simulations studying the blow-up
issue of the 3D Euler equations in recent years. The most interesting
ones among them are Kerr [26, 27, 28, 29] and Pelz [39, 40]. From their
observations the following seem to hold for flows that may be singular,
i.e., flows that seems to have the critical singular vorticity growth rate
(T−t)−1 for some T > 0 (Note: unforced flows that have higher vorticity
growth rate have never been observed):

1. Large vorticity, or more specifically, those |ω| ≥ c ‖ω‖L∞ , are con-
centrated in small regions of length O

(
(T − t)1/2

)
in the vorticity

direction and with cross-section area O
(
(T − t)2

)
. These regions

look like two vortex sheets with thickness O(T − t) meeting at an
angle.

2. The vorticity direction field ξ(x, t) looks more regular inside this
region than outside, where ξ(x, t) is wildly helical.

Checking these observations against Definition 5.2 and Theorem 5.3 (
Note that Definition 5.4 is obviously unverifiable with numerical quan-
tities, so we won’t consider Theorem 5.5. ), we see that the conditions
there are not satisfied. The main reason is that, according to numerical
simulations, the “smoothly directed” region can never have fixed size,
instead is always rapidly shrinking in all three directions. Thus there
is a gap between theoretical theorems and numerical observations and
leaving Theorem 5.3 unable to explain the numerical results.

In 2005, Deng, Hou and Yu [19] made a first step in filling this gap.
The key is to focus on one vortex line and study its local stretching
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behaviors. Before introducing the main result, we introduce some nota-
tions.

Denote by Ω(t) the maximum vorticity magnitude at time t. Let Lt

be a family of vortex line segments and L(t) be the length of Lt. Denote
Uξ(t) ≡ maxx,y∈Lt |(u · ξ) (x, t) − (u · ξ) (y, t)|, Un(t) ≡ maxLt |u · n|
where n is the normal of the curve Lt, i.e., ∂

∂sξ = (ξ · ∇) ξ ≡ κn where

κ is the curvature, and M(t) ≡ max
(
‖∇ · ξ‖L∞(Lt)

, ‖κ‖L∞(Lt)

)
. We

also define X(a, t1, t2) as follows:

dX(α, t1, t)

dt
= u(X(α, t1, t), t); X(α, t1, t1) = α.

It is related to the usual flow map X(q, t) as follows:

X(q, t2) = X(X(q, t1), t1, t2)

for any q, t1, t2.
Now the main theorem reads

Theorem 5.7. (Deng-Hou-Yu, 2005) Assume there is a family of vortex
line segments Lt and T0 ∈ [0, T ), such that X(Lt1 , t1, t2) ⊇ Lt2 for all
T0 < t1 < t2 < T . We also assume that Ω(t) is monotonically increasing
and ‖ω(t)‖L∞(Lt)

≥ c0Ω(t) for some c0 > 0 when t is sufficiently close
to T . Furthermore, we assume that

1. [Uξ(t) + Un(t)M(t)L(t)] . (T − t)−α for some α ∈ (0, 1),

2. M(t)L(t) ≤ C0, and

3. L(t) & (T − t)β for some β < 1 − α.

Then there will be no blow-up in the 3D incompressible Euler flow up to
time T .

Remark 5.8. Note that the conditions 1–3 are inspired by the numer-
ical observations. In Kerr’s computations, the velocity blows up like
O
(
(T − t)−1/2

)
, which gives alpha = 1/2. On the other hand, M(t) =

(T − t)−1/2. If we take L(t) = (T − t)1/2, then the second condition
is satisfied, but it would just violate the third condition. Thus Kerr’s
computations fall into the critical case of our theorem.

Remark 5.9. In a follow-up paper [21], Deng, Hou and Yu improved the
above result and obtained non-blowup conditions for the critical case β =
1− α. The new conditions depend on some fine relations among the as-
ymptotic behaviors of the rescaled quantities (T−t)α [Uξ(t) + Un(t)M(t)L(t)],
(T − t)α−1L(t) and the bound C0. In [25], Hou and Li repeated Kerr’s
computations using a pseudo-spectral method with resolution up to
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1536× 1024× 3072 up to T = 19, beyond the singularity time Tc = 18.7
predicted by Kerr. They found that there is a tremendous dynamic de-
pletion of the vortex stretching term. The velocity field is found to be
bounded, and the maximum vorticity does not grow faster than doubly
exponential in time. The fact that velocity is bounded allows us to ap-
ply the non-blowup conditions of [22], which provides further theoretical
evidence of the non-blowup of the Euler equations with Kerr’s initial
data.

We give a simple proof of the non-blowup result of Deng-Hou-Yu.
First we investigate the incompressibility condition of vorticity. ∇ ·

ω = 0. It is easy to see that

∂ |ω|
∂s

(x, t) = − (∇ · ξ(x, t)) |ω| (x, t).

where s is the arc length of the vortex line containing (x, t), so that
∂
∂s = ξ · ∇. This implies that for any two points x, y ∈ Lt, as long as

|
∫ y

x
∇ · ξds| ≤M(t)L(t) ≤ C, we have

e−M(t)L(t) ≤ |ω(y, t)|
|ω(x, t)| ≤ eM(t)L(t). (5.3)

Next we study the relation between vorticity magnitude and vortex
line stretching. Recall that

ω(X(α, t), t) = ∇αX(α, t) · ω0(α).

Multiplying both side by ξ(X(α, t), t) we have

|ω(X(α, t), t)| = ξ(X(α, t), t) · ∇αX(α, t) · ξ(α) |ω0(α)| .
Noticing

ξ(X(α, t), t) =
∂X

∂s
along the vortex line at time t, and similarly

ξ(α) =
∂α

∂β

where β is the arc length parameter at time 0. Substituting these rela-
tions in, we have

|ω(X(α, t), t)| =
∂X(α, t)

∂s
· ∇αX(α, t) · ∂α

∂β
|ω0(α)|

=
∂X

∂s
· ∂X
∂β

|ω0(α)|

=

(
∂X

∂s
· ∂X
∂s

)
∂s

∂β
|ω0(α)|

=
∂s

∂β
|ω0(α)|
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since ∂X
∂s = ξ is a unit vector. It is easy to generalize the above result to

prove that
∂s

∂β
(X(α, t1, t), t) =

|ω(X(α, t1, t), t)|
|ω(α, t1)|

.

Now we have the relations between any two points on Lt, and be-
tween vortex line stretching and growth of vorticity magnitude. A third
ingredient is the evolution equation of sβ . It is easy to see that sβ is
governed by the same equation as |ω| in (5.1).

D

Dt
sβ = ξ · ∇u · ξ sβ

= [(ξ · ∇)(u · ξ) − u · (ξ · ∇)ξ] sβ

= (u · ξ)β − κ (u · n) sβ ,

where we have used ξ · ∇ξ = ∂sξ = κn by the Frènet relationship.
Integrating it along Lt and in time, we easily get the estimate

l(t2) ≤ l(t1) +

∫ t2

t1

Uξ dτ +

∫ t2

t1

M(τ)Un(τ)l(τ) dτ

where lt is a segment of Lt such that lt2 = X(lt1 , t1, t2), and l(t) is the
arclength of lt.

Next we will show how l(t2)/l(t1) is related to the vorticity growth.

e−(M(t)l(t)+M(t1)l(t1)) |ω(X(α′, t1, t), t)|
|ω(α′, t1)|

≤ l(t)

l(t1)
≤ e(M(t)l(t)+M(t1)l(t1)) |ω(X(α′, t1, t), t)|

|ω(α′, t1)|
.

(5.4)
The proof of (5.4) is not difficult. Let β denote the arc length parameter
at time t1. Denote by lt the vortex line segment from 0 to β, and use s
as the arc length parameter at time t. Now by the mean value theorem,
we have (β is the arclength variable at t1)

l(t)

l(t1)
=

∫ β

0 sβ(η) dη

β
= sβ(η′) =

|ω(X(α′′, t1, t), t)|
|ω(α′′, t1)|

,

for some α′′ on the same vortex line. Now the inequality (5.4) follows
from (5.3).

Now putting the three ingredients together, we get an estimate for
the vorticity magnitude.

Ωl(t2) ≤ eC0Ωl(t1)

[
1 +

1

l(t1)

∫ t2

t1

(Uξ(τ) +M(τ)Un(τ)l(τ)) dτ

]
.

(5.5)
where Ωl(t) denotes the maximum vorticity magnitude along lt.
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Now we start the proof of Theorem 5.7 itself. The idea is the follow-
ing. Note that the above inequality actually controls the growth rate of
vorticity. So we can expect to prove non-blow-up if l(t1) does not shrink
to zero too fast. If we assume, in the same spirit as those by Constantin-
Fefferman-Majda, that l(t) > c > 0 for some fixed c, then effectively we
have

Ω(t2) ≤ eC0Ω(t1)

and obviously no blow-up can happen. Now we illustrate the proof along
this simple idea.

We prove by contradiction. First, by translating the initial time we
can assume that the assumptions hold in [0, T ). Define

r ≡ (R/c0) + 1

where R ≡ e2C0 . Recall that C0 is the bound of M(t)L(t), and c0 is the
lower bound of ΩL(t)/Ω(t), where ΩL(t) ≡ ‖ω(·, t)‖L∞(Lt)

.
If there is a finite time blow-up at time T , then we must have

∫ T

0

Ω(t) dt = ∞

and necessarily Ω(t) ↗ ∞ as t↗ T . Take t1, t2, . . . , tn, . . . such that

Ω(tk+1) = rΩ(tk).

Since Ω(t) is monotone by assumption, and T is the smallest time that∫ T

0 Ω(t) dt = ∞, we have tn ↗ T as n→ ∞.
Now we choose lt2 = Lt2 . By assumptions on Lt, we have lt1 ⊂ Lt1

such that X(lt1 , t1, t2) = lt2 . And furthermore, by using (5.4), we obtain

l(t1) ≥ l(t2)
1

R

ΩL(t1)

ΩL(t2)
≥ l(t2)

c0
R2

1

r
& (T − t2)

β ,

where the hidden constant in & is independent of time. Now plugging
this into (5.5) we have, after some algebra,

Ω(t2) ≤ (r − 1)Ω(t1) +
C

(1 − α)c0

Ω(t1)

(T − t2)β
(T − t1)

1−α
.

Recalling Ω(t2) = rΩ(t1), we have

r ≤ (r − 1) + C
(T − t1)

1−α

(T − t2)β

which gives
(T − t2) ≤ C(T − t1)

1+2δ
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with

δ ≡ 1 − α

β
− 1

which is positive by assumption. By taking t1 close enough to T , we can
cancel C and have

(T − t2) ≤ (T − t1)
1+δ.

Next do the same thing for all pairs (tn, tn+1), ( note that (T−tn)δ <
(T − t1)

δ ≤ C−1) we have

(T − tk+1) ≤ (T − tk)1+δ ≤ (T − t1)
(1+δ)k ≤ (T − t1)(T − t1)

δk (5.6)

if we take T − t1 < 1.
Now we study

∫ T

0 Ω(t) dt = ∞. By assumption that Ω(t) is monotone,
we have

Ω(t1)

∞∑

k=1

rk(tk+1 − tk) =

∞∑

k=1

Ω(tk+1)(tk+1 − tk) ≥
∫ T

t1

Ω(t) dt = ∞

which implies

(r − 1)

∞∑

l=0

rl(T − tl+1) =

∞∑

l=0

(rl+1 − rl)(T − tl+1)

=

∞∑

l=0

∞∑

k=l+1

(rl+1 − rl)(tk+1 − tk)

=

∞∑

k=1

k−1∑

l=0

(rl+1 − rl)(tk+1 − tk)

=

∞∑

k=1

(rk − 1)(tk+1 − tk)

= ∞.

All the equalities are legitimate since all the terms in the summations
are positive ( Fubini’s theorem ).

On the other hand, from (5.6), we obtain

∞ =

∞∑

k=0

rk(T − tk+1) ≤ (T − t1)

∞∑

k=0

[
r(T − t1)

δ
]k
<∞,

if we choose t1 close to T so that r(T − t1)
δ < 1. Therefore, we reach a

contradiction. Thus, we obtain
∫ T

t1

Ω(t)dt <∞.

By the BKM criterion, we conclude that there is no finite time blow-up
up to T .
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6 Lower Dimensional Models for the 3D Euler
equations

6.1 1-D Model

In 1985, P. Constantin, P. Lax and A. Majda proposed the following 1-D
model of the 3D Euler equations.

ωt = Hω · ω
where H is the Hilbert transform:

Hf = pv

∫

R

f(y)

x− y
dy.

The relation to the 3D Euler equations is the following. In 3D Euler
equation, the evolution of the vorticity magnitude is governed by the
following equation:

D

Dt
|ω| = T (ω) |ω| .

where T is a Calderon-Zygmund operator with a convolution kernel that
is homogeneous of degree −d where d is the dimension. In 1-D, only one
such singular integral kernel exists, i.e., the Hilbert transform.

This simplified model can be explicitly solved. To solve it, we first
get familiar with some properties of the Hilbert transform.

Lemma 6.1. The Hilbert transform has the following properties:

1. H is bounded from Hm to Hm for all m ≥ 0.

2. H (Hf) = −f .
3. H (fg) = f (Hg) + g (Hf) +H (Hf ·Hg).

Proof. Properties (1) and (2) follow immediately from the fact that

Ĥf(ξ) = sgn(ξ)f̂(ξ).

For property (3), we check

Ĥ(fg) − ̂H(Hf ·Hg) =

∫ ∞

−∞

sgn(ξ)f̂(η)ĝ(ξ − η) dη

−
∫ ∞

−∞

sgn(ξ)sgn(η)sgn(ξ − η)f̂(η)ĝ(ξ − η) dη

=

∫ ∞

−∞

sgn(ξ) (1 − sgn(η)sgn(ξ − η)) f̂(η)ĝ(ξ − η) dη

=

∫ ∞

−∞

(sgn(ξ − η) + sgn(η)) f̂(η)ĝ(ξ − η) dη

= f̂(Hg) + ĝ(Hf),
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and thus ends the proof.

Now we set out to find the explicit solutions. We define

z(x, t) = Hω(x, t) + iω(x, t).

By Lemma 6.1, the equation for z is

dz

dt
=

1

2
z2

whose explicit solution is

z(t) =
2z0

2 − z0t

which implies

ω(x, t) =
4ω0(x)

(2 − tHω0)
2 + t2ω2

0(x)
.

It is obvious that ω(x, t) will blow-up at points with ω0(x) = 0 but
Hω0 > 0.

6.2 The 2-D QG Equation

The 2D QG equation ( see Pedlosky [41] ) is given by

Dθ

Dt
≡ θt + u · ∇θ = 0, (6.1)

where θ(x, t) is a scalar, and u is defined by

(−4)
1/2

ψ = −θ
u = ∇⊥ψ

Here (−4)1/2 is defined by

(−4)
1/2

ψ =

∫
e2πix·ξ2π |ξ| ψ̂(ξ) dξ

if

ψ =

∫
e2πix·ξψ̂(ξ) dξ.

The 2D QG equation ( aka surface-quasi-geostrophic equations, SQG
) describes the variation of the density variation θ at the surface of the
earth. The name θ, usually represents temperature, is chosen because
in the case the ideal gas, the density variation is proportional to the
temperature.

To get an explicit form of the formula for ψ in the space variable x
instead of the Fourier modes ξ, we use the following lemma:
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Lemma 6.2. Denote

ha(x) =
Γ(a/2)

π(a/2)
|x|−a

,

then we have

ĥa = hN−a

for 0 < <(a) < N , where N is the dimension of the space. Γ is the
Gamma function, defined as

Γ(s) =

∫ ∞

0

e−tts−1 dt.

Proof. See e.g. Thomas Wolff [46].

By the above lemma we easily derive

ψ(x) = −
∫

R2

θ(x + y)

|y| dy.

Thus we get

u(x) =

∫

R2

y⊥

|y|2
θ(x+ y) dy.

If we define “vorticity”

ω(x) = ∇⊥θ

we obtain by differentiating (6.1) that

Dω

Dt
= ∇u · ω,

from which we can derive

D |ω|
Dt

=
1

2
ξ
(
∇u+ ∇uT

)
ξ |ω|

≡ S(x, t) |ω|

=

∫

R2

(
ŷ · ξ⊥(x)

) (
ξ(x+ y) · ξ⊥(x)

)

|y|2
|ω(x+ y)| dy |ω|

=

∫

R2

(ŷ · ξ(x)) det (ξ(x+ y), ξ(x))

|y|2
|ω(x+ y)| dy |ω|

where

ξ(x, t) ≡ ω(x, t)

|ω(x, t)|
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as long as it is well-defined, and ŷ = y/ |y|. Note that those points with
ω(x, t) = 0 is transported by the flow, since ω = 0 implies ∇θ = 0 and

∇θ(X(q, t)) = ∇xθ0(q)

= (∇qX)
−1 · ∇qθ0(q).

which means ∇qθ0(q) = 0 ⇔ ∇xθ(X(q, t)) = 0. So those points where ξ
is not well-defined are not important to the stretching.

Recall that for the evolution of the vorticity magnitude in 3D Euler,
we have

D |ω|
Dt

= α(x, t) |ω|

where

α(x, t) =
3

4π

∫

R3

(ŷ · ξ(x)) det (ŷ, ξ(x+ y), ξ(x))

|y|3
|ω(x+ y)| dy.

We see that S(x, t) and α(x, t) indeed share very similar cancellation
properties. Thus the 2D QG equation can be viewed as a 2D model of
the 3D Euler equation, especially in the vorticity form.

There are several other similarities between 2D QG and 3D Euler.
For example, the levelsets of θ(x, t), which are lines that are always
tangent to ω(x, t) so can be defined as “vortex lines”, are carried by the
flow, similar to the vortex lines in the 3D Euler dynamics. For more
comparison between 2D QG and 3D Euler equations, as well as other
properties of the 2D QG equations, see Constantin-Majda-Tabak [15],
or the book by Majda-Bertozzi [35].

Remark 6.3. Note that in the 2D QG equation, we no longer have the
property

1

2

(
∇u−∇uT

)
ω = 0

as in the 3D Euler case. This implies that, the “vorticity” here doesn’t
satisfy

Dω

Dt
=

1

2

(
∇u+ ∇uT

)
ω

as in the Euler case. Only the evolution of the vorticity magnitude |ω|
satisfies the same equation as in the 3D Euler equation.

6.2.1 Existence and blow-up Criteria

By the same technique as in Chapter 2, we can prove the local in time
existence and blow-up criterion.
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Theorem 6.4. ( Constantin-Majda-Tabak [15] ). If the initial value
θ0(x) belongs to the Sobolev space Hk(R2) for some integer k ≥ 3, then
there is a smooth solution θ(x, t) ∈ Hk(R2) for the 2D QG equation for
each time t, in a sufficiently small time interval [0, T ∗), where T ∗ is
characterized by

‖θ(·, t)‖k ↗ ∞ as t↗ T ∗

and can be estimated from below by

T ∗ &
1

1 − ‖θ0‖k

.

We can also apply the technique for the BKM criterion in Chapter 4
to obtain similar blow-up criteria:

Theorem 6.5. ( Constantin-Majda-Tabak [15] ). Consider the unique
smooth solution of the 2D QG equations with initial data θ0(x) ∈ Hk(R2)
for some k ≥ 3. Then the following are equivalent:

1. The time interval [0, T ∗) for some T ∗ < ∞ is maximal for the
solution to be in Hk(R2).

2. The vorticity magnitude accumulates so rapidly that

∫ T

0

‖ω(·, t)‖L∞ dt↗ ∞ as T ↗ ∞

3. Let S∗(t) ≡ maxx∈R2 S(x, t), then

∫ T∗

0

S∗(t) dt = ∞.

There are, though, properties that seems to hold only in the 2D QG
case. For example, when we assume that there is a smooth curve x(t),
such that each point (x(t), t) is an isolated maximum of |ω(x, t)|, we can
have the following result:

d

dt
‖ω(·, t)‖L∞ = S(x(t), t) ‖ω(·, t)‖L∞ .

To prove it, let q(t) be the Lagrange marker of the points (x(t), t), i.e.,

X(q(t), t) = x(t)
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then we have

d

dt
‖ω(·, t)‖L∞ =

d

dt
|ω(x(t), t)|

=
d

dt
|ω (X(q(t), t), t)|

=
D

Dt
|ω| (x(t), t) + ∇x |ω| · ∇qX · q̇

= S(x(t), t) |ω(x(t), t)|
= S(x(t), t) ‖ω(·, t)‖L∞

Note that ∇x |ω| = 0 by our assumption that x(t) is an isolated maxi-
mum.

The above result implies that, under the assumption on x(t), we
can just consider S(x, t) for the particular point (x(t), t) instead of the
maximum of S(x, t) over the whole space. The assumption on x(t) is very
likely to hold in practical cases according to various numerical results,
see e.g. Constantin-Majda-Tabak [15].

Remark 6.6. It is claimed in Constantin-Majda-Tabak [15] that the as-
sumption on x(t) can be dropped with a more lengthy proof, while that
proof is omitted.

6.2.2 Global existence result by Constantin-Majda-Tabak

In their 1994 paper [15], Constantin, Majda and Tabak studied the evo-
lution of the vorticity magnitude both numerically and theoretically,
concluded that when the vorticity direction ξ(x, t) varies not too fast
in space, there can be no finite time blow-up, i.e., the classical solution
exists globally in time.

To understand the basic idea, we recall the evolution equation for
|ω|:

D |ω|
Dt

= S(x, t) |ω|

where

S(x, t) =

∫

R2

(
ŷ · ξ⊥(x)

) (
ξ(x + y) · ξ⊥(x)

)

|y|2
|ω(x+ y)| dy.

In general, since S(x, t) = Tω with T being a singular integral oper-
ator, ‖S(·, t)‖L∞ can not be bounded by ‖ω(·, t)‖L∞ . Even if it can, the
right hand side would be quadratic and give us a finite time blow-up.
But if we make assumptions on ξ(x+y), the situation would be different.
We illustrate this through several examples.
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Example 6.7. ( Constantin-Majda-Tabak [15] ). We consider the clas-
sical frontogenesis with trivial topology. Let

x2 = f(x1)

be a smooth curve in the plane, we study the possibility that the solution
θ(x, t) developing a sharp front along this curve, through the simplified
ansatz

θ(x, t) = F

(
x2 − f(x1)

δ(t)

)
,

where F (s) is a smooth function on R, with the properties that F (s) = 1
for s ≥ 3, F (s) = 0 for s ≤ 1 and F ′(s) ≥ 0 for all s. Assume that

δ(t) → 0, as t→ T ∗

for some T ∗ <∞.
We can plug the formula for θ into the 2D QG equation and get

F ′

[
d

dt

(
1

δ(t)

)
+ u ·

(
f ′(x1)

1

)(
1

δ(t)

)]
= 0.

Since obviously ‖ω‖L∞ (t) ∼ 1/δ(t), we have the estimate

d

dt
(log ‖ω‖L∞ (t)) . ‖u‖L∞ (t).

It can be shown that for 2D QG equation

‖u‖L∞ (t) . log ‖ω‖L∞ . (6.2)

We see that the growth rate of the maximum vorticity is at most double
exponential, and there will be no finite time blow-up.

The last thing is to prove the estimate (6.2), which first appears in
Cordoba [17].

Recall that, for teh 2D QG equation, we have

u = (−4)−1/2 ω =

∫
1

|y|ω(x+ y) dy.

Now let r > 0 fixed, large enough, ρ ∈ (0, r) to be specified later, and χ
be the standard cut-off function, we decompose u into 3 terms as follows

|u(x)| = Uin(x) + Umed(x) + Uout(x)

where

Uin(x) =

∫
χ

( |x|
ρ

)
1

|y|ω(x+ y) dy

≤ ‖ω‖L∞ ρ
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by simply using polar coordinates. For Umed, we have

Umed(x) =

∫
χ

( |x|
r

)(
1 − χ

( |x|
ρ

))
1

|y|ω(x+ y) dy

=

∫
χ

( |x|
r

)(
1 − χ

( |x|
ρ

))
1

|y|∇
⊥θ(x+ y) dy

.

∫

2r≥|y|≥ρ/2

1

|y|2
θ(x + y) dy +

1

ρ

∫

2ρ≥|y|≥ρ/2

θ(x+ y)

|y| dy

+
1

r

∫

2r≥|y|≥r/2

1

|y|θ(x + y) dy

. −‖θ‖L∞ (1 + | log ρ|) = −‖θ0‖L∞ (1 + | log ρ|),

as long as ρ < c < 1 for some fixed constant c. Here we have used the

fact that ∇χ
(

|x|
ρ

)
= 0 for all |x| ≤ ρ/2 or |x| ≥ 2ρ and the maximum

of |θ| is bounded by the initial data.
Now we estimate Uout,

Uout(x) =

∫ (
1 − χ

( |x|
r

))
1

|y|∇
⊥θ(x + y) dy

.
1

r

∫

2r≥|y|≥r/2

1

|y|θ(x + y) dy +

∫

|y|≥r/2

θ(x+ y)
dy

|y|2
≡ I + II.

I is obviously bounded by some constant since ‖θ‖∞ ≤ ‖θ0‖∞. For II,
we use he Cauchy-Schwarz inequality and the fact that the L2 norm of
θ is conserved. We get

II . r−1 ‖θ0‖L2

which is also bounded by a constant.
Finally, if ‖ω‖L∞ ≤ e, (6.2) trivially holds. If not, taking ρ = ‖ω‖−1

L∞

immediately gives the desired estimate.

We look at another example, the singular thermal ridge.

Example 6.8. (Constantin-Majda-Tabak [15] ). The assumptions are
similar to the previous example, the only difference is that F (s) = 0 for
both s ≥ 3 and s ≤ 1, with F ′(s) > 0 for 1 < s < 2, F ′(s) < 0 for
2 < s < 3. There can be no finite time blow-up for these ridges either.
The proof is similar to that in the last example and is omitted.

The above two examples implies that, for θ whose levelsets form sim-
ple geometries, there may be no finite time blow-up. To quantify what
we mean by “simple geometry”, we use the direction of the “vorticity
vectors” ξ = ω/ |ω|. The precise statement of the theorem is the follow-
ing (Constantin-Majda-Tabak [15]):
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Definition 6.9. A set Ω0 is smoothly directed if there exists ρ > 0 such
that

sup
q∈Ω0

∫ T

0

|u (X(q, t), t)|2 dt <∞

and

sup
q∈Ω∗

0

∫ T

0

‖∇ξ(·, t)‖L∞(Bρ(X(q,t),t))) dt <∞

where Bρ(x) is the ball of radius ρ centered at x and

Ω∗
0 = {q ∈ Ω0 | |ω0(q)| 6= 0} .

We use the following notation:

Ωt = X(Ω0, t)

OT (Ω0) = {(x, t) | x ∈ Ωt, 0 ≤ t ≤ T }
Theorem 6.10. Assume Ω0 is smoothly directly, then

sup
OT (Ω0)

|∇θ(x, t)| <∞

i.e., there can be no blow-up in OT (Ω0).

Definition 6.11. We say that the set Ω0 is regularly directed if there
exists ρ > 0 such that

sup
q∈Ω∗

0

∫ T

0

Kρ (X(q, t)) dt <∞

where

Kρ(x) =

∫

|y|≤ρ

∣∣ŷ · ξ⊥(x)
∣∣ ∣∣ξ(x + y) · ξ⊥(x)

∣∣ |ω(x+ y)| dy

|y|2

Theorem 6.12. Assume that Ω0 is regularly directed, then

sup
OT (Ω0)

|ω(x, t)| <∞

The proofs to these theorems are similar to the ones in the global
existence results by Constantin-Fefferman-Majda for the 3D Euler equa-
tions, only less technical. The main difference is that here we have a
conserved quantity θ, whose Lp norm is conserved for all 1 ≤ p ≤ ∞.
This simplifies the proof a lot. First, S(x, t) is bounded by

|S(x, t)| ≤ C
[
G(t) |u(x, t)| + (ρG(t) + 1)

(
G(t) ‖θ‖L∞ + ρ−2 ‖θ‖L2

)]

where G(t) ≡ sup|y|≤ρ |∇ξ(x + y)| for some fixed ρ > 0, via similar
estimates as in Chapter 2. Next we integrate the above in time and use
the Cauchy-Schwarz inequality. For details see Constantin-Majda-Tabak
[15].
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Remark 6.13. The reader may notice that our condition on the maximum
velocity, i.e., L2-integrable in time, is much weaker than the one in the
3D Euler case, i.e., L∞ bounded. This is because, in 2D QG, we have
ω = (∂2,−∂1)θ with θ being bounded. For 3D Euler, we have ω = ∇×u
and we do not have a priori bound on u. Thus in the case of the 3D
Euler equation, we have a term

G(t)2U(t)

which won’t be integrable if U(t) ≡ ‖u‖L∞ (t) is not bounded in addition.

6.2.3 Global existence result by Cordoba and Fefferman

The results by Constantin-Majda-Tabak claims that, as long as the di-
rection field of the levelsets are smooth enough locally around the maxi-
mum stretching point, there can be no finite time blow-up in the 2D QG
equations. This leaves one candidate for finite-time blow-up in their nu-
merical simulations, i.e., the “hyperbolic saddle” situation. In fact, they
performed detailed numerical experiments and found that the maximum
vorticity can be fitted by 1/ (8.25 − t)

1.7
, which suggests a finite time

blow-up. In 1997, Ohkitani and Yamada re-did the simulations and
pushed further to higher resolutions ( [38] ), and found that the same
result can be fitted as well by double exponential growth, indicating that
no finite time blow-up can occur, at least up to the time of their compu-
tations. Subsequently, Constantin-Nie-Schörghofer [16] ) found that the
double exponential is in several aspects a better fit, suggesting that no
finite-time blow-up can occur. Around the same time, D. Cordoba [17]
proved that under some mild assumptions, the hyperbolic saddles will
not cause a finite time blow-up, instead the growth of |ω| is bounded by
quadruple exponential. The proof is technical and we will not reproduce
it here.

In 2002, D. Cordoba and C. Fefferman [18] considered a case that
covers most of the scenarios considered by Constantin-Majda-Tabak and
the hyperbolic saddle case by Cordoba, which they called “semi-uniform
collapse”, and obtained the numerically observed double exponential
growth by clever estimates. We will recap their work here.

Assume that there is an interval [a, b] such that

θ(x1, φρ(x1, t), t) = G(ρ)

for x1 ∈ [a, b], where x2 = φρ(x1, t) is a level curve of θ, φρ ∈ C1 ([a, b] × [0, T ))
for some alleged blow-up time T . By a “semi-uniform” collapse we mean
that the level sets are almost parallel to each other (Note that the sharp-
ening front and ridge in Examples 6.7 and 6.8 satisfy that the level curves
are exactly parallel to each other). More specifically, if we denote

δ(x1, t) ≡ |φρ(x1, t) − φρ′(x1, t)| ,
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then δ satisfies
min
[a,b]

δ(x1, t) ≥ cmax
[a,b]

δ(x1, t).

By this assumption, we always have

|ω(x1, φρ(x1, t), t)| ∼
1

δ(x′1, t)

for any x1, x
′
1 ∈ [a, b].

From this observation, it is enough to consider

I =
d

dt

(∫ b

a

[φρ2
(x1, t) − φρ1

(x1, t)] dx1

)

since the quantity being differentiated is comparable to |ω|−1
( Note that,

since different level curves will never cross, the sign of the difference is
fixed. ).

We compute
d

dt
φρ(x1, t)

for some fixed ρ. First note that, the curve (x1, φρ(x1, t)) is transported
by the flow, since it always parametrized the level curve θ = G(ρ). So
we have

d

dt
φρ(x1, t) = u2 − u1

∂φρ

∂x1
=

d

dx1
ψ(x1, φρ(x1, t), t)

where ψ = (−4)
−1/2

θ so that u = ∇⊥ψ. The first equality can be
seen by drawing a picture and studying the difference between φρ at t
and t + δt, or go through the argument using the QG equation as in
Cordoba-Fefferman [18].

Now it is immediate that

I = ψ(b, φρ2
(b, t), t) − ψ(a, φρ2

(a, t), t)

+ψ(a, φρ1
(a, t), t) − ψ(b, φρ2

(b, t), t).

Let

A(t) ≡ 1

b− a

∫ b

a

[φρ2
(x1, t) − φρ1

(x1, t)] dx1,

we have
∣∣∣∣
d

dt
A(t)

∣∣∣∣ . sup
[a,b]

|ψ(x1, φρ2
(x1, t), t) − ψ(x1, φρ1

(x1, t), t)| .

Finally we prove a general estimate

|ψ(z1, t) − ψ(z2, t)| . ||z1 − z2| log |z1 − z2|| .
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Obviously, that will end the proof, and bound the maximum growth by
some double exponential.

Recall that

ψ(x, t) = (−4)−1/2 θ = −
∫
θ(x + y)

|y| dy.

Taking τ = |z1 − z2| we have

ψ(z1) − ψ(z2) =

∫
θ(y)

(
1

|y − z1|
− 1

|y − z2|

)
dy

=

∫

|y−z1|≤2τ

+

∫

2τ<|y−z1|≤k

+

∫

k<|y−z1|

= I1 + I2 + I3

where k > 2τ is some constant.
Now trivially,

|I1| ≤ Cτ.

For I2, by the mean value theorem
∣∣∣∣

1

|y − z1|
− 1

|y − z2|

∣∣∣∣ = τ

∣∣∣∣∇
1

|y − z′|

∣∣∣∣

for some z′ lying on the line segment connecting z1 and z2. Thus we can
further bound it by

τ max
s

1

|y − s|2

where the maximum is taken over the line connecting z1 and z2. Now it
is clear that

|II| ≤ Cτ |log τ | .
III is also trivially bounded by Cτ using the conservation of the L2

norm of θ, and the mean value theorem.
Thus ends the proof.

6.2.4 Final Remarks about the QG equation

The global existence/blow-up issue for the 2D quasi-geostrophic equa-
tion is still open today, and solving it would for sure shed light on and
help solving the same problem for the 3D Euler equations. A recent
progress is Deng-Hou-Li-Yu [22], where the authors applied the method
developed in their papers dealing with the 3D Euler equations [19, 21],
and obtained triple exponential growth bound for ‖∇θ‖∞ under very
mild conditions. Furthermore, under slightly stronger conditions the au-
thors show that the growth rate of ‖∇θ‖∞ can be bounded by double
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exponential, which is the real growth rate observed in numerical com-
putations. High resolution numerical computations carried out by the
authors suggest that these conditions are indeed satisfied in the 2D QG
flow. This observation suggests that these conditions may have touched
the essence of the QG dynamics. The authors are currently making an
effort to further investigate this problem.

7 Vortex Patch

A vortex patch is a bounded, simply connected, open material domain
Dt such that the vorticity is constant inside it and 0 elsewhere. It is a
special case of the L1 ∩ L∞ weak solutions. Here we will describe the
problem without using the general weak solution formalism.

7.1 The contour dynamics equation (CDE)

By definition and our expectation that the vorticity will be conserved
along particle trajectories ( should check that they really exist ), it is
(hopefully) enough to derive an equation that governs the evolution of
the boundary.

Assume that the solution do behave this way, i.e., the vorticity at
any time t is ω0 in some smooth region D(t) and 0 outside, where D(t)
is smoothly parametrized by t. Then the velocity is

u(x, t) =
ω0

2π

∫

D(t)

(x− y)⊥

|x− y|2
dy.

By the Divergence Theorem we can rewrite it as a contour integral

u(x, t) =
ω0

2π

∫

∂D(t)

log |x− y| n⊥(y)dS(y),

where n(y) is the unit outer normal vector. Note that in our setting,
D(t) and then ω(x, t) is determined by the evolution of the boundary
∂D(t). If we parametrize it by x = x(s, t), we have

∂x(s, t)

∂t
= −ω0

2π

∫

∂D(t)

log |x(s, t) − x(s′, t)| ∂x
∂s′

(s′, t) ds′

This is called the CDE ( contour dynamics equation ). It can be checked
that as long as the boundary remains smooth enough, ω(x, t) defined by
the CDE is a weak solution.

In [34], A. Majda observed that, Y = ∂x
∂s satisfies an evolution equa-

tion very similar to the 1-D model:

DY

Dt
= (M(Y ))Y,
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where M(Y ) is a matrix whose entries are Cauchy integrals on a curve,
i.e., a generalization of the 1D Hilbert transform. He further conjectured
that a finite time singularity would form from smooth initial data.

In 1991, J.-Y. Chemin [10] proved that in fact the above resemblance
is just superficial. The evolution of the vortex patch boundary behaves
much better than the 3D Euler equations. Namely, the boundary will
remain in C1,µ if it is started in this function class. In [4], A. Bertozzi
and P. Constantin give an alternative proof that is easier to understand.
We will present this proof in the next subsection.

7.2 Levelset formulation and global existence

Let 0 < µ < 1 and D be a simply connected, bounded and open subset
of the plane whose boundary is C1,µ smooth, i.e., for any x0 ∈ ∂D there
exists a ball B(x0; r0) and a C1,µ function ϕ : R 7→ R such that, after a
rotation,

∂D ∩B(x0, r0) =
{
x ∈ B(x0, r0) | x2 = ϕ(x1)

}
.

Now we introduce the levelset formulation. Let ϕ ∈ C1,µ(R2) be such
that

D = {x | ϕ(x) > 0}
and |∇ϕ| ≥ c > 0 on the boundary. By the implicit function theorem
we see that ∂D defined by ϕ = 0 is indeed C1,µ. Thus to establish the
long time existence, we only need to show the existence of C1,µ function
ϕ(x, t) such that D(t) = {x | ϕ(x, t) > 0} and ∇ϕ(x, t) is bounded below
by c > 0 uniformly in t.

It is easy to see that the evolution of ϕ(x, t) should be governed by

ϕt + u · ∇ϕ = 0 (7.1)

and thus
D

Dt
∇⊥ϕ ≡ ∇u · ∇⊥ϕ

which looks similar to the 3D Euler equation.
We need to show two things, first

∥∥∇⊥ϕ
∥∥

C0,µ is bounded above,

second
∣∣∇⊥ϕ

∣∣ = |∇ϕ| is bounded below at ϕ = 0.

Proposition 7.1. Let u be the velocity field associated to a vortex patch.
Denote

σ(z) =




2z1z2

|z|2
z2

2
−z2

1

|z|2

z2

2
−z2

1

|z|2
− 2z1z2

|z|2


 .

Then

∇u(x) =
ω0

2π
pv

∫

D

σ(x − y)

|x− y|2
dy +

ω0

2

(
0 −1
1 0

)
χD(x).
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Proof. The proof is straightforward, similar to those in Chapter 4.

First we need to notice some properties of σ(x − y).

1. It is smooth outside of the origin and homogeneous of degree 0.

2. It is symmetric with respect to reflection about the origin, i.e.,
σ(z) = σ(−z).

3. It has mean 0 on the unit circle.

4. By (2) and (3), it has mean 0 on any half circle centered at 0.

By (1) the kernel in the integral is a singular integral kernel. But one
important difference with the 3D Euler or other model equations ( 1D
Constantin-Lax-Majda Model, 2D QG ) is that, this singular integral
kernel is acting on a characteristic function instead of ∇⊥ϕ, thus it can
be expected to behave much better than the 3D Euler equation.

To see this point, we consider a näıve approach. Instead of the tech-
nical C1,γ , suppose we would like to prove that the level set equation
(7.1) is well-posed in C1. For this purpose, it is enough to prove that
‖∇u‖L∞ is bounded. We have

∇u(x) =
ω0

2π
pv

∫

D

σ(x − y)

|x− y|2
dy +

ω0

2

(
0 −1
1 0

)
χD(x).

So it is enough to prove that

pv

∫

D

σ(x − y)

|x− y|2
dy

remains bounded for all x. Suppose that we only need to worry about
the integral

I(x) ≡ pv

∫

D∩B(x,δ)

σ(x− y)

|x− y|2
dy

for some δ > 0. Obviously when d(x) ≡ dist(x, ∂D) ≥ δ, I(x) = 0. On
the other hand, when d(x) < δ, we need subtle cancellations. To get
some insight, assume that locally ∂D is x2 = 0, and x = (0, x2) ∈ D
with δ > x2 > 0. By the properties of σ, we see that σ has mean 0 on
semi-circles. This implies that,

I(x) =

∫

Deff

σ(x − y)

|x− y|2
dy,

where Deff ≡ D ∩ (B(x, δ) \B(x, d(x)) ∩ {0 < y2 < d(x)} is illustrated in
the following figure by the shaded area:
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x

∂D
y2

y1

D

Using Polar coordinates, we have

|I(x)| ≤ 2

∫ δ

d(x)

1

ρ2
θ(ρ)ρdρ,

where θ(ρ) is the size of the angle interval corresponding to the curve

{y = (y1, y2) | |y − x| = ρ, 0 < y1, 0 < y2 < d(x)} .

See the following figure.

ρ

y2

y1

x

θ(ρ)

By the inequality

arcsin t ≤ π

2
t

for t ∈ [0, 1], we have

t ≤ sin
π

2
t ≤ π

2
sin t

which implies

θ(ρ) ≤ π

2

d(x)

ρ
.

Now it is easy to see that

|I(x)| ≤ C

∫ δ

d(x)

d(x)

ρ2
dρ ≤ C

(
1 − d(x)

δ

)
≤ C

is bounded. Thus ‖∇u‖L∞ is bounded and ϕ stays in C1.
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The above “proof” is easy, but there are several un-bridgeable gaps in
the argument. The major one is the following. Recall that we assumed
∂D to be straight when estimating the integral. In fact it can be at
most as smooth as ϕ, i.e., C1, and our argument breaks down when the
boundary is only C1. It turns out that, to get a good estimate on ∇u,
we need the boundary to be at least C1,µ with some µ > 0. But then
we need to prove that ϕ stays in C1,µ instead of C1, which means that
it is not enough to estimate ‖∇u‖L∞ . Thus the real proof is much more
complicated although the main idea is the same as the one presented
above. Now we turn to the real proof.

The next Proposition is very important.

Proposition 7.2. We have

∇u(x)∇⊥ϕ(x) =
ω0

2π
pv

∫

D

σ(x− y)

|x− y|2
(
∇⊥ϕ(x) −∇⊥ϕ(y)

)
dy.

Proof. First we observe that

σ(z)

|z|2
= ∇

(
∇⊥ log |z|

)
.

Thus
(
σ(x − y)

|x− y|2
· ∇⊥ϕ(y)

)

i

= ∇ ·
((
∇⊥ log |z|

)
i
· ∇⊥ϕ(y)

)
.

Now if we consider the i-th component of the integral and omit the
subscript i,

pv

∫

D

σ(x − y)

|x− y|2
∇⊥ϕ(y) dy = lim

δ→0

∫

D∩{|x−y|≥δ}

∇∇⊥ log |x− y| · ∇⊥ϕ(y) dy

= lim
δ→0

∫

D∩{|x−y|≥δ}

∇ ·
(
∇⊥ log |x− y| · ∇⊥ϕ(y)

)
dy

= − lim
δ→0

∫

D∩{|x−y|=δ}

(x− y)⊥

|x− y|2
(
∇⊥ϕ(y) · x− y

δ

)
dS(y)

= −π
(

0 −1
1 0

)
χD(x)∇⊥ϕ(x).

And then the proposition is straightforward.

We denote

|f |µ = sup
x 6=y

|f(x) − f(y)|
|x− y|µ

to be the C0,µ semi-norm.
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Proposition 7.3. There exists a constant C = C(µ) such that

∣∣∇u(·)∇⊥ϕ(·)
∣∣
µ
≤ C (1 + ‖∇u‖L∞) |∇ϕ|µ .

Proof. Let x, h ∈ R2. We estimate

2π

ω0

∣∣(∇u · ∇⊥ϕ
)
(x+ h) −

(
∇u · ∇⊥ϕ

)
(x)
∣∣

≤
∣∣∣∣∣pv
∫

D

σ(x+ h− y)

|x+ h− y|2
(
∇⊥ϕ(x+ h) −∇⊥ϕ(y)

)
dy

∣∣∣∣∣

+

∣∣∣∣∣pv
∫

D

σ(x − y)

|x− y|2
(
∇⊥ϕ(x) −∇⊥ϕ(y)

)
dy

∣∣∣∣∣

≤
∣∣∣∣∣pv
∫

D∩{|x−y|≤2|h|}

σ(x+ h− y)

|x+ h− y|2
(
∇⊥ϕ(x + h) −∇⊥ϕ(y)

)
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

D∩{|x−y|>2|h|}

σ(x + h− y)

|x+ h− y|2
(
∇⊥ϕ(x + y) −∇⊥ϕ(y)

)
dy

∣∣∣∣∣

+

∣∣∣∣∣pv
∫

D∩{|x−y|≤2|h|}

σ(x − y)

|x− y|2
(
∇⊥ϕ(x) −∇⊥ϕ(y)

)
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

D∩{|x−y|>2|h|}

(
σ(x− y)

|x− y|2
− σ(x+ h− y)

|x+ h− y|2

)
(
∇⊥ϕ(x+ h) −∇⊥ϕ(y)

)
dy

∣∣∣∣∣
≡ I1 + I2 + I3 + I4.

We estimate them one by one.
For I1, we use the fact that ϕ ∈ C1,µ and get

I1 ≤ C |h|µ |∇ϕ|µ .

For I2, by Cotlar’s lemma, we have

I2 ≤ C (‖∇u‖∞ + 1)

For I3, Similar to I1, we have

I3 ≤ C |h|µ |∇ϕ|µ .

Lastly, for I4, by the mean value theorem, we have

I4 ≤
∫

D∩{|x−y|≥2|h|}

|h| C

|x− y|3
|x− y|µ |∇ϕ|µ ≤ C |h|µ |∇ϕ|µ .
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Remark 7.4. Cotlar’s lemma is the following result:

For any singular integral kernel K(x), define

Kε(x) ≡
{

0 |x| ≤ ε
K(x) |x| > ε

.

Then there is a constant C > 0, such that for any ε > 0,

|Kε ∗ f | (x) ≤ C (M(K ∗ f)(x) +M(f)(x)) .

where M(f) denotes the maximal function of f .

M(f) ≡ sup
r>0

1

|B(x, r)|

∫

B(x,r)

f(y) dy.

Thus in particular, if both K ∗ f and f are in L∞, then we can re-
place M(K ∗ f)(x) by ‖K ∗ f‖L∞ and M(f) by ‖f‖L∞ . For more about
Cotlar’s lemma, see e.g. Section 1.7 of Stein [45] or Chapter 7 of Meyer-
Coifman [37].

Our next task is to give a upper bound for ‖∇u‖L∞ . Denote the
infimum norm of a function f on ∂D by

|f |inf = inf
x∈∂D

|∇ϕ(x)| .

Proposition 7.5. Let u be the velocity and ϕ be a solution to (7.1).
Then there is a constant C = C(µ) > 0 such that

‖∇u‖L∞ ≤ C |ω0|
(

1 + log

(
|∇ϕ|µ
|∇ϕ|inf

))
.

Proof. First note that we only need to estimate the principal integral

pv

∫

D

σ(x− y)

|x− y|2
dy.

Denote

δ =
|∇ϕ|inf

|∇ϕ|µ
.

and d(x) = dist(x, ∂D) for any x ∈ R2. Intuitively, the main difficulty
would come from near the boundary.



Introduction to Incompressible Inviscid Flows 63

First we assume d(x) ≥ δ. Take η small enough, we have
∣∣∣∣∣

∫

D∩{|x−y|≥η}

σ(x − y)

|x− y|2
dy

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

D∩{η≤|x−y|≤d(x)}

σ(x − y)

|x− y|2
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

D∩{|x−y|>d(x)}

σ(x − y)

|x− y|2
dy

∣∣∣∣∣

=

∣∣∣∣∣

∫

D∩{|x−y|>d(x)}

σ(x− y)

|x− y|2
dy

∣∣∣∣∣

≤
∣∣∣∣∣

∫

D∩{|x−y|>d(x)}

1

|x− y|2
dy

∣∣∣∣∣

≤
∣∣∣∣∣

∫

d(x)<|x−y|≤R

1

|x− y|2
dy

∣∣∣∣∣

where πR2 is the area of D, which is conserved by the imcompressibility
of the flow. The last inequality can be readily checked by using Polar
coordinates and the fact that 1

r2 is monotonically decreasing in r. The
proof is left as an exercise. Now it is easy to see that the integral is
bounded by what we want.

Now for the case d(x) < δ. Again taking η small enough, we have
∣∣∣∣∣

∫

D∩{|x−y|≥η}

σ(x − y)

|x− y|2
dy

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

D∩{η≤|x−y|≤d(x)}

σ(x− y)

|x− y|2
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

D∩{d(x)≤|x−y|<δ}

σ(x − y)

|x− y|2
dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

D∩{|x−y|≥δ}

σ(x − y)

|x− y|2
dy

∣∣∣∣∣ .

We know that the first integral vanishes due to symmetry, and the third
term can be estimated as in the d(x) ≤ δ case.

For the second one, we denote

S = {d(x) ≤ |x− y| ≤ δ}

and study its special geometrical properties. The heuristic is the follow-
ing. Assume that the boundary is a straight line, then we try to bound
the integral by estimating the area of the integration in which the inte-
gral doesn’t vanish. This is where the regularity of the boundary comes
in to play. To make the above idea rigorous, we denote by x̃ the point on
∂D such that d(x, x̃) = d(x). Let L be the line through x in the direc-
tion that is tangent to ∂D at x̃. Then the annulus {d(x) ≤ |x− y| ≤ δ}
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is divided into two half annuli. Denote the one containing x̃ by As and
the other by Al. First note that the integration on Al vanishes. So

∣∣∣∣∣

∫

S∩D

σ(x− y)

|x− y|2
dy

∣∣∣∣∣ =

∣∣∣∣∣

∫

(As∩D)∪(Al∩Dc)

σ(x− y)

|x− y|2
dy

∣∣∣∣∣

≤
∫

(As∩D)∪(Al∩Dc)

C

|x− y|2
dy.

Note that S should more and more resembles a half-annulus as d(x) → 0.
So our integral should vanish. We estimate the area of Se ≡ (As ∩D) ∪
(Al ∩ Dc). Write it in polar coordinates and denote by H(Eρ) the 1-D
Hausdorff measure of

{θ ∈ (0, 2π] | (ρ, θ) ∈ Se} .
for d(x) ≤ ρ ≤ δ. By the Geometric lemma that will be proved later,

H(Eρ) ≤ C

(
d(x)

ρ
+
(ρ
δ

)µ
)

and then the result is straightforward.

Now we prove the Geometric Lemma.

Lemma 7.6. (Geometric Lemma). We have

H(Eρ) ≤ 2π

[
(1 + 2µ)

d(x0)

ρ
+ 2µ

(ρ
δ

)µ
]

for all ρ ≥ d(x0), 1 > µ > 0 and x0 so that d(x0) < δ =
(
|∇φ|inf / |∇ϕ|µ

)1/µ

.

Proof. Let

Sρ(x0) = {z | |z| = 1, x = x0 + ρz ∈ D} ,
Σ(x0) = {z | |z| = 1,∇xϕ(x̃) · z ≥ 0}

where x̃ ∈ ∂D such that |x0 − x̃| = d(x0). This point exists since the
boundary is C1,µ. Then we have

Eρ = [Sρ\Σρ] ∪ [Σρ\Sρ] .

The readers should draw a picture to see what Eρ looks like (there are
two cases, x0 ∈ D and x0 6∈ D). Note that since ϕ(x) > 0 for x ∈ D, the
direction of ∇ϕ at x̃ should be pointing inward instead of outward.

We use polar coordinates and denote the angle for a point z in Eρ

by θ(z), with θ(z) defined by

sin θ(z) =
∇ϕ(x̃) · z

|∇ϕ(x̃)| · |z| .

See the following illustration.
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x0

θ(z)

D

x̃

∇ϕ
z

Thus we have

sin θ(z) =
∇ϕ(x̃) · (x̃− x0)

|∇ϕ(x̃)| ρ +
∇ϕ(x̃) · (x0 + ρz − x̃)

|∇ϕ(x̃)| ρ .

Now in the RHS z is in the unit circle.
For any z ∈ Eρ(x0), we can see that either sin θ(z) > 0 and ϕ(x0 +

ρz) < 0 or sin θ(z) < 0 and ϕ(x0 + ρz) > 0. In either case, noting that
ϕ(x̃) = 0 and ∇ϕ(x̃) ‖ (x0 − x̃), we have

|sin θ(z)| ≤ d(x0)

ρ
+

∣∣∣∣
∇ϕ(x̃) · (x0 + ρz − x̃)

|∇ϕ(x̃)| ρ − ϕ(x0 + ρz)− ϕ(x̃)

|∇ϕ(x̃)| ρ

∣∣∣∣ .

Since −ϕ(x0+ρz)
|∇ϕ(x̃)|ρ is always of the same sign as sin θ(z), so adding it will

only increase the absolute value. Now by the mean value theorem we
have

|ϕ(x) − ϕ(y) −∇ϕ(y) · (x− y)| ≤ |∇ϕ|µ |x− y|1+µ

which gives

|sin θ(z)| ≤ d(x0)

ρ
+

|∇ϕ|µ |x0 + ρz − x̃|1+µ

ρ |∇ϕ|inf

≤ d(x0)

ρ
+

|∇ϕ|µ
ρ |∇ϕ|inf

[d(x0) + ρ]
1+µ

≤ d(x0)

ρ
+ 2γ

|∇ϕ|µ
ρ |∇ϕ|inf

[
d(x0)

1+µ + ρ1+µ
]

where the last inequality comes from the Jensen’s inequality applying to
the convex function x1+µ for positive x.

Now the estimate is easy to see by the fact that arcsin t ≤ π
2 t for

t ∈ [0, 1]. Since we are estimating the absolute value of sin θ over [0, 2π],
the factor should be π

2 · 4 = 2π. This completes the proof.

Finally we take the dynamics into account.
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Proposition 7.7. If the initial data ϕ0 ∈ C1,µ(R2), such that D0 =
{ϕ0(x) > 0} is simply connected and bounded. And |∇ϕ0| ≥ C > 0 on
the boundary ∂D0, then the following a priori estimates holds:

1. ‖∇ϕ(·, t)‖L∞ ≤ ‖∇ϕ0‖L∞ exp
(∫ t

0 ‖∇u(·, s)‖L∞ ds
)
;

2. |∇ϕ(·, t)|inf ≥ |∇ϕ0|inf exp
(
−
∫ t

0
‖∇u(·, s)‖L∞ ds

)
;

3. |∇ϕ(·, t)|µ ≤ |∇ϕ0|µ exp
(
(C0 + µ)

∫ t

0 ‖∇u(·, s)‖L∞ ds
)
.

Proof. Let X = X(α, t) denote a particle trajectory and

Y (α, t) = ∇⊥ϕ(X(α, t), t).

Then we have
d

dt
Y (α, t) = ∇u(X(α, t), t)Y (α, t).

and therefore ∣∣∣∣
d

dt
log |Y (α, t)|

∣∣∣∣ ≤ ‖Du(·, t)‖L∞ .

Now by Gronwall’s lemma we have

e−
�

t
0
‖∇u‖L∞ ds ≤ |Y (α, t)|

|∇⊥ϕ0(α)| ≤ e
�

t
0
‖∇u‖L∞ ds,

which proves both (1). and (2).
For (3), we write the integral formulation of the equation for ∇⊥ϕ,

∇⊥ϕ(x, t) = ∇⊥ϕ0(X(x,−t)) +

∫ t

0

(
∇u∇⊥ϕ

)
(X(x, s− t), s) ds.

And we estimate

∣∣∇⊥ϕ(x + h, t) −∇⊥ϕ(x, t)
∣∣ ≤

∣∣∇⊥ϕ0 (X(x+ h,−t)) −∇⊥ϕ0 (X(x,−t))
∣∣

+

∣∣∣∣
∫ t

0

((
∇u∇⊥ϕ

)
(X(x+ h, s− t), s) −

(
∇u∇⊥ϕ

)
(X(x, s− t), s)

)
ds

∣∣∣∣
≤
∣∣∇⊥ϕ0

∣∣
µ
‖∇X(·,−t)‖µ

L∞ |h|µ

+

∫ t

0

∣∣∇u∇⊥ϕ(·, s)
∣∣
µ
‖∇X(·, s− t)‖µ

L∞ |h|µ ds.

For the evolution of ∇X , we have

d

dt
∇X(z,−t) = −∇u (X(z,−t),−t)∇X(z,−t).
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Now by the Gronwall’s lemma we have

‖∇X(·, s− t)‖L∞ ≤ exp

(∫ t

s

‖∇u(·, s′)‖L∞ ds′
)
.

Plug it into the inequality above, we get the estimate in (3).

Finally we put everything together, and obtain the following theorem:

Theorem 7.8. Given ω0 6= 0, D0 a simply connected, bounded, C1,µ

smooth domain with 0 < µ < 1, and a function ϕ0 ∈ C1,µ(R2) such
that D0 = {ϕ0 > 0}, |∇ϕ0|inf ≥ C > 0, then the solution ϕ belongs

to C1,µfor all time. Furthermore, there exists a constant C > 0, which
depends only on the initial data such that

1. ‖∇u(·, t)‖L∞ ≤ ‖∇u0‖L∞ eCt,

2. |∇ϕ(·, t)|µ ≤ |∇ϕ0|µ exp
(
(C0 + µ) eCt

)
,

3. ‖∇ϕ(·, t)‖L∞ ≤ ‖∇ϕ0‖L∞ exp
(
eCt
)
,

4. |∇ϕ(·, t)|inf ≥ |∇ϕ0|inf exp
(
−eCt

)
.

Proof. We have

log |∇ϕ|inf ≥ log |∇ϕ0|inf − C

∫ t

0

(
1 + log

|∇ϕ|µ
|∇ϕ|inf

)
ds

after taking logarithm on both sides of estimate (2) in Proposition 5.2.7.
Similarly we obtain

log |∇ϕ|µ ≤ log |∇ϕ0|µ + (C0 + µ)

∫ t

0

(
1 + log

|∇ϕ|µ
|∇ϕ|inf

)
ds.

Combining these two, we have

log
|∇ϕ|µ
|∇ϕ|inf

≤ log
|∇ϕ0|µ
|∇ϕ0|inf

+ (C0 + µ+ 1)

∫ t

0

(
1 + log

|∇ϕ|µ
|∇ϕ|inf

)
ds.

By Gronwall’s lemma, we easily get

log
|∇ϕ|µ
|∇ϕ|inf

≤ CeCt.

This also provides a bound for ∇u in (1) from Proposition 5.2.5. The
others are straightfoward by using the estimate on ∇u given by Property
(1).

Remark 7.9. The problem of global existence of vortex patch with bound-
ary only C1 or worse is still open. In [6], J. Carrillo and J. Soler showed
numerically that, for initial boundary that is only Lipschitz continuous,
the evolution develops cusps from corners.
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Whether the 3D incompressible Euler and Navier–Stokes equations can de-
velop a finite-time singularity from smooth initial data with finite energy
has been one of the most long-standing open questions. We review some re-
cent theoretical and computational studies which show that there is a subtle
dynamic depletion of nonlinear vortex stretching due to local geometric regu-
larity of vortex filaments. We also investigate the dynamic stability of the 3D
Navier–Stokes equations and the stabilizing effect of convection. A unique
feature of our approach is the interplay between computation and analysis.
Guided by our local non-blow-up theory, we have performed large-scale com-
putations of the 3D Euler equations using a novel pseudo-spectral method
on some of the most promising blow-up candidates. Our results show that
there is tremendous dynamic depletion of vortex stretching. Moreover, we
observe that the support of maximum vorticity becomes severely flattened
as the maximum vorticity increases and the direction of the vortex filaments
near the support of maximum vorticity is very regular. Our numerical ob-
servations in turn provide valuable insight, which leads to further theoretical
breakthrough. Finally, we present a new class of solutions for the 3D Euler
and Navier–Stokes equations, which exhibit very interesting dynamic growth
properties. By exploiting the special nonlinear structure of the equations, we
prove nonlinear stability and the global regularity of this class of solutions.
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1. Introduction

The question of whether the 3D incompressible Navier–Stokes equations
can develop a finite-time singularity from smooth initial data is one of the
most long-standing open problems in fluid dynamics and mathematics. This
is also one of the seven Millennium Open Problems posted by the Clay
Mathematical Institute (see www.claymath.org). The understanding of this
problem could improve our understanding on the onset of turbulence and
the intermittency properties of turbulent flows.

The 3D incompressible Navier–Stokes equations are given by

ut + (u · ∇)u = −∇p+ ν∆u, (1.1)
∇ · u = 0, (1.2)

with initial condition u(x, 0) = u0(x). Here u is velocity, p is pressure, and
ν is viscosity. We consider only the initial value problem and assume that
the solution decays rapidly at infinity. Defining vorticity by ω = ∇ × u,
then ω is governed by

ωt + (u · ∇)ω = ∇u · ω + ν∆ω. (1.3)

The first term on the right-hand side of (1.3) is called the vortex stretching
term, which is absent in the two-dimensional problem. Note that ∇u is
formally of the same order as ω. Thus the vortex stretching term has a
formal quadratic scaling with respect to vorticity. This formal quadratic
nonlinearity in the vortex stretching term is the main difficulty in study-
ing the dynamic stability and global regularity of the 3D Navier–Stokes
equations. Under suitable smallness assumptions on the initial condition,
global existence and regularity results have been obtained for some time
(Ladyzhenskaya 1970, Constantin and Foias 1988, Temam 2001, Majda and
Bertozzi 2002). But these methods based on energy estimates do not gen-
eralize to the 3D Navier–Stokes with large data. Energy estimates seem to
be too crude to give a definite answer to whether diffusion is strong enough
to control the nonlinear growth due to vortex stretching. A more refined
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analysis seems to be needed, which takes into account the special nature of
the nonlinearities and their local interactions.

We believe that the global regularity of the 3D Navier–Stokes equations is
closely related to that of the 3D Euler equations. Since the nonlinearity of
the 3D Navier–Stokes equations is supercritical, the balance among different
nonlinear terms in the Euler equations may play an even more important role
than the diffusion term. Thus, it makes sense to investigate the mechanism
which may lead to finite-time blow-up or dynamic depletion of the nonlinear
vortex stretching in the 3D Euler equations.

There has been some interesting development in the theoretical under-
standing of the 3D incompressible Euler equations. In particular, Con-
stantin, Fefferman and Majda have shown that the local geometric regular-
ity of vortex lines can play an important role in depleting nonlinear vortex
stretching (Constantin 1994, Constantin, Fefferman and Majda 1996). In-
spired by their work, Deng, Hou and Yu (2005, 2006a) recently showed that
geometric regularity of vortex lines, even in an extremely localized region
containing the maximum vorticity, can lead to depletion of nonlinear vortex
stretching, thus avoiding finite-time singularity formation of the 3D Euler
equations. To obtain these results, Deng, Hou and Yu used a Lagrangian
approach and explored the connection between the stretching of local vor-
tex lines and the growth of vorticity. In particular, they showed that if the
vortex lines near the region of maximum vorticity satisfy some local geo-
metric regularity conditions and the maximum velocity field is integrable in
time, then no finite-time blow-up is possible. These localized non-blow-up
criteria provide stronger constraints on the local geometry of a potential
finite-time singularity.

There have been many computational attempts to find finite-time sin-
gularities of the 3D Euler and Navier–Stokes equations: see, e.g., Chorin
(1982), Pumir and Siggia (1990), Kerr and Hussain (1989), Grauer and
Sideris (1991), Shelley, Meiron and Orszag (1993), Kerr (1993), Caflisch
(1993), Boratav and Pelz (1994), Fernandez, Zabusky and Gryanik (1995),
Pelz (1997), Grauer, Marliani and Germaschewski (1998), Kerr (2005). One
example that has been studied extensively is the interaction of two per-
turbed antiparallel vortex tubes. This example is interesting because of
the vortex reconnection observed for the corresponding Navier–Stokes equa-
tions. It is natural to ask whether the 3D Euler equations would develop a
finite-time singularity in the limit of vanishing viscosity. Kerr (1993, 2005)
presented numerical evidence which suggested a finite-time singularity of
the 3D Euler equations for two perturbed antiparallel vortex tubes. Kerr’s
blow-up scenario is consistent with the non-blow-up criterion of Beale, Kato
and Majda (1984) and that of Constantin, Fefferman and Majda (1996).
But it falls into the critical case of Deng, Hou and Yu’s local non-blow-up
criteria (Deng, Hou and Yu 2005, 2006a).



4 T. Y. Hou

Guided by this local geometric non-blow-up analysis, Hou and Li (2006)
performed extremely large-scale computations with resolution up to 1536 ×
1024× 3072 to re-examine Kerr’s blow-up scenario (Kerr 1993). They used
a novel pseudo-spectral method with a 36th-order Fourier smoothing func-
tion which keeps a significant portion of the Fourier modes beyond the 2/3
cut-off point in the Fourier spectrum for the 2/3 de-aliasing rule. Their
extensive numerical results demonstrated that the pseudo-spectral method
with the high-order Fourier smoothing gives a much better performance
than the pseudo-spectral method with the 2/3 de-aliasing rule. In par-
ticular, they showed that the Fourier smoothing method captures about
12 ∼ 15% more effective Fourier modes than the 2/3 de-aliasing method
in each dimension. For 3D Euler equations, the total number of effective
modes in the Fourier smoothing method is about 20% more than that in the
2/3 de-aliasing method. This is a very significant increase in the resolution
for a large-scale computation.

There were several interesting findings in the large-scale computations of
Hou and Li (2006) for the 3D Euler equations using the initial data for the
antiparallel vortex tubes. First, they discovered a surprising dynamic can-
cellation in the vortex stretching term due to the local geometric regularity
of the vortex filaments. Vortex stretching was found to deplete dynamically
from a formally quadratic nonlinearity to a much weaker O(ω log(ω)) type
of nonlinearity, which leads to only double exponential growth in the maxi-
mum vorticity. Secondly, they showed that the velocity field is bounded up
to T = 19, beyond the alleged singularity time T = 18.7 of Kerr (2005).
With a bounded velocity field, the non-blow-up criterion of Deng, Hou and
Yu (2005) applies, which provides theoretical support for their computa-
tional results. Thirdly, they found that the vorticity vector near the point
of maximum vorticity aligns almost perfectly with the second eigenvector of
the rate of strain tensor. The second eigenvalue of the rate of strain tensor
is the smallest eigenvalue and does not seem to grow dynamically, while the
first and third eigenvalues grow very rapidly in time. This is further strong
evidence for the dynamic depletion of vortex stretching.

Inspired by the numerical findings of their paper of 2006, Hou and Li
(2008a) investigated the dynamic stability of the 3D Navier–Stokes equa-
tions by introducing an exact 1D model of the axisymmetric Navier–Stokes
equations along the symmetry axis. This 1D model is exact in the sense
that one can construct a family of exact solutions for the 3D Navier–Stokes
equations from this 1D model. Thus the 1D model preserves some es-
sential features of the 3D Navier–Stokes equations. What is surprising is
that they obtained a Lyapunov function which satisfies a new maximum
principle. This provides a pointwise estimate on the dynamic stability of
the Navier–Stokes equations. The traditional energy estimates are inca-
pable of capturing such subtle cancellation effects. Based on the global
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regularity of the 1D model, they constructed a new class of solutions for
the 3D Euler and Navier–Stokes equations, which exhibit very interesting
dynamic growth properties, but remain smooth for all times.

Motivated by the work of Hou and Li (2008a), Hou and Lei (2009b) further
proposed a new 3D model to study the stabilizing effect of convection. This
model was derived by neglecting the convection term from a reformulated
axisymmetric Navier–Stokes equations. It shares almost all the properties
of the 3D Navier–Stokes equations. In particular, the strong solution of
the model satisfies an energy identity similar to that of the full 3D Navier–
Stokes equations. They proved a non-blow-up criterion of Beale–Kato–
Majda type as well as a non-blow-up criterion of Prodi–Serrin type for the
model. Moreover, they proved that, for any suitable weak solution of the 3D
model in an open set in space-time, the one-dimensional Hausdorff measure
of the associated singular set is zero (Hou and Lei 2009a). This partial
regularity result is an analogue of the Caffarelli–Kohn–Nirenberg theory
(Caffarelli, Kohn and Nirenberg 1982) for the 3D Navier–Stokes equations.

Despite the striking similarity at the theoretical level between the 3D
model and the Navier–Stokes equations, the former has a completely differ-
ent behaviour from the full Navier–Stokes equations. Hou and Lei’s study
showed that the 3D model seems to form a finite-time singularity, while
the mechanism of generating such a finite-time singularity is removed when
convection is added back to the 3D model. Convection seems to play a very
important role in stabilizing the potential blow-up of the Navier–Stokes
equations. This result may have an important impact on future global reg-
ularity analysis of 3D Navier–Stokes equations. Up to now, most analysis
uses energy estimates in which convection plays no role at all. Such global
methods of analysis are too crude. Their studies suggest that one needs to
develop a new localized analysis which can in essence exploit the stabilizing
effect of convection.

There has been some interesting development in the study of the 3D in-
compressible Navier–Stokes equations and related models. By exploiting the
special structure of the governing equations, Cao and Titi (2007) proved
the global well-posedness of the 3D viscous primitive equation for large-
scale ocean and atmospheric dynamics. For the axisymmetric Navier–Stokes
equations, Chen, Strain, Tsai and Yau (2008, 2009) and Koch, Nadirashvili,
Seregin and Sverak (2009) recently proved that if |u(x, t)| ≤ C∗|t|−1/2, where
C∗ is allowed to be large, then the velocity field u is regular at time zero.
The 2D Boussinesq equations are closely related to the 3D axisymmetric
Navier–Stokes equations with swirl (away from the symmetry axis). Re-
cently, Hou and Li (2005) and Chae (2006) proved independently the global
existence of the 2D Boussinesq equations with partial viscosity. By taking
advantage of the limiting property of some rapidly oscillating operators and
using nonlinear averaging, Babin, Mahalov and Nicolaenko (2001) proved
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global regularity of the 3D Navier–Stokes equations for some initial data
characterized by uniformly large vorticity.

The rest of the paper is organized as follows. In Section 2, we study
the dynamic depletion of vortex stretching for the 3D Euler equations. We
also discuss at length how to design an effective high-resolution pseudo-
spectral method to compute potentially singular solutions of the 3D Euler
equations. Section 3 is devoted to studying the dynamic stability of the 3D
Navier–Stokes equations. In Section 4, we investigate the stabilizing effect
of convection for the 3D Navier–Stokes equations. Some concluding remarks
are made in Section 5.

2. Dynamic depletion of vortex stretching in 3D Euler
equations

Due to the supercritical nature of the nonlinearity of the 3D Navier–Stokes
equations, the 3D Navier–Stokes equations with large initial data are convec-
tion-dominated, instead of diffusion-dominated. For this reason, we believe
that the understanding of whether the corresponding 3D Euler equations
would develop a finite-time blow-up could shed useful light on the global
regularity of the Navier–Stokes equations.

Let us consider the 3D Euler equations in the vorticity form. One im-
portant observation is that when we consider the convection term together
with the vortex stretching term, the two nonlinear terms can be actually
represented as a commutator or a Lie derivative:

ωt + (u · ∇)ω − (ω · ∇)u = 0. (2.1)

It is reasonable to believe that the commutator would lead to some can-
cellation among the two nonlinear terms, thus weakening the nonlinearity
dynamically. This points to the potential important role of convection in
the 3D Euler equations. Another way to realize the importance of convec-
tion is to use the Lagrangian formulation of the vorticity equation. When
we consider the two terms together, we preserve the Lagrangian structure
of the solution (Chorin and Marsden 1993),

ω(X(α, t), t) = Xα(α, t)ω0(α), (2.2)

where Xα = ∂X
∂α and X(α, t) is the flow map,

dX
dt

(α, t) = u(X(α, t), t), X(α, 0) = α. (2.3)

Therefore, vorticity increases in time only through the dynamic deformation
of the Lagrangian flow map. On the other hand, due to the divergence-free
property of the velocity field, the flow map is volume-preserving, that is,
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det(Xα(α, t)) ≡ 1. Thus, as vorticity increases dynamically, the paral-
lelepiped spanned by the three vectors, (Xα1 , Xα2 , Xα3), will experience se-
vere deformation and become flattened dynamically. A formal asymptotic
analysis shows that the support of maximum vorticity also experiences a
similar deformation and becomes severely flattened as vorticity increases.
This is confirmed by our numerical experiments: see Section 2.5. Such de-
formation tends to weaken the nonlinearity of vortex stretching dynamically.

We remark that convection plays an essential role in deforming the sup-
port of maximum vorticity and induces an anisotropic scaling in the collapse
of the support of maximum vorticity. By exploiting the anisotropic scaling
of the support of maximum vorticity, Hou, Lei and Li (2008) recently proved
the global regularity of the axisymmetric Navier–Stokes equations with a
family of very large anisotropic initial data: see Section 2.8 for more dis-
cussions. On the other hand, if we ignore the convection term in the Euler
equations, the vortex stretching term may indeed achieve the O(|ω|2) scaling
dynamically and develop an isotropic singularity in finite time: see Section 4
for more discussions.

2.1. A brief review

We begin with a brief review of the subject. Due to the formal quadratic
nonlinearity in vortex stretching, only short time existence is known for the
3D Euler equations (Majda and Bertozzi 2002). One of the most well-known
results on the 3D Euler equations is due to Beale, Kato and Majda (1984),
who showed that the solution of the 3D Euler equations blows up at T if
and only if

∫ T
0 ‖ω‖∞(t) dt = ∞, where ω is vorticity.

There have been some interesting recent theoretical developments. In
particular, Constantin, Fefferman and Majda (1996) showed that local ge-
ometric regularity of the unit vorticity vector can lead to depletion of the
vortex stretching. Let ξ = ω/|ω| be the unit vorticity vector and let u
be the velocity field. Roughly speaking, Constantin, Fefferman and Majda
proved that if (1) ‖u‖∞ is bounded in a O(1) region containing the maxi-
mum vorticity, (2)

∫ t
0 ‖∇ξ‖2∞ dτ is uniformly bounded for t < T , then the

solution of the 3D Euler equations remains regular up to t = T .
There has been some numerical evidence that suggests a finite-time blow-

up of the 3D Euler equations. One of the most well-known examples is
the finite-time collapse of two antiparallel vortex tubes by R. Kerr (1993,
2005). In his computations, Kerr used a pseudo-spectral discretization in
the x- and y-directions, and a Chebyshev discretization in the z-direction
with resolution of order 512 × 256 × 192. His computations showed that
the maximum vorticity blows up like O((T − t)−1) with T = 18.9. In his
subsequent paper, Kerr (2005) applied a high wavenumber filter to the data
obtained in his original computations to ‘remove the noise that masked the
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structures in earlier graphics’ presented in the 1993 paper. With this filtered
solution, he presented some scaling analysis of the numerical solutions up to
t = 17.5. Two new properties were presented in the 2005 paper. First, the
velocity field was shown to blow up like O(T − t)−1/2 with T being revised
to T = 18.7. Secondly, he showed that the blow-up is characterized by two
anisotropic length scales, ρ ≈ (T − t) and R ≈ (T − t)1/2. It is worth noting
that there is still a considerable gap between the predicted singularity time
T = 18.7 and the final time t = 17 of Kerr’s original computations, which
he used as the primary evidence for the finite-time singularity.

Kerr’s blow-up scenario is consistent with the non-blow-up criterion of
Beale, Kato and Majda (1984) and that of Constantin, Fefferman and Majda
(1996). But it falls into the critical case of Deng, Hou and Yu’s local non-
blow-up criteria (Deng, Hou and Yu 2005, 2006a). Below we describe the
local non-blow-up criteria of Deng, Hou and Yu.

2.2. The local non-blow-up criteria of Deng, Hou and Yu (2005, 2006a)

Motivated by the result of Constantin, Fefferman and Majda (1996), Deng,
Hou and Yu (2005) have obtained a sharper non-blow-up condition which
uses only very localized information of the vortex lines. Assume that at
each time t there exists some vortex line segment Lt on which the local
maximum vorticity is comparable to the global maximum vorticity. Further,
we denote L(t) as the arclength of Lt, n the unit normal vector of Lt, and
κ the curvature of Lt.

Theorem 2.1. (Deng, Hou and Yu 2005) Assume that (1) maxLt(|u·
ξ| + |u · n|) ≤ CU (T − t)−A with A < 1, and (2) CL(T − t)B ≤ L(t) ≤
C0/maxLt(|κ|, |∇ · ξ|) for 0 ≤ t < T . Then the solution of the 3D Euler
equations remains regular up to t = T provided that A+B < 1.

In Kerr’s computations, the first condition of Theorem 2.1 is satisfied with
A = 1/2 if we use ‖u‖∞ ≤ C(T − t)−1/2 as alleged in Kerr (2005). Kerr’s
computations suggested that κ and ∇ · ξ are bounded by O((T − t)−1/2) in
the inner region of size (T−t)1/2×(T−t)1/2×(T−t) (Kerr 2005). Moreover,
the length of the vortex tube in the inner region is of order (T − t)1/2. If we
choose a vortex line segment of length (T − t)1/2 (i.e., B = 1/2), then the
second condition is satisfied. However, we violate the condition A+B < 1.
Thus Kerr’s computations fall into the critical case of Theorem 2.1. In a
subsequent paper, Deng, Hou and Yu (2006a) improved the non-blow-up
condition to include the critical case, A+B = 1.

Theorem 2.2. (Deng, Hou and Yu 2006a) Under the same assump-
tions as Theorem 2.1, in the case of A+B = 1, the solution of the 3D Euler
equations remains regular up to t = T if the scaling constants CU , CL and
C0 satisfy an algebraic inequality, f(CU , CL, C0) > 0.
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We remark that this algebraic inequality can be checked numerically if
we obtain a good estimate of these scaling constants. For example, if C0 =
0.1, which seems reasonable since the vortex lines are relatively straight in
the inner region, Theorem 2.2 would imply no blow-up up to T if 2CU <
0.43CL. Unfortunately, there was no estimate available for these scaling
constants in Kerr (1993). One of our original motivations for repeating
Kerr’s computations using higher resolutions was to obtain a good estimate
for these scaling constants.

2.3. Computing potentially singular solutions using pseudo-spectral
methods

Computing Euler singularities numerically is an extremely challenging task.
First of all, it requires huge computational resources. Tremendous reso-
lutions are required to capture the nearly singular behaviour of the Euler
equations. Secondly, one has to perform a careful convergence study. It is
dangerous to interpret the blow-up of an under-resolved computation as ev-
idence of finite-time singularities for the 3D Euler equations. Thirdly, if we
believe that the numerical solution we compute leads to a finite-time blow-
up, we need to demonstrate the validity of the asymptotic blow-up rate, i.e.,
is the blow-up rate ‖ω‖L∞ ≈ C

(T−t)α asymptotically valid as t→ T? If a nu-
merical solution is well resolved only up to T0 and there is still an order-one
gap between T0 and the predicted singularity time T , then one can not apply
the Beale–Kato–Majda criterion (Beale, Kato and Majda 1984) to this fitted
singularity, since the most significant contribution to

∫ T
0 ‖ω(t)‖L∞ dt comes

from the time interval [T0, T ], but there is no accuracy in the extrapolated
solution in this time interval if (T − T0) = O(1). Finally, one also needs to
check if the blow-up rate of the numerical solution is consistent with other
non-blow-up criteria (Constantin, Fefferman and Majda 1996, Deng, Hou
and Yu 2005, Deng, Hou and Yu 2006a) which provide additional constraints
on the blow-up rate of the velocity field and the local geometric regularity on
the vortex filaments. The interplay between theory and numerics is clearly
essential in our search for Euler singularities.

Hou and Li (2006, 2007) repeated Kerr’s computations using two pseudo-
spectral methods. The first pseudo-spectral method used the standard 2/3
de-aliasing rule to remove the aliasing error. For the second pseudo-spectral
method, they used a novel 36th-order Fourier smoothing to remove the alias-
ing error. For the Fourier smoothing method, they used a Fourier smoother
along the xj-direction as follows: ρ(2kj/Nj) ≡ exp(−36(2kj/Nj)36), where
kj is the wavenumber (|kj | ≤ Nj/2). The time integration was performed
by using the classical fourth-order Runge–Kutta scheme. Adaptive time-
stepping was used to satisfy the CFL stability condition with CFL num-
ber equal to π/4. In order to perform a careful resolution study, they
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used a sequence of resolutions: 768 × 512 × 1536, 1024 × 768 × 2048 and
1536 × 1024 × 3072 in their computations. They computed the solution
up to t = 19, beyond the alleged singularity time T = 18.7 by Kerr (2005).
Their computations were carried out on the PC cluster LSSC-II in the Insti-
tute of Computational Mathematics and Scientific/Engineering Computing
of Chinese Academy of Sciences and the Shenteng 6800 cluster in the Su-
per Computing Center of the Chinese Academy of Sciences. The maximal
memory consumption in their computations was about 120 Gbytes. The
largest number of grid points is close to 5 billion.

2.4. Convergence study of spectral methods for the Burgers equation

As a first step, we demonstrate that the two pseudo-spectral methods can
be used to compute a singular solution arbitrarily close to the singularity
time. For this purpose, we perform a careful convergence study of the two
pseudo-spectral methods in both physical and spectral spaces for the 1D
inviscid Burgers equation. The advantage of using the inviscid 1D Burgers
equation is that it shares some essential difficulties with the 3D Euler equa-
tions, yet we have a semi-analytic formulation for its solution. By using
the Newton iterative method, we can obtain an approximate solution to the
exact solution up to 13 digits of accuracy. Moreover, we know exactly when
a shock singularity will form in time. This enables us to perform a careful
convergence study in both physical space and spectral space very close to
the singularity time. This provides a solid foundation to the convergence
study of the two spectral methods.

We consider the inviscid 1D Burgers equation

ut +
(
u2

2

)

x

= 0, −π ≤ x ≤ π, (2.4)

with an initial condition given by

u|t=0 = u0(x).

We impose a periodic boundary condition over [−π, π]. By the method
of characteristics, it is easy to show that the solution of the 1D Burgers
equation is given by

u(x, t) = u0(x− tu(x, t)). (2.5)

The above implicit formulation defines a unique solution for u(x, t) up to the
time when the first shock singularity develops. After the shock singularity
develops, equation (2.5) gives a multi-valued solution. An entropy condition
is required to select a unique physical solution beyond the shock singularity
(LeVeque 1992).

We now use a standard pseudo-spectral method to approximate the so-
lution. Let N be an integer, and let h = π/N . We denote by xj = jh
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(j = −N, . . . , N) the discrete grid points over the interval [−π, π]. To
describe the pseudo-spectral methods, we recall that the discrete Fourier
transform of a periodic function u(x) with period 2π is defined by

ûk =
1

2N

N∑

j=−N+1

u(xj)e−ikxj .

The inversion formula reads

u(xj) =
N∑

k=−N+1

ûkeikxj .

We note that ûk is periodic in k with period 2N . This is an artifact of the
discrete Fourier transform, and the source of the aliasing error. To remove
the aliasing error, one usually applies some kind of de-aliasing filtering when
we compute the discrete derivative. Let ρ(k/N) be a cut-off function in the
spectrum space. A discrete derivative operator may be expressed in the
Fourier transform as

(̂Dhu)k = ikρ(k/N)ûk, k = −N + 1, . . . , N. (2.6)

Both the 2/3 de-aliasing rule and the Fourier smoothing method can be
described by a specific choice of the high-frequency cut-off function, ρ (also
known as Fourier filter). For the 2/3 de-aliasing rule, the cut-off function is
chosen to be

ρ(k/N) =

{
1, if |k/N | ≤ 2/3,
0, if |k/N | > 2/3.

(2.7)

In our computations, in order to obtain an alias-free computation on a grid
of M points for a quadratic nonlinear equation, we apply the above filter
to the high wavenumbers so as to retain only (2/3)M unfiltered wavenum-
bers before making the coefficient-to-grid Fast Fourier Transform. This de-
aliasing procedure is alternatively known as the 3/2 de-aliasing rule because
to obtain M unfiltered wavenumbers one must compute nonlinear products
in physical space on a grid of (3/2)M points: see p. 229 of Boyd (2000) for
more discussions.

For the Fourier smoothing method, we choose ρ as follows:

ρ(k/N) = e−α(|k|/N)m
, (2.8)

with α = 36 and m = 36. In our implementation, both filters are applied
to the numerical solution at every time step. Thus, for the 2/3 de-aliasing
rule, the Fourier modes with wavenumbers |k| ≥ 2/3N are always set to
zero. Thus there is no aliasing error being introduced in our approximation
of the nonlinear convection term. For the Fourier smoothing method, the
nonlinear term will have some non-zero modes beyond the 2/3 point cut-off
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Figure 2.1. The profile of the Fourier smoothing, exp(−36(x)36), as
a function of x. The vertical line corresponds to the cut-off point in
the Fourier spectrum in the 2/3 de-aliasing rule. We can see that
using this Fourier smoothing we keep about 12 ∼ 15% more modes
than those using the 2/3 de-aliasing rule.

point in the Fourier space. However, these non-zero modes will accumulate
in time to pollute the solution.

The Fourier smoothing method we choose is based on three considera-
tions. The first one is that the aliasing instability is introduced by the
highest-frequency Fourier modes. As demonstrated in Goodman, Hou and
Tadmor (1994), as long as one can damp out a small portion of the highest-
frequency Fourier modes, the mild instability caused by the aliasing error
can be under control. The second observation is that the magnitude of
the Fourier coefficient is decreasing with respect to the wavenumber |k|
for a function that has a certain degree of regularity. Typically, we have
|ûk| ≤ C/(1 + |k|m) if the mth derivative of a function u is bounded in L1.
Thus the high-frequency Fourier modes have a relatively smaller contribu-
tion to the overall solution than the low- to intermediate-frequency modes.
The third observation is that one should not cut off high-frequency Fourier
modes abruptly to avoid the Gibbs phenomenon and the loss of the L2-
energy associated with the solution. This is especially important when we
compute a nearly singular solution whose high-frequency Fourier coefficient
has a very slow decay.

Based on the above considerations, we choose a smooth cut-off function
which decays exponentially fast with respect to the high wavenumber. In
our cut-off function, we choose the parameters α = 36 and m = 36. These
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two parameters are chosen to achieve two objectives. (i) When |k| is close
to N , the cut-off function reaches machine precision, i.e., 10−16. (ii) The
cut-off function remains very close to 1 for |k| < 4N/5, and decays rapidly
and smoothly to zero beyond |k| = 4N/5. In Figure 2.1, we plot the cut-
off function ρ(x) as a function of x. The cut-off function used by the 2/3
de-aliasing rule is plotted on top of the cut-off function used by the Fourier
smoothing method. We can see that the Fourier smoothing method keeps
about 12 ∼ 15% more modes than the 2/3 de-aliasing method. In this paper,
we will demonstrate by our numerical experiments that the extra modes we
keep by the Fourier smoothing method give an accurate approximation of
the correct high-frequency Fourier modes.

We have performed a sequence of resolution studies with the largest reso-
lution being N = 16384 (Hou and Li 2007). Our extensive numerical results
demonstrate that the pseudo-spectral method with the high-order Fourier
smoothing (the Fourier smoothing method for short) gives a much more
accurate approximation than the pseudo-spectral method with the 2/3 de-
aliasing rule (the 2/3 de-aliasing method for short). One of the interesting
observations is that the unfiltered high-frequency coefficients in the Fourier
smoothing method approximate accurately the corresponding exact Fourier
coefficients. Moreover, we observe that the Fourier smoothing method cap-
tures about 12 ∼ 15% more effective Fourier modes than the 2/3 de-aliasing
method in each dimension: see Figure 2.2. The gain is even higher for the 3D
Euler equations since the number of effective modes in the Fourier smooth-
ing method is higher in three dimensions. Further, we find that the error
produced by the Fourier smoothing method is highly localized near the re-
gion where the solution is most singular. In fact, the pointwise error decays
exponentially fast away from the location of the shock singularities. On the
other hand, the error produced by the 2/3 de-aliasing method spreads out
to the entire domain as we approach the singularity time: see Figure 2.3.

2.5. The high-resolution 3D Euler computations of Hou and Li (2006, 2007 )

Hou and Li (2006) performed high-resolution computations of the 3D Euler
equations using the initial data for the two antiparallel vortex tubes. They
used the same initial condition whose analytic formula was given by Kerr
(see Section III of Kerr (1993), and also Hou and Li (2006) for corrections
of some typos in the description of the initial condition in Kerr (1993)).
However, there was some minor difference between their discretization and
Kerr’s discretization. Hou and Li used a pseudo-spectral discretization in all
three directions, while Kerr used a pseudo-spectral discretization only in the
x- and y-directions and used a Chebyshev discretization in the z-direction.
Based on the results of early tests, positive vorticity in the symmetry plane
was imposed in the initial condition of Kerr (1993). How this was imposed
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Figure 2.2. Comparison of Fourier spectra of the two methods on different
resolutions at a sequence of times. (a) N = 4096, (b) N = 8192. Dashed lines,
‘exact’ spectra; solid lines, Fourier smoothing method; dash-dotted lines, 2/3
de-aliasing method. Times, t = 0.9, 0.95, 0.975, 0.9875 respectively (from
bottom to top). Initial condition, u0(x) = sin(x). Singularity time for this
initial condition, T = 1.
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Figure 2.3. The pointwise errors of the two pseudo-spectral methods as a function
of time using three different resolutions. The plot is in a log scale. (a) N = 1024,
(b) N = 2048, both at t = 0.9875. Initial condition, u0(x) = sin(x). The error of
the 2/3 de-aliasing method (upper curve) is highly oscillatory and spreads out
over the entire domain, while the error of the Fourier smoothing method (lower
curve) is highly localized near the location of the shock singularity.
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as the vorticity field was mapped onto the Chebyshev mesh was not doc-
umented by Kerr (1993). This has led to some ambiguity in reproducing
that initial condition which is being resolved by Kerr’s group (private com-
munication).

We will summarize the main findings of Hou and Li (2006) in the rest
of Section 2. We first illustrate the dynamic evolution of the vortex tubes.
In Figure 2.4, we plot the isosurface of the 3D vortex tubes at t = 0 and
t = 6 respectively. As we can see, the two initial vortex tubes are very
smooth and relatively symmetric. Due to the mutual attraction of the two
antiparallel vortex tubes, the two vortex tubes approach each other and
become flattened dynamically. By time t = 6, there is already a significant
flattening near the centre of the tubes. In Figure 2.5, we plot the local
3D vortex structure of the upper vortex tube at t = 17. By this time,
the 3D vortex tube has essentially turned into a thin vortex sheet with
rapidly decreasing thickness. The vortex lines become relatively straight.
The vortex sheet rolls up near the left edge of the sheet.

In order to see better the dynamic development of the local vortex struc-
ture, we plot a sequence of vorticity contours on the symmetry plane at
t = 17.5, 18, 18.5, and 19, respectively, in Figure 2.6. From these results, we
can see that the vortex sheet is compressed in the z-direction. It is clear
that a thin layer (or a vortex sheet) is formed dynamically. The head of
the vortex sheet is a bit thicker than the tail at the beginning. The head of
the vortex sheet begins to roll up around t = 16. By the time t = 19, the
head of the vortex sheet has travelled backward for quite a distance, and
the vortex sheet has been compressed quite strongly along the z-direction.

We would like to make a few important observations. First of all, the
maximum vorticity at a later stage of the computation is actually located
near the rolled-up region of the vortex sheet and moves away from the
bottom of the vortex sheet. Thus the mechanism of strong compression
between the two vortex tubes becomes weaker dynamically at the later
time. Secondly, the location of maximum strain and that of maximum
vorticity separate as time increases. Thirdly, the relatively ‘strong’ growth
of the maximum velocity between t = 15 and t = 17 becomes saturated
after t = 17 when the location of maximum vorticity moves to the rolled-
up region: see Figure 2.14. All these factors contribute to the dynamic
depletion of vortex stretching.

We now perform a convergence study for the two numerical methods
using a sequence of resolutions. For the Fourier smoothing method, we use
the resolutions 768 × 512 × 1536, 1024 × 768 × 2048, and 1536 × 1024 ×
3072 respectively. Except for the computation on the largest resolution,
1536 × 1024 × 3072, all computations are carried out from t = 0 to t = 19.
The computation on the final resolution, 1536 × 1024 × 3072, is started
from t = 10 with the initial condition given by the computation with the
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Figure 2.4. The 3D view of the vortex tube for t = 0 and t = 6. The
tube is the isosurface at 60% of the maximum vorticity. The ribbons
on the symmetry plane are the contours at other different values.

Figure 2.5. The local 3D vortex structures of the upper vortex tube
and vortex lines around the maximum vorticity at t = 17.
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Figure 2.6. The contour of axial vorticity of the upper
vortex tube around the maximum vorticity on the
symmetry plane (the xz-plane) at t = 17.5, 18, 18.5, 19.
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Figure 2.7. The energy spectra versus wavenumbers. The
dashed lines and dash-dotted lines are the energy spectra,
with resolution 1024 × 768 × 2048, using the 2/3 de-aliasing
rule and Fourier smoothing, respectively. The times for the
spectra lines are t = 15, 16, 17, 18, 19 respectively.

resolution 1024 × 768 × 2048. For the 2/3 de-aliasing method, we use the
resolutions 512 × 384 × 1024, 768 × 512 × 1536 and 1024 × 768 × 2048
respectively. The computations using these three resolutions are all carried
out from t = 0 to t = 19. See Hou and Li (2006, 2007) for more details.

In Figure 2.7, we compare the Fourier spectra of the energy obtained
by using the 2/3 de-aliasing method with those obtained by the Fourier
smoothing method. For a fixed resolution, 1024 × 768 × 2048, we can see
that the Fourier spectra obtained by the Fourier smoothing method retain
more effective Fourier modes than those obtained by the 2/3 de-aliasing
method. This can be seen by comparing the results with the correspond-
ing computations using a higher resolution, 1536 × 1024 × 3072 (the solid
lines). Moreover, the Fourier smoothing method does not give the spuri-
ous oscillations in the Fourier spectra. In comparison, the Fourier spectra
obtained by the 2/3 de-aliasing method produce some spurious oscillations
near the 2/3 cut-off point. We would like to emphasize that the Fourier
smoothing method conserves the total energy extremely well. More studies
including the convergence of the enstrophy spectra can be found in Hou and
Li (2006, 2007).

It is worth emphasizing that a significant portion of those Fourier modes
beyond the 2/3 cut-off position are still accurate for the Fourier smoothing
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method. This portion of the Fourier modes that go beyond the 2/3 cut-off
point is about 12 ∼ 15% of total number of modes in each dimension. For
3D problems, the total number of effective modes in the Fourier smoothing
method is about 20% more than that in the 2/3 de-aliasing method. For
our largest resolution, we have about 4.8 billion unknowns. An increase of
20% in the effective Fourier modes represents a very significant increase in
the resolution for a large-scale computation.

2.6. Comparison of the two spectral methods in physical space

Next, we compare the solutions obtained by the two methods in physical
space for the velocity field and the vorticity. In Figure 2.8, we compare the
maximum velocity as a function of time computed by the two methods using
resolution 1024×768×2048. The two solutions are almost indistinguishable.
In Figure 2.9, we plot the maximum vorticity as a function of time. The
two solutions also agree reasonably well. However, the comparison of the
solutions obtained by the two methods at resolutions lower than 1024 ×
768 × 2048 shows more significant differences between the two methods:
see Figure 2.10.

To understand better how the two methods differ in their performance,
we examine the contour plots of the axial vorticity in Figures 2.11, 2.12 and
2.13. As we can see, the vorticity computed by the 2/3 de-aliasing method
already develops small oscillations at t = 17. The oscillations grow bigger
by t = 18 (see Figure 2.12), and bigger still at t = 19 (see Figure 2.13). We
note that the oscillations in the axial vorticity contours concentrate near
the region where the magnitude of vorticity is close to zero. Thus they have
less of an effect on the maximum vorticity. On the other hand, the solution
computed by the Fourier smoothing method is still relatively smooth.

2.7. Dynamic depletion of vortex stretching

In this section, we present some convincing numerical evidence which shows
that there is a strong dynamic depletion of vortex stretching due to local
geometric regularity of the vortex lines. We first present the result on the
growth of the maximum velocity in time: see Figure 2.14. The growth rate
of the maximum velocity plays a critical role in the non-blow-up criteria
of Deng, Hou and Yu (2005, 2006a). As we can see from Figure 2.14, the
maximum velocity remains bounded up to t = 19. This is in contrast to the
claim in Kerr (2005) that the maximum velocity blows up like O((T−t)−1/2)
with T = 18.7. We note that the velocity field is smoother than the vorticity
field. Thus it is easier to resolve the velocity field than the vorticity field.
We observe an excellent agreement between the maximum velocity fields
computed by the two largest resolutions. Since the velocity field is bounded,
the first condition of Theorem 2.1 is satisfied by taking A = 0. Furthermore,
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Figure 2.8. Comparison of maximum velocity as a function of time
computed by two methods. Solid line, solution obtained by the
Fourier smoothing method; dashed line, solution obtained by the 2/3
de-aliasing method. Resolution 1024 × 768 × 2048 for both methods.
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Figure 2.9. Comparison of maximum vorticity as a function of time
computed by two methods. Solid line, solution obtained by the
Fourier smoothing method; dashed line, solution obtained by the 2/3
de-aliasing method. Resolution 1024 × 768 × 2048 for both methods.
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Figure 2.10. Comparison of maximum vorticity as a function of time
computed by two methods. Solid line, solution obtained by the
Fourier smoothing method; dashed line, solution obtained by the 2/3
de-aliasing method. Resolution 768 × 512 × 1024 for both methods.

(a)

(b)

Figure 2.11. Comparison of axial vorticity contours at t = 17 computed
by two methods. (a) Solution obtained by the 2/3 de-aliasing method,
(b) solution obtained by the Fourier smoothing method. Resolution
1024 × 768 × 2048 for both methods.
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(a)

(b)

Figure 2.12. Comparison of axial vorticity contours at t = 18 computed
by two methods. (a) Solution obtained by the 2/3 de-aliasing method,
(b) solution obtained by the Fourier smoothing method. Resolution
1024 × 768 × 2048 for both methods.

(a)

(b)

Figure 2.13. Comparison of axial vorticity contours at t = 19 computed
by two methods. (a) Solution obtained by the 2/3 de-aliasing method,
(b) solution obtained by the Fourier smoothing method. Resolution
1024 × 768 × 2048 for both methods.
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since both ∇ · ξ and κ are bounded by O((T − t)−1/2) in the inner region
of size (T − t)1/2 × (T − t)1/2 × (T − t) (Kerr 2005), the second condition
of Theorem 2.1 is satisfied with B = 1/2 by taking a segment of the vortex
line with length (T − t)1/2 within this inner region. Thus Theorem 2.1 can
be applied to our computation, which implies that the solution of the 3D
Euler equations remains smooth at least up to T = 19.

We also study the maximum vorticity as a function of time. The maxi-
mum vorticity is found to increase rapidly from the initial value of 0.669 to
23.46 at the final time t = 19, a factor of 35 increase from its initial value.
Our computations show no sign of finite-time blow-up of the 3D Euler equa-
tions up to T = 19, beyond the singularity time predicted by Kerr. The
maximum vorticity computed by resolution 1024 × 768 × 2048 agrees very
well with that computed by resolution 1536 × 1024 × 3072 up to t = 17.5.
There is some mild disagreement towards the end of the computation. This
indicates that a very high space resolution is needed to capture the rapid
growth of maximum vorticity at the final stage of the computation.

In order to understand the nature of the dynamic growth in vorticity,
we examine the degree of nonlinearity in the vortex stretching term. In
Figure 2.15, we plot the quantity, ‖ξ · ∇u · ω‖∞, as a function of time.
If the maximum vorticity indeed blew up like O((T − t)−1), as alleged in
Kerr (1993), this quantity should have been quadratic as a function of max-
imum vorticity. We find that there is tremendous cancellation in this vortex
stretching term. It actually grows more slowly than C‖	ω‖∞ log(‖	ω‖∞): see
Figure 2.15. It is easy to show that ‖ξ · ∇u · ω‖∞ ≤ C‖	ω‖∞ log(‖	ω‖∞)
would imply at most doubly exponential growth in the maximum vorticity.
Indeed, as demonstrated by Figure 2.16, the maximum vorticity does not
grow more rapidly than doubly exponential in time. We have also gener-
ated a similar plot by extracting the data from Kerr (1993). We find that
log(log(‖ω‖∞)) basically scales linearly with respect to t from 14 ≤ t ≤ 17.5
when Kerr’s computations are still reasonably resolved. This implies that
the maximum vorticity up to t = 17.5 in his computations does not grow
more rapidly than doubly exponential in time. This is consistent with our
conclusion.

We study the decay rate in the energy spectrum in Figure 2.17 at t =
16, 17, 18, 19. A finite-time blow-up of enstrophy would imply that the en-
ergy spectrum decays no more rapidly than |k|−3. Our computations show
that the energy spectrum approaches |k|−3 for |k| ≤ 100 as time increases
to t = 19. This is in qualitative agreement with Kerr’s results. Note that
there are fewer than 100 modes available along the |kx|- or |ky|-direction
in Kerr’s computations: see Figure 18(a),(b) of Kerr (1993). On the other
hand, our computations show that the high-frequency Fourier spectrum for
100 ≤ |k| ≤ 1300 decays much more rapidly than |k|−3, as one can see from
Figure 2.17. This indicates that there is no blow-up in enstrophy.
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Figure 2.14. Maximum velocity ‖u‖∞ in
time using three different resolutions.
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Figure 2.15. Study of the vortex stretching term in time, resolution
1536 × 1024 × 3072. The inequality |ξ · ∇u · ω| ≤ c1|ω| log |ω| and
D
Dt |ω| = ξ · ∇u · ω implies |ω| bounded by a double exponential.
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Figure 2.16. The plot of log log ‖ω‖∞ versus
time, resolution 1536 × 1024 × 3072.
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Figure 2.17. The energy spectra for velocity at t = 15, 16, 17, 18, 19
(from bottom to top) in log-log scale. Dashed line, k−3.
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Table 2.1. The alignment of the vorticity vector and the eigenvectors
of S around the point of maximum vorticity with resolution
1536 × 1024 × 3072. Here, θi is the angle between the ith eigenvector
of S and the vorticity vector.

Time |ω| λ1 θ1 λ2 θ2 λ3 θ3

16.012 5.628 −1.508 89.992 0.206 0.007 1.302 89.998
16.515 7.016 −1.864 89.995 0.232 0.010 1.631 89.990
17.013 8.910 −2.322 89.998 0.254 0.006 2.066 89.993
17.515 11.430 −2.630 89.969 0.224 0.085 2.415 89.920
18.011 14.890 −3.625 89.969 0.257 0.036 3.378 89.979
18.516 19.130 −4.501 89.966 0.246 0.036 4.274 89.984
19.014 23.590 −5.477 89.966 0.247 0.034 5.258 89.994

It is interesting to ask how the vorticity vector aligns with the eigenvec-
tors of the deformation tensor. Recall that the vorticity equations can be
written as

∂

∂t
ω + (u · ∇)ω = S · ω, S =

1
2
(∇u + ∇Tu) (2.9)

(see Majda and Bertozzi (2002)). Let λ1 < λ2 < λ3 be the three eigenvalues
of S. The incompressibility condition implies that λ1 + λ2 + λ3 = 0. If the
vorticity vector aligns with the eigenvector corresponding to λ3, which gives
the maximum rate of stretching, then it is very likely that the 3D Euler
equations would blow up in a finite time.

In Table 2.1, we document the alignment information of the vorticity
vector around the point of maximum vorticity with resolution 1536×1024×
3072. In this table, θi is the angle between the ith eigenvector of S and the
vorticity vector. One can see clearly that for 16 ≤ t ≤ 19 the vorticity
vector at the point of maximum vorticity is almost perfectly aligned with
the second eigenvector of S. Note that the second eigenvalue, λ2, is about
20 times smaller in magnitude than the largest eigenvalue λ3, and does not
grow much in time. The alignment of the vorticity vector with the second
eigenvector of the deformation tensor is another indication that there is a
strong dynamic depletion of vortex stretching.

2.8. Global regularity of large anisotropic initial data

The numerical studies of the 3D Euler equations by Hou and Li (2006)
strongly suggest that the support of maximum vorticity becomes severely
flattened and develops an anisotropic scaling as vorticity increases rapidly in
time. This seems quite generic and is a consequence of the incompressibility
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and the Lagrangian structure of the vorticity equation. Convection plays
an essential role in producing this anisotropic structure of the solution.
Motivated by the desire to understand how the local anisotropic structure
of the solution near the support of maximum vorticity may lead to the
depletion of vortex stretching, Hou, Lei and Li (2008) recently studied the
3D axisymmetric Navier–Stokes equations with large anisotropic data. They
proved the global regularity of the 3D Navier–Stokes equations for a family
of large anisotropic initial data. Moreover, they obtained a global bound of
the solution in terms of its initial data in some Lp-norm. Their results also
revealed some interesting dynamic growth behaviour of the solution due to
the interaction between the axial vorticity and the the derivative of vorticity.

Specifically, let uθ and ωθ be the angular velocity and vorticity compo-
nents of the 3D axisymmetric Navier–Stokes equations. They considered
initial data for uθ and ωθ that have the following scaling property:

uθ(r, z, 0) =
1

ε1−δ
U0(εr, z), ωθ(r, z, 0) =

1
ε1−δ

W0(εr, z), (2.10)

where r =
√
x2 + y2, δ and ε are some small positive parameters, and the

rescaled profiles U0/r andW0/r are bounded in L2p and L2q, respectively, for
some p and q with p = 2q; note that uθ and ωθ must satisfy a compatibility
condition: uθ|r=0 = 0 = ωθ|r=0 (Liu and Wang 2006). We remark that
these initial data are not small. In fact, we have

‖u0‖L2(R2×[0,1])‖∇u0‖L2(R2×[0,1]) =
C0

ε4−2δ
� 1,

for ε small, where u0 is the initial velocity vector. Thus the classical regular-
ity analysis for small initial data does not apply to these sets of anisotropic
initial data.

Hou, Lei and Li (2008) proved the global regularity of the 3D axisym-
metric Navier–Stokes equations for initial data (2.10) by exploring the an-
isotropic structure of the solution for ε small. They also obtained a global
bound on ‖uθ/r‖L2p and ‖ωθ/r‖L2q in terms of their initial data. Note
that by using the scaling invariance property of the Navier–Stokes equa-
tions, their global regularity result also applies to the following rescaled
initial data:

uθ(r, z, 0) =
1

ε2−δ
U0

(

r,
z

ε

)

, ωθ(r, z, 0) =
1

ε3−δ
W0

(

r,
z

ε

)

, (2.11)

and

uθ(r, z, 0) =
1
ε
U0

(
r

ε1−δ
,
z

ε

)

, ωθ(r, z, 0) =
1
ε2
W0

(
r

ε1−δ
,
z

ε

)

. (2.12)

Note that the parameters ε in the initial data (2.10)–(2.11) and δ in (2.12)
measure the degree of anisotropy of the initial data. If δ = 0, then the
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initial data (2.12) become isotropic, i.e.,

u0(x, y, z) =
1
ε
U0

(
x

ε
,
y

ε
,
z

ε

)

.

Their analysis would break down when there is no anisotropic scaling in
the initial data, i.e., δ = 0. Clearly, if the analysis could be extended to
the case of δ = 0, one would prove the global regularity of the 3D axisym-
metric Navier–Stokes equations for general initial data by using the scaling
invariance property of the Navier–Stokes equations. It is interesting to note
that by using an anisotropic scaling of the initial data, we turn the global
regularity of the 3D Navier–Stokes equations into a critical case of δ = 0.

We remark that the global regularity results of Hou, Lei and Li (2008)
were obtained on a regular size domain, R2 × [0, 1], for initial data (2.10).
In this sense, their results are different from those global regularity results
obtained for a thin domain, Ωε = Q1 × [0, ε] with Q1 being a bounded do-
main in R2. The global regularity of the 3D Navier–Stokes equations in
a thin domain of the form Ωε has been studied by Raugel and Sell in a
series of papers (Raugel and Sell 1993a, 1994, 1993b). They proved the
global regularity of the 3D Navier–Stokes equations under the assumption
that ‖∇u0‖2

L2(Ωε)
≤ C0 ln 1

ε . This is an improvement over the classical global
regularity result for small data, which requires ‖∇u0‖2

L2(Ωε)
≤ C∗ε (Raugel

and Sell 1993a). One may interpret the global regularity result of Hou,
Lei and Li with initial data (2.11) as a result on a generalized thin do-
main. Note that the initial data given by (2.11) satisfy the following bound:
‖∇u0‖2

L2(Ωε)
= C0ε

−5+2δ (here δ > 0 can be made arbitrarily small), which
is much larger than the corresponding bound C0 ln 1

ε required by the global
regularity analysis of Raugel and Sell (1993a, 1994, 1993b).

3. Dynamic stability of 3D Navier–Stokes equations

The axisymmetric 3D Navier–Stokes equation with swirl is perhaps the sim-
plest form of the 3D Navier–Stokes equations, yet still retains the most es-
sential difficulties of the 3D Navier–Stokes equations. It has attracted a lot
of attention in recent years. Although some partial progress has been made
in studying the global regularity of the axisymmetric Navier–Stokes equa-
tions with swirl using energy estimates (see, e.g., Chae and Lee (2002) and
references cited there), the question of global regularity for general initial
data is still an open question.

Hou and Li (2008a) studied the dynamic stability of the axisymmetric
Navier–Stokes equations with swirl via a new 1D model. This model is
derived from the axisymmetric Navier–Stokes equations along the symmetry
axis. Surprisingly, this model is an exact reduction of the 3D axisymmetric
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Navier–Stokes equations along the symmetry axis. It captures the essential
nonlinear features of the 3D Navier–Stokes equations. One of the important
findings by Hou and Li (2008a) was that the convection term plays an
essential role in cancelling some of the vortex stretching terms. Specifically,
they found a positive Lyapunov function which satisfies a new conservation
law and a maximum principle. This holds for both the viscous and inviscid
cases. This a priori pointwise estimate plays a critical role in obtaining
nonlinear stability and global regularity of the 1D model. Using this a priori
estimate, they proved global regularity of the 3D Navier–Stokes equations
for a family of large data, which can experience large transient dynamic
growth but remain smooth for all times.

It is worth emphasizing that such subtle dynamic stability properties of
the 3D Navier–Stokes equations would have been completely missed by using
the traditional energy estimates. Traditional energy estimates are too crude
to capture some of the most essential properties of the 3D incompressible
Navier–Stokes equations. To illustrate its limitations, we briefly review how
the energy estimates are used in proving global regularity of the 3D Navier–
Stokes equations.

For incompressible Navier–Stokes equations, one of the most important
a priori estimates is the energy identity. More precisely, for any strong
solution u, we have

1
2

d
dt

∫
|u|2 dx + ν

∫
|∇u|2 dx = 0, (3.1)

by observing
∫

u·(u·∇u) dx = −1
2

∫
(∇·u)|u|2 dx = 0, since u is divergence-

free. Unfortunately, this energy identity is not strong enough to rule out
finite-time singularities. To prove global regularity, we need to obtain con-
trol in a stronger norm, either in ‖u‖Lp with p ≥ 3 or in ‖ω‖L2 . To illustrate
the main difficulty of the traditional energy estimates, let us perform energy
estimates for the vorticity equation:

1
2

d
dt

∫
|ω|2 dx + ν

∫
|∇ω|2 dx =

∫
ω · ∇u · ω dx. (3.2)

Again, the convection term does not contribute to the L2-norm of vorticity
(or any Lp-norm with p > 1). The main difficulty is to control the vortex
stretching term. Using the Sobolev embedding theory, one can show that

∫
ω · ∇u · ω dx ≤ Cν

(∫
|ω|2 dx

)3

+
ν

2

∫
|∇ω|2 dx, (3.3)

which can not be improved. This implies that

1
2

d
dt

∫
|ω|2 dx +

ν

2

∫
|∇ω|2 dx ≤ Cν

(∫
|ω|2 dx

)3

. (3.4)
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Unfortunately, the above estimate does not imply global regularity for large
data even if we use the energy identity (3.1). However, the estimate (3.4)
can be used to obtain global regularity for small initial data. To see this,
we substitute the following interpolation inequality,

(∫
|ω|2 dx

)2

= ‖ω‖4
L2 ≤ C0‖u‖2

L2‖∇ω‖2
L2 , (3.5)

into (3.4) to obtain

1
2

d
dt

‖ω‖2
L2 ≤

(

CνC0‖u‖2
L2‖ω‖2

L2 − ν

2

)

‖∇ω‖2
L2 ≤ 0, (3.6)

provided that

CνC0‖u0‖2
L2‖ω0‖2

L2 ≤ ν

2
. (3.7)

Since ‖u(t)‖2
L2 ≤ ‖u0‖2

L2 for all t, condition (3.7) and inequality (3.6) imply
that ‖ω(t)‖2

L2 ≤ ‖ω0‖2
L2 for all times. Note that ‖ω0‖2

L2 = ‖∇u0‖2
L2 . Thus

we can also replace (3.7) by

CνC0‖u0‖2
L2‖∇u0‖2

L2 ≤ ν

2
. (3.8)

Due to the incompressibility condition, convection plays no role in the
energy estimate. The same estimate can be also applied to the following
nonlinear diffusion equation:

wt = w2 + ν∆w. (3.9)

An energy estimate gives

1
2

d
dt

∫
|w|2 dx + ν

∫
|∇w|2 dx =

∫
w3 dx. (3.10)

Using an embedding inequality similar to (3.3), we get

1
2

d
dt

∫
|w|2 dx +

ν

2

∫
|∇w|2 dx ≤ Cν

(∫
|w|2 dx

)3

, (3.11)

which is identical to (3.4).
However, it is well known that (3.9) can develop a finite-time isotropic

self-similar blow-up solution, which does not violate the energy identity
(3.1), in the sense that

∫ T
0 ‖w(t)‖2

L2 dt <∞. The above analysis shows that
energy estimates can not distinguish a nonlinear diffusion equation, which
has a finite-time blow-up solution, from the 3D Navier–Stokes equations,
which have completely different physical properties and may not necessarily
blow up in finite time.
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3.1. Reformulation of 3D axisymmetric Navier–Stokes equations

Consider the 3D axisymmetric incompressible Navier–Stokes equations

uθ
t + uruθ

r + uzuθ
z = ν

(

∇2 − 1
r2

)

uθ − 1
r
uruθ, (3.12)

ωθ
t + urωθ

r + uzωθ
z = ν

(

∇2 − 1
r2

)

ωθ +
1
r

(
(uθ)2

)
z
+

1
r
urωθ, (3.13)

−
(

∇2 − 1
r2

)

ψθ = ωθ, (3.14)

where r =
√
x2 + y2, uθ, ωθ and ψθ are the angular components of the

velocity, vorticity and stream function respectively, and

ur = −(ψθ)z uz =
1
r
(rψθ)r.

Note that equations (3.12)–(3.14) completely determine the evolution of the
3D axisymmetric Navier–Stokes equations.

Hou and Li (2008a) introduced the following new variables,

u1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r, (3.15)

and derived the following equivalent system that governs the dynamics of
u1, ω1 and ψ1:

∂tu1 + ur∂ru1 + uz∂zu1 = ν

(

∂2
r +

3
r
∂r + ∂2

z

)

u1 + 2u1ψ1z, (3.16a)

∂tω1 + ur∂rω1 + uz∂zω1 = ν

(

∂2
r +

3
r
∂r + ∂2

z

)

ω1 + (u2
1)z, (3.16b)

−
(

∂2
r +

3
r
∂r + ∂2

z

)

ψ1 = ω1, (3.16c)

where ur = −rψ1z, uz = 2ψ1+rψ1r. Liu and Wang (2006) showed that if u
is a smooth velocity field, then uθ, ωθ and ψθ must satisfy the compatibility
condition uθ|r=0 = ωθ|r=0 = ψθ|r=0 = 0. Thus u1, ψ1 and ω1 are well defined
as long as the solution remains smooth.

3.2. An exact 1D model for 3D Navier–Stokes equations

Hou and Li (2008a) derived an exact 1D model along the symmetry axis
by assuming the solution is more singular along the z-direction than along
the r-direction (i.e., the solution has an locally anisotropic scaling). Along
the symmetry axis r = 0, we have ur = 0, uz = 2ψ1. Since the solution is
more singular along the z-direction, one can drop the derivatives along the
r-direction to the leading order in the reformulated Navier–Stokes equations
(note that 3

r∂r is of the same order as ∂2
r ). This gives rise to the following
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1D model:

(u1)t + 2ψ1(u1)z = ν(u1)zz + 2(ψ1)zu1, (3.17)

(ω1)t + 2ψ1(ω1)z = ν(ω1)zz + (u2
1)z, (3.18)

−(ψ1)zz = ω1. (3.19)

Note that the system (3.17)–(3.19) is already a closed system. Let ũ = u1,
ṽ = −(ψ1)z, and ψ̃ = ψ1. By integrating (3.18) with respect to z, one can
further reduce the above system to

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽũ, (3.20)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (3.21)

where ṽ = −(ψ̃)z, ṽz = ω̃, and c(t) is an integration constant to enforce
the mean of ṽ equal to zero. If we assume that the solution is periodic
with respect to z with period 1, the integration constant c(t) is equal to
3

∫ 1
0 (ṽ)2 dz − ∫ 1

0 (ũ)2 dz.
A surprising result is that the above 1D model is exact. This is stated in

the following theorem.

Theorem 3.1. Let u1, ψ1 and ω1 be the solution of the 1D model (3.17)–
(3.19) and define

uθ(r, z, t) = ru1(z, t), ωθ(r, z, t) = rω1(z, t), ψθ(r, z, t) = rψ1(z, t).

Then (uθ(r, z, t), ωθ(r, z, t), ψθ(r, z, t)) is an exact solution of the 3D Navier–
Stokes equations.

Theorem 3.1 tells us that the 1D model (3.17)–(3.19) preserves some es-
sential nonlinear structure of the 3D axisymmetric Navier–Stokes equations.

3.3. Properties of the model equation

In this section, we will study some properties of the 1D model. We first con-
sider the properties of some further simplified models obtained from these
equations. Both numerical and analytical studies are presented for these
simplified models. Based on the understanding of the simplified models, we
prove the global existence of the full 1D model.

The ODE model
To start with, we consider an ODE model by ignoring the convection and
diffusion term:

(ũ)t = −2ṽũ, (3.22)

(ṽ)t = (ũ)2 − (ṽ)2, (3.23)

with initial condition ũ(0) = ũ0 and ṽ(0) = ṽ0.
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Clearly, if ũ0 = 0, then ũ(t) = 0 for all t > 0. In this case, the equation for
ṽ is decoupled from ũ completely, and will blow up in finite time if ṽ0 < 0.
In fact, if ṽ0 < 0 and ũ0 is very small, then the solution can experience very
large growth dynamically. The growth can be made arbitrarily large if we
choose ũ0 to be arbitrarily small. However, the special nonlinear structure
of the ODE system has an interesting cancellation property which has a
stabilizing effect on the solution for large times. This is described by the
following theorem.

Theorem 3.2. Assume that ũ0 �= 0. Then the solution (ũ(t), ṽ(t)) of the
ODE system (3.22)–(3.23) exists for all times. Moreover, we have

lim
t→+∞ ũ(t) = 0, lim

t→+∞ ṽ(t) = 0. (3.24)

Proof. Inspired by the work of Constantin, Lax and Majda (1985), we
make the following change of variables: w = ũ+ iṽ. Then the ODE system
(3.22)–(3.23) is reduced to the following complex nonlinear ODE:

dw
dt

= iw2, w(0) = w0, (3.25)

which can be solved analytically. The solution has the form

w(t) =
w0

1 − iw0t
. (3.26)

In terms of the original variables, we have

ũ(t) =
ũ0(1 + ṽ0t) − ũ0ṽ0t

(1 + ṽ0t)2 + (ũ0t)2
, (3.27)

ṽ(t) =
ṽ0(1 + ṽ0t) + ũ2

0t

(1 + ṽ0t)2 + (ũ0t)2
. (3.28)

It is clear from (3.27)–(3.28) that the solution of the ODE system (3.22)–
(3.23) exists for all times and decays to zero as t→ +∞ as long as ũ0 �= 0.
This completes the proof of Theorem 3.2.

As we can see from (3.27)–(3.28), the solution can grow very fast in a
very short time if ũ0 is small, but ṽ0 is large and negative. For example, if
we let ṽ0 = −1/ε and ũ0 = ε for ε > 0 small, we obtain at t = ε

ũ(ε) = 1/ε3, ṽ(ε) = 1/ε.

We can see that within ε time, ũ grows from its initial value of order ε to
O(ε−3), a factor of ε−4 amplification.

The key ingredient in obtaining the global existence in Theorem 3.2 is
that the coefficient on the right-hand side of (3.22) is less than −1. For this
ODE system, there are two distinguished phases. In the first phase, if ṽ
is negative and large in magnitude, but ũ is small, then ṽ can experience
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Figure 3.1. The phase diagram for the ODE system.

tremendous dynamic growth, which is essentially governed by

ṽt = −ṽ2.

However, as ṽ becomes very large and negative, it will induce a rapid growth
in ũ. The nonlinear structure of the ODE system is such that ũ will eventu-
ally grow even faster than ṽ and force (ũ)2 − (ṽ)2 < 0 in the second phase.
From this time on, ṽ will increase in time and eventually become positive.
Once ṽ becomes positive, the nonlinear term, −ṽ2, becomes stabilizing for ṽ.
Similarly, the nonlinear term, −2ũṽ, becomes stabilizing for ũ. This subtle
dynamic stability property of the ODE system can be best illustrated by
the phase diagram in Figure 3.1.

The reaction–diffusion model
In this subsection, we consider the reaction–diffusion system:

(ũ)t = νũzz − 2ṽũ, (3.29)

(ṽ)t = νṽzz + (ũ)2 − (ṽ)2. (3.30)

As we can see for the corresponding ODE system, the structure of the
nonlinearity plays an essential role in obtaining global existence. Intuitively,
one may think that the diffusion term would help to stabilize the dynamic
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growth induced by the nonlinear terms. However, because the nonlinear
ODE system in the absence of viscosity is very unstable, the diffusion term
can actually have a destabilizing effect. Below we demonstrate this some-
what surprising fact through careful numerical experiments.

In Figures 3.2–3.4, we plot a time sequence of solutions for the above
reaction–diffusion system with the following initial data:

ũ0(z) = ε(2 + sin(2πz)), ṽ0(z) = −1
ε
− sin(2πz),

where ε = 0.001. For this initial condition, the solution is periodic in z
with period one. We use a pseudo-spectral method to discretize the coupled
system (3.29)–(3.30) in space and use the simple forward Euler discretiza-
tion for the nonlinear terms and the backward Euler discretization for the
diffusion term. In order to resolve the nearly singular solution structure, we
use N = 32, 768 grid points with an adaptive time step satisfying

∆tn
(|max{ũn}| + |min{ũn}| + |max{ṽn}| + |min{ṽn}|) ≤ 0.01,

where ũn and ṽn are the numerical solution at time tn and tn = tn−1+∆tn−1

with the initial time stepsize ∆t0 = 0.01ε. During the time iterations, the
smallest time step is as small as O(10−10).

From Figure 3.2, we can see that the magnitude of the solution ṽ increases
rapidly by a factor of 150 within a very short time (t = 0.00099817). As
the solution ṽ becomes large and negative, the solution ũ increases much
more rapidly than ṽ. By time t = 0.0010042, ũ has increased to about
2.5 × 108 from its initial condition, which is of magnitude 10−3. This is a
factor of 2.5 × 1011 increase. At this time, the minimum of ṽ has reached
−2 × 108. Note that since ũ has outgrown ṽ in magnitude, the nonlinear
term, ũ2 − ṽ2, on the right-hand side of the ṽ-equation has changed sign.
This causes the solution ṽ to split. By the time t = 0.001004314 (see
Figure 3.3), both ũ and ṽ have split and settled down to two relatively
stable travelling wave solutions. The wave on the left will travel to the left
while the wave on the right will travel to the right. Due to the periodicity
in z, the two travelling waves approach each other from the right side of the
domain. The ‘collision’ of these two travelling waves tends to annihilate each
other. In particular, the negative part of ṽ is effectively eliminated during
this nonlinear interaction. By the time t = 0.00100603 (see Figure 3.4),
the solution ṽ becomes all positive. Once ṽ becomes positive, the effect
of nonlinearity becomes stabilizing for both ũ and ṽ, as in the case of the
ODE system. From then on, the solution decays rapidly. By t = 0.2007, the
magnitude of ũ is as small as 5.2 × 10−8, and ṽ becomes almost a constant
function with value close to 5. From this time on, ũ is essentially decoupled
from ṽ and will decay like O(1/t).
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Figure 3.2. The solutions u (dark curve) and v (light curve) at
(a) t = 0.00099817, and (b) t = 0.0010042, respectively; N = 32768, ν = 1.
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Figure 3.3. The solutions u (dark) and v (light) at (a) t = 0.001004314, and
(b) t = 0.001005862, respectively; N = 32768, ν = 1.
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Figure 3.4. The solutions u (dark) and v (light) at (a) t = 0.00100603, and
(b) t = 0.2007, respectively; N = 32768, ν = 1. Note that at t = 0.00100603, the
value of u becomes quite small and is very close to the x-axis. By t = 0.2007, the
value of u is of the order 5.2 × 10−8 and is almost invisible.
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Figure 3.5. The time sequence of v in the Eulerian coordinate, N = 4096, ν = 0.
(a) t = 0, 0.0033, 0.0048, 0.0055, 0.0059, (b) t = 0.0059, 0.0062, 0.0066, 0.007,
0.0074, 0.0078, 0.0081. The solutions are plotted against the number of grid
points corresponding to the range [0, 1] in physical space.
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Figure 3.6. The time sequence of solution v in the Lagrangian
coordinate by solving the model equation with the wrong sign,
N = 8192, ν = 0. The time sequence is from t = 0 to 0.0033
corresponding to a sequence of curves from the top to the bottom.
The solutions are plotted against the number of grid points
corresponding to the range [0.482, 0.519] in physical space.

3.4. Global well-posedness of the full 1D model

We have also performed numerical studies of the full 1D model. We find
that the solution behaviour of the full 1D model is completely different from
the reaction–diffusion model. In particular, the convection term plays an
essential role in regularizing the nearly singular behaviour of the reaction–
diffusion model. In our numerical computations, we use a pseudo-spectral
method to discretize in space and a second-order Runge–Kutta discretiza-
tion in time with an adaptive time-stepping. The initial data are given by

u(α, 0) = 1, v(α, 0) = 1 − 1
δ

exp−(x−0.5)2/ε,

with ε = 0.00001 and δ =
√
επ. In Figure 3.5, we plot a sequence of

snapshots of the solution. We see that the solution experiences a similar
splitting process as in the reaction–diffusion model. On the other hand, we
observe that as the solution ṽ grows large and negative, the initial sharp
profile of ṽ becomes defocused and smoother. This is a consequence of the
incompressibility of the fluid flow. If we change the sign of the convection
velocity from 2ψ̃ to −2ψ̃, the profile of ṽ becomes focused dynamically and
seems to evolve into a focusing finite-time blow-up: see Figure 3.6.
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Based on our numerical studies, we become convinced that the solution of
the full 1D model should be regular for all times. However, it is extremely
difficult, if not impossible, to prove the global regularity of the 1D model
by using an energy type of estimates. If we multiply the ũ-equation by ũ,
and the ṽ-equation by ṽ, and integrate over z, we arrive at

1
2

d
dt

∫ 1

0
ũ2 dz = −3

∫ 1

0
(ũ)2ṽ dz − ν

∫ 1

0
ũ2

z dz, (3.31)

1
2

d
dt

∫ 1

0
ṽ2 dz =

∫ 1

0
ũ2ṽ dz − 3

∫ 1

0
(ṽ)3 dz − ν

∫ 1

0
ṽ2
z dz. (3.32)

Even for this 1D model, the energy estimate shares the some essential
difficulty as the 3D Navier–Stokes equations. It is not clear how to control
the nonlinear vortex-stretching-like terms by the diffusion term. On the
other hand, if we assume that

∫ T

0
‖ṽ‖L∞ dt <∞,

similar to the Beale–Kato–Majda non-blow-up condition for vorticity (Beale,
Kato and Majda 1984), then one can easily show that there is no blow-up
before t = T .

In order to obtain the global regularity of the 1D model, we need to use a
local estimate. The key is to obtain a pointwise estimate for a positive Lya-
punov function. Convection is found to play an essential role in cancelling
the destabilizing vortex stretching terms. Using this pointwise estimate, we
can prove that if the initial conditions for ũ and ṽ are in Cm with m ≥ 1,
then the solution remains in Cm for all times.

Theorem 3.3. (Hou and Li 2008a) Assume that ũ(z, 0) and ṽ(z, 0) are
in Cm[0, 1] with m ≥ 1 and periodic with period 1. Then the solution (ũ, ṽ)
of the 1D model will be in Cm[0, 1] for all times and for ν ≥ 0.

Proof. The key is to obtain a pointwise estimate a priori for the positive
Lyapunov function ũ2

z + ṽ2
z . Differentiating (3.20)–(3.21) with respect to z,

we get

(ũz)t + 2ψ̃(ũz)z − 2ṽũz = −2ṽũz − 2ũṽz + ν(ũz)zz, (3.33)

(ṽz)t + 2ψ̃(ṽz)z − 2ṽṽz = 2ũũz − 2ṽṽz + ν(ṽz)zz. (3.34)

Note that the convection term contributes to stability by cancelling one of
the nonlinear terms on the right-hand side. This gives

(ũz)t + 2ψ̃(ũz)z = −2ũṽz + ν(ũz)zz, (3.35)

(ṽz)t + 2ψ̃(ṽz)z = 2ũũz + ν(ṽz)zz. (3.36)
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Multiplying (3.35) by 2ũz and (3.36) by 2ṽz, we obtain

(ũ2
z)t + 2ψ̃(ũ2

z)z = −4ũũz ṽz + 2νũz(ũz)zz, (3.37)

(ṽ2
z)t + 2ψ̃(ṽ2

z)z = 4ũũz ṽz + 2νṽz(ṽz)zz. (3.38)

Now, we add (3.37) to (3.38). Surprisingly, the remaining nonlinear vortex
stretching terms cancel each other exactly. We get

(
ũ2

z + ṽ2
z

)
t
+ 2ψ̃

(
ũ2

z + ṽ2
z

)
z

= 2ν
(
ũz(ũz)zz + ṽz(ṽz)zz

)
. (3.39)

Further, we can rewrite equation (3.39) as follows:
(
ũ2

z + ṽ2
z

)
t
+ 2ψ̃

(
ũ2

z + ṽ2
z

)
z

= ν
(
ũ2

z + ṽ2
z

)
zz

− 2ν
[
(ũzz)2 + (ṽzz)2

]
. (3.40)

Now it is easy to see that (ũ2
z + ṽ2

z) satisfies a maximum principle for all
ν ≥ 0:

‖ũ2
z + ṽ2

z‖L∞ ≤ ‖(ũ0)2z + (ṽ0)2z‖L∞ .

It is worth emphasizing that the cancellation between the convection term
and the vortex stretching term takes place at the inviscid level. Viscosity
does not play an essential role here. Since ṽ has zero mean, the Poincaré
inequality implies that ‖ṽ‖L∞ ≤ C0, with C0 defined by

C0 = ‖((ũ0)2z + (ṽ0)2z
) 1

2 ‖L∞ .

The boundedness of ũ follows from the bound on ṽ, that is, ‖ũ(t)‖L∞ ≤
‖ũ0‖L∞ exp(2C0t). The higher-order regularity follows from the standard
estimates. This proves Theorem 3.3.

3.5. Construction of a family of 3D globally smooth solutions

We can use the solution from the 1D model to construct a family of glob-
ally smooth solutions for the 3D axisymmetric Navier–Stokes equations
with large initial data of finite energy. We remark that a special fea-
ture of this family of globally smooth solutions is that the solution can
potentially develop very large dynamic growth and it violates the small-
ness condition required by classical global existence results (Constantin and
Foias 1988, Temam 2001).

Theorem 3.4. (Hou and Li 2008a) Let φ(r) be a smooth cut-off func-
tion and u1, ω1 and ψ1 be the solution of the 1D model. Define

uθ(r, z, t) = ru1(z, t)φ(r) + ũ(r, z, t),

ωθ(r, z, t) = rω1(z, t)φ(r) + ω̃(r, z, t),

ψθ(r, z, t) = rψ1(z, t)φ(r) + ψ̃(r, z, t).
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Then there exists a family of globally smooth functions ũ, ω̃ and ψ̃ such
that uθ, ωθ and ψθ are globally smooth solutions of the 3D Navier–Stokes
equations with finite energy.

4. Stabilizing effect of convection for 3D Navier–Stokes

Hou and Lei (2009b) studied the stabilizing effect of the convection term
in the 3D incompressible Euler or Navier–Stokes equations using a new
3D model. This model was derived from the reformulated Navier–Stokes
equations. It shares many properties with the 3D Euler or Navier–Stokes
equations. First of all, it has the same nonlinear vortex stretching term.
Secondly, it has the same type of a priori energy identity. Thirdly, al-
most all the existing non-blow-up criteria for the 3D Euler or Navier–Stokes
equations are also valid for our model. A 3D model that satisfies all these
properties seems hard to find in general. But in terms of the equations for
the new variables, u1, ω1, and ψ1, we obtain our 3D model equations by
simply dropping the convective term from the reformulated Navier–Stokes
equations (3.16):

∂tu1 = ν

(

∂2
r +

3
r
∂r + ∂2

z

)

u1 + 2u1ψ1z, (4.1a)

∂tω1 = ν

(

∂2
r +

3
r
∂r + ∂2

z

)

ω1 + (u2
1)z, (4.1b)

−
(

∂2
r +

3
r
∂r + ∂2

z

)

ψ1 = ω1. (4.1c)

Note that (4.1) is already a closed system. The main difference between our
3D model and the Navier–Stokes equations is that we neglect the convection
term in our model. If we add the convection term back to our 3D model,
we will recover the Navier–Stokes equations.

Below we will summarize some important properties of the model equa-
tions (4.1).

4.1. Properties of the 3D model

This 3D model shares many important properties with the axisymmetric
Navier–Stokes equations. First of all, one can define an incompressible
velocity field for the 3D model,

u(t,x) = ur(t, r, z)er + uθ(t, r, z)eθ + uz(t, r, z)ez, (4.2)

uθ = ru1, u
r = −rψ1z, uz = 2ψ1 + rψ1r, (4.3)

where x = (x, y, z), r =
√
x2 + y2. It is easy to check that

∇ · u = ∂ru
r + ∂zu

z +
ur

r
= 0, (4.4)
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which is the same as the original Navier–Stokes equations.
Furthermore, Hou and Lei (2009b) proved the following energy identity

for the 3D model.

Theorem 4.1. (Energy identity (Hou and Lei 2009b)) The strong so-
lution of (4.1) satisfies

1
2

d
dt

∫ (|u1|2 + 2|Dψ1|2
)
r3 dr dz + ν

∫ (|Du1|2 + 2|D2ψ1|2
)
r3 dr dz = 0,

(4.5)

Here D is the first-order derivative operator defined in R5.

This energy identity is equivalent to that of the Navier–Stokes equations,
which has the form

1
2

d
dt

∫ (|u1|2 + |Dψ1|2
)
r3 dr dz + ν

∫ (|Du1|2 + |D2ψ1|2
)
r3 dr dz = 0.

(4.6)

Another result obtained by Hou and Lei is a non-blow-up criterion of the
3D model equations (4.1), which is an analogue of the Beale–Kato–Majda
(BKM) result for the 3D Euler and Navier–Stokes equations. For the 3D
Euler and Navier–Stokes equations, the BKM non-blow-up criterion states
that the solution u blows up at time T <∞ if and only if the accumulation of
vorticity

∫ T
0 ‖∇x×u‖L∞(R3) dt is infinite (Beale, Kato and Majda 1984). The

BKM non-blow-up criterion was later improved by Kozono and Taniuchi
(2000), who proved that the ‖ · ‖L∞-norm can be replaced by the norm
in the BMO space. This generalization is interesting because some crucial
Sobolev embedding theorems can be applied to the BMO space, but not to
the L∞-space. A non-blow-up result formulated in terms of the BMO space
has a broader range of applications.

Theorem 4.2. (Anon-blow-up criterion ofBeale–Kato–Majda type
(Hou and Lei 2009b)) A smooth solution (u1, ω1, ψ1) of the model (4.1)
for 0 ≤ t < T blows up at time t = T if and only if

∫ T

0
‖∇ × u‖BMO(R3) dt = ∞, (4.7)

where u is defined in (4.2)–(4.3).

There have been many results on the global regularity of the solutions
of the 3D Navier–Stokes equations under some additional conditions im-
posed on the solution. In particular, the papers of Prodi (1959) and Serrin
(1963) gave the following non-blow-up criterion for the solution of the 3D
Navier–Stokes equations: Any Leray–Hopf solution u to the 3D Navier–
Stokes equations on [0, T ] is smooth on [0, T ] if ‖u‖Lq

t Lp
x([0,T ]×R3) < ∞ for
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some p, q satisfying (3/p)+(2/q) ≤ 1, 3 < p ≤ ∞. A local version was later
established by Serrin (1962) for (3/p) + (2/q) < 1 and by Struwe (1988)
for (3/p) + (2/q) = 1. The highly non-trivial end-point case of p = 3 was
recently established by Iskauriaza, Seregin and Sverak (2003).

To demonstrate the similarity between the 3D model equations (4.1) and
the axisymmetric Navier–Stokes equations, Hou and Lei proved a non-blow-
up criterion of the Prodi–Serrin type for their model.

Theorem 4.3. (A non-blow-up criterion of Prodi–Serrin type (Hou
and Lei 2009b)) A weak solution (u1, ω1, ψ1) of the model (4.1) is smooth
on [0, T ] × R3 provided that

‖uθ‖Lq
t Lp

x([0,T ]×R3) <∞ (4.8)

for some p, q satisfying 3
p + 2

q ≤ 1 with 3 < p ≤ ∞ and 2 ≤ q <∞.

Finally, Hou and Lei (2009a) studied the local behaviour of the solutions
to the 3D model equations and established an analogue of the Caffarelli–
Kohn–Nirenberg partial regularity theory (Caffarelli et al. 1982) for their
model. They proved that for any suitable weak solution of the 3D model
in an open set in space-time, the one-dimensional Hausdorff measure of the
associated singular set is zero. The proof of this partial regularity result
is similar in spirit to that of Lin (1998), but there are some new technical
difficulties associated with the 3D model. One of the difficulties is in han-
dling the singularity induced by the cylindrical coordinates. This makes it
difficult to analyse the partial regularity of the 3D model in R × R3. To
overcome this difficulty, they performed their partial regularity analysis in
R × R5. By working in R5, they avoided the difficulty associated with the
coordinate singularity.

Another difficulty in obtaining our partial regularity result is that we do
not have an evolution equation for the entire velocity field. We need to
reformulate the model in terms of a new vector variable. This new variable
can be considered as a ‘generalized velocity field’ in R5. We remark that
the partial regularity theory for Navier–Stokes equations in R5 is still open
due to the lack of certain compactness. When formulating the 3D model in
R × R5, they found a 3D structure which has the same scaling as that of
the 3D Navier–Stokes equations. This is why the partial regularity analysis
can be carried out for the 3D model in R × R5 using a strategy similar to
that of Lin (1998).

Theorem 4.4. (An analogue of Caffarelli–Kohn–Nirenberg partial
regularity result (Hou and Lei 2009a)) For any suitable weak solution
of the 3D model equations (4.1) on an open set in space-time, the one-
dimensional Hausdorff measure of the associated singular set is zero.
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4.2. Potential singularity formation of the 3D model

Despite the striking similarity at the theoretical level between the 3D model
and the Navier–Stokes equations, the former displays a completely different
behaviour from the full Navier–Stokes equations. In the next subsection,
we will present numerical evidence which seems to support that the model
may develop a potential finite-time singularity from smooth initial data with
finite energy. Before we do that, we would like to gain some understanding at
the theoretical level why the 3D model may develop a finite-time singularity.
For this purpose, we consider the inviscid model by setting ν = 0 in (4.1):

∂tu1 = 2u1ψ1z, (4.9a)

∂tω1 = (u2
1)z, (4.9b)

−
(

∂2
r +

3
r
∂r + ∂2

z

)

ψ1 = ω1. (4.9c)

If we let v = log(u2
1), then we can further reduce the 3D model to the

following non-local nonlinear wave equation:

vtt = 4
(
(−∆5)−1ev

)
zz
, (4.10)

where −∆5 = −(
∂2

r + 3
r∂r +∂2

z

)
, and

∫
evr3 dr dz ≤ C0. Note that (−∆5)−1

is a positive operator. If we were to omit (−∆5)−1 from (4.10), we would
obtain a 1D nonlinear wave equation, vtt = 4(ev)zz, or

vtt = 4evvzz + 4ev(vz)2, (4.11)

which we expect to develop a finite-time singularity.

4.3. Special blow-up solutions of the 3D model

We can construct a special class of blow-up solutions by letting u1 = zũ(r, t),
ω1 = zω̃(r, t), and ψ1 = zψ̃(r, t). Then it is easy to derive the following
system for ũ(r, t), ω̃(r, t), and ψ̃(r, t):

∂tũ = 2ψ̃ũ+ ν(∂2
r +

3
r
∂r)ũ, (4.12a)

∂tω̃ = 2ũ2 + ν(∂2
r +

3
r
∂r)ω̃, (4.12b)

−
(

∂2
r +

3
r
∂r

)

ψ̃ = ω̃. (4.12c)

Note that the nonlinear terms become local and quadratic. It is easy to show
that if the initial data are positive, then the solution of (4.12) will remain
positive for all times. Using this property, we can prove that the above
system has finite-time blow-up solutions. However, such singular solutions
have infinite energy unless we introduce a cut-off along the z-direction.
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We remark that Constantin (1986) has constructed a family of finite-time
blow-up solutions to the distorted Euler equations:

(∇u)t + (∇u)2 + ∇∇p = 0, (4.13)

where −∆p = Tr((∇u)2). We note that u is no longer divergence-free (in
fact, there is no evolution equation for u), and the model does not conserve
energy. Moreover, the blow-up solution has infinite energy.

4.4. Numerical evidence for a potential finite-time singularity

In this subsection, we present numerical evidence which seems to support
that the model may develop a potential finite-time singularity from smooth
initial data with finite energy. By exploiting the axisymmetric geometry
of the problem, we obtain a very efficient adaptive solver with an optimal
complexity which provides effective local resolutions of order 40963. With
this level of resolution, we obtain an excellent fit for the asymptotic blow-
up rate of maximum axial vorticity. If we denote by ωz the axial vorticity
component along the z-direction, we find that ‖ωz‖∞(t) ≈ C(T − t)−1 and
the potential singularity approaches the symmetry axis (the z-axis) as t→
T . Moreover, our study seems to suggest that the potential singularity is
locally self-similar and isotropic.

The initial condition considered in our numerical computations is given by

u1(z, r, 0) = (1 + sin(4πz))(r2 − 1)20(r2 − 1.2)30, (4.14)
ψ1(z, r, 0) = 0, (4.15)
ω1(z, r, 0) = 0. (4.16)

A second-order finite-difference discretization is used in space, and the clas-
sical fourth-order Runge–Kutta method is used to discretize in time. Since
we expect that the potential singularity will appear along the symmetry
axis at r = 0, we use the following coordinate transformation along the r-
direction to achieve the adaptivity by clustering the grid points near r = 0:

r = f(α) ≡ α− 0.9 sin(πα)/π. (4.17)

With this change of variables, we can achieve an effective resolution up to
40963 for the corresponding 3D problem.

We now present numerical results which show that the solution of the
viscous model becomes nearly singular. We choose the viscous coefficient to
be ν = 0.001 and perform a series of resolution studies using the adaptive
method. We have used both uniform mesh and adaptive mesh with Nz

ranging from 256 to 4096. Below we present the computational results
obtained by using the adaptive mesh with the highest resolution Nz = 4096,
Nr = 400, and ∆t = 2.5× 10−7. We will also perform a resolution study to
demonstrate that our computations are well resolved.
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From our analytical study of the 3D model, it follows by using a standard
energy estimate that if u1 is bounded, then the solution of the viscous 3D
model cannot blow up in a finite time. Thus it is sufficient to monitor the
growth of ‖u1‖∞ in time. We will present numerical evidence which seems
to support that u1 may develop a potential finite-time singularity for the
initial condition we consider. The nature of this potential singularity and
the mechanism for generating this potential singularity will be analysed in
a later subsection.

In Figure 4.1, we plot the maximum of u1 in time over the time interval
[0, 0.021] using the adaptive mesh method with Nz = 4096 and Nr = 400.
The time step is chosen to be ∆t = 2.5×10−7. We can see that ‖u1‖∞ expe-
riences a very rapid growth in time after t = 0.02. In Figure 4.1(b), we also
plot log(log(‖u1‖∞)) as a function of time. We can see clearly that ‖u1‖∞
grows much more rapidly than double exponential in time, which implies
that the solution of our model may develop a finite-time singularity. We will
present more careful analysis of this potentially singular behaviour later.

In Figures 4.2–4.3, we show a sequence of contour plots for u1 from
t = 0.014 to t = 0.021. At early times, we observe that the solution forms
two large focusing centres of u1 which approach each other. As this occurs,
these rather localized regions are squeezed and form a thin layer parallel
to the r-axis and with large gradients along the z-direction. As these re-
gions approach each other and develop a thin layer parallel to the r-axis,
the solution becomes locally z-dominant near the region where u1 achieves
its maximum. In this region, the 3D model can be approximated to the
leading order by the corresponding 1D model along the z-direction. Hou
and Lei (2009b) proved that the solution of the 1D model cannot blow up.
The solution survives this potential blow-up scenario. After t = 0.0172,
the maximum of u1 starts to decrease. The two focusing centres move
away from each other and their supports become more isotropic. As time
increases, we observe that there is a strong nonlinear interaction between
u1 and (ψ1)z, which is induced by the overlap between the support of max-
imum of u1 and the support of maximum of (ψ1)z. By the support of
maximum of u1, we mean the region in which u1 is comparable to its max-
imum. The strong alignment between u1 and (ψ1)z near the support of
maximum of u1 leads to a rapid growth of the solution which may become
singular in a finite time.

Another important observation is that as time increases, the position at
which u1 achieves its maximum also moves towards the symmetry axis. This
suggests that the potential singularity will be along the symmetry axis at
the singularity time. We note that limr→0+ u1 = 0.5 limr→0+ ω

z. Thus, the
blow-up of u1 characterizes the blow-up of the axial vorticity, ωz.

Next, we perform a detailed study for the 3D model and push our com-
putations very close to the potential singularity time. We use a sequence of
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Figure 4.1. (a) ‖u1‖∞ as a function of time over the interval [0, 0.021],
(b) log(log(‖u1‖∞)) as a function of time over the same interval. The solution
is computed by an adaptive mesh with Nz = 4096, Nr = 400, ∆t = 2.5 × 10−7,
ν = 0.001.
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Figure 4.2. (a)–(d) The contour plots of u1 for the viscous model at
t = 0.014, 0.016, 0.018 and 0.02 respectively. Adaptive mesh
computation with Nz = 4096, Nr = 400, ∆t = 2.5 × 10−7, ν = 0.001.

resolutions using both uniform and adaptive mesh. For the uniform mesh,
we use resolutions for Nz × Nr ranging from 256 × 256 to 2048 × 2048
with time steps ranging from ∆t = 5 × 10−6 to 5 × 10−7. For the adap-
tive mesh, we use Nz × Nr = 2048 × 256, Nz × Nr = 3072 × 328 and
Nz ×Nr = 4096× 400 respectively. The corresponding time steps for these
computations are ∆t = 10−6, ∆t = 5 × 10−7, and ∆t = 2.5 × 10−7 respec-
tively. With Nz × Nr = 4096 × 400, we achieve an effective resolution of
4000 × 4000 near the region of r = 0 where the solution is most singular.

To obtain further evidence for a potential finite-time singularity, we use
a systematic singularity form fit procedure to obtain a good fit for the
possible singularity of the solution. The procedure of our form fit is as
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Figure 4.3. The contour of u1 at t = 0.021 (a) and its close-up view (b) for the
viscous model computed by the adaptive mesh with Nz = 4096, Nr = 400,
∆t = 2.5 × 10−7, ν = 0.001.
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follows. We look for a finite-time singularity of the form

‖u1‖∞ ≈ C

(T − t)α
. (4.18)

We have tried several ways to determine the fitting parameters T , C and
α. Ultimately, we find that the best way is to study the inverse of ‖u1‖∞
as a function of time using a sequence of numerical resolutions. For each
resolution, we find that the inverse of ‖u1‖∞ is almost a perfect linear
function of time: see Figures 4.4 and 4.5. By using a least-squares fit of
the inverse of ‖u1‖∞, we find that α = 1 gives the best fit. The same
least-squares fit also determines the potential singularity time T and the
constant C. We remark that the O(1/(T − t)) blow-up rate of u1, which
measures the axial vorticity, is consistent with the non-blow-up criterion of
Beale–Kato–Majda type.

To confirm that the above procedure indeed gives a good fit for the po-
tential singularity, we plot ‖u1‖−1∞ as a function of time in Figure 4.4(a). We
can see that the agreement between the computed solution with Nz ×Nr =
4096×400 and the fitted solution is almost perfect. In Figure 4.4(b) we plot
‖u1‖∞ computed by our adaptive method against the form fit C/(T−t) with
T = 0.02109 and C = 8.20348. The two curves are almost indistinguishable
during the final stage of the computation from t = 0.018 to t = 0.021.

We further investigate the potential singular behaviour of the solution
by using a sequence of resolutions to study the limiting behaviour of the

Table 4.1. Resolution study of parameters T and C in the asymptotic
fit for the viscous model: ‖u1‖−1

∞ ≈ (T−t)
C using different resolutions

hz = 1/(2Nz). The resolutions we use in our adaptive computations
are Nz ×Nr = 1024 × 128, 2048 × 256, 3072 × 328 and 4096 × 400
respectively. The corresponding time steps are ∆t = 10−6, 5 × 10−7,
3.625 × 10−7 and 2.5 × 10−7 respectively. The last row is obtained by
extrapolating the second-order polynomial that interpolates the data
obtained using hz = 1/4096, 1/6144 and 1/8192.

hz T C

1/2048 0.02114 8.409
1/4096 0.0211 8.2237
1/6144 0.021093 8.20946
1/8192 0.02109 8.20348

extrapolation to hz = 0 0.021083 8.1901
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Figure 4.4. (a) The inverse of ‖u1‖∞ (solid line) versus the asymptotic fit
(dashed line) for the viscous model; (b) ‖u1‖∞ (solid line) versus the asymptotic
fit (dashed line). The asymptotic fit is of the form ‖u1‖−1

∞ ≈ (T−t)
C with

T = 0.02109 and C = 8.20348. The solution is computed by adaptive mesh with
Nz = 4096, Nr = 400, ∆t = 2.5 × 10−7; ν = 0.001.
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Figure 4.5. The inverse of ‖u1‖∞ in time for the viscous model.
The solution is computed by adaptive mesh with Nz = 1024, 2048,
3072 and 4096 respectively (ordering from top to bottom in the figure),
∆t = 10−6, 5 × 10−7, 3.625 × 10−7, and 2.5 × 10−7 respectively.
The last curve is the singularity fit by extrapolating the computational
results obtained by Nz = 2048, 3072 and 4096 to infinite resolution
Nz = ∞. The fitted curve is of the form ‖u1‖−1

∞ ≈ (T − t)/C, with
T = 0.021083 and C = 8.1901; ν = 0.001.

computed solution as we refine our resolutions. The space resolutions we use
are Nz×Nr = 1024×128, 2048×256, 3072×328 and 4096×400 respectively.
The corresponding time steps are ∆t = 10−6, 5 × 10−7, 3.625 × 10−7 and
2.5 × 10−7 respectively. For each resolution, we obtain an optimal least-
squares fit of the singularity of the form ‖u1‖−1∞ ≈ (T − t)/C. The results
are summarized in Table 4.1. Based on the fitted parameters T and C from
the three largest resolutions, we construct a second-order polynomial that
interpolates T and C through these three data points. We then use the
polynomial to extrapolate the values of T and C to the infinite resolution
limit. The extrapolated values at hz = 0 are T = 0.021083 and C = 8.1901
respectively. In Figure 4.5, we plot the inverse of ‖u1‖∞ as a function
of time using four different resolutions. We can see that as we refine the
resolution, the computed solution converges to the extrapolated singularity
limiting profile.
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Figure 4.6. The 3D view of u1 at t = 0.02 for the viscous model
computed by the adaptive mesh with Nz = 4096, Nr = 400,
∆t = 2.5 × 10−7, ν = 0.001.

Figure 4.7. The 3D view of u1 at t = 0.021 for the viscous model
computed by the adaptive mesh with Nz = 4096, Nr = 400,
∆t = 2.5 × 10−7, ν = 0.001.
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Figure 4.8. The 3D view of ω1 at t = 0.02 for the viscous model
computed by the adaptive mesh with Nz = 4096, Nr = 400,
∆t = 2.5 × 10−7, ν = 0.001.

To illustrate the nature of the nearly singular solution, we show the 3D
view of u1 as a function of r and z in Figures 4.6 and 4.7. We also show the
3D view of w1 as a function of r and z in Figure 4.8. While u1 is symmetric
with respect to z = 0.375, w1 is anti-symmetric with respect to z = 0.375.
We can see that the support of the solution u1 in the most singular region
is isotropic and appears to be locally self-similar (Hou and Lei 2009b).

Resolution study
Finally, we perform a resolution study for our computations by comparing
the computation obtained by three different resolutions, which are Nz ×
Nr = 2048 × 256, Nz × Nr = 3072 × 328, and Nz × Nr = 4096 × 400. In
Figure 4.9, we plot ‖u1‖∞ as a function of time using these three resolutions
Nz×Nr = 2048×256, Nz×Nr = 3072×328, and Nz×Nr = 4096×400 over
the time interval [0, 0.021]. We can see that while the computation with
Nz = 2048 under-resolves the solution near the end of the computation, the
solution obtained by using Nz = 3072 gives an excellent agreement with
that obtained by using Nz = 4096.

We also compare the solution of u1 at r = 0 using three different resolu-
tions. Using the partial regularity theory for the 3D model, any singularity
of our 3D model must lie on the symmetry axis, r = 0. Thus it makes
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Figure 4.9. Convergence study for ‖u1‖∞ in time for the viscous model with
three resolutions: Nz ×Nr = 2048 × 256, ∆t = 5 × 10−7 (dashed line),
Nz ×Nr = 3072 × 328, ∆t = 3.625 × 10−7 (grey line), Nz ×Nr = 4096 × 400,
∆t = 2.5 × 10−7 (solid line). Figure (a) is over the time interval [0, 0.021];
(b) is a close-up view over the time interval [0.02, 0.021]; ν = 0.001.
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Figure 4.10. Convergence study for u1 at r = 0 and t = 0.02 and t = 0.021 for
the viscous model with different resolutions. Figure (a) is the comparison
between Nz ×Nr = 2048 × 256 (solid line) and Nz ×Nr = 4096 × 400 (grey
line); (b) is the comparison between Nz ×Nr = 3072 × 328 (solid line) and
Nz ×Nr = 4096 × 400 (grey line); ν = 0.001.
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sense to perform a resolution study for the solution along the symmetry
axis which is the most singular region of the solution. In Figure 4.10(a), we
plot the solutions obtained by two resolutions using Nz ×Nr = 2048 × 256
(∆t = 5×10−7) and Nz ×Nr = 4096×400 (∆t = 2.5×10−7) on top of each
other at t = 0.02. The two solutions are almost indistinguishable. However,
the computation with Nz × Nr = 2048 × 256 is not sufficient to resolve
the nearly singular behaviour of the solution at t = 0.021. On the other
hand, the computation with Nz × Nr = 3072 × 328 (∆t = 3.625 × 10−7)
gives much improved resolution. In Figure 4.10(b) we compare the solu-
tion obtained by using Nz ×Nr = 3072 × 328 with that obtained by using
Nz × Nr = 4096 × 400 at t = 0.021. We observe that the agreement of
the two solutions is very good except near the points where u1 attains its
maximum.

4.5. Mechanism for a finite-time blow-up

To understand the mechanism for the potential blow-up of the viscous
model, we plot the solution u1 on top of (ψ1)z along the symmetry axis
r = 0 at t=0.021 in Figure 4.11. We see that there is a significant overlap
between the supports of the maximum of u1 and of the maximum of (ψ1)z.
Moreover, the solution u1 has a strong alignment with (ψ1)z near the region
of maximum of u1. The local alignment between u1 and (ψ1)z induces a
strong nonlinearity on the right-hand side of the u1-equation, which has the
form 2(ψ1)zu1. This strong alignment between u1 and (ψ1)z is the main
mechanism for the potential finite-time blow-up of the 3D model. Similar
alignment between u1 and (ψ1)z near the region of maximum u1 is also
observed for the inviscid model (Hou and Lei 2009b).

It is interesting to note that the position at which u1 attains its maximum
does not coincide with that at which (ψ1)z attains its maximum. In fact,
at the point where u1 reaches its maximum, the value of (ψ1)z is relatively
small, or even negative. This misalignment between the position at which u1

attains its maximum and the position at which (ψ1)z attains its maximum
induces a dynamic motion which pushes the two focusing centres of u1 to
move away from each other. This dynamics reinforces the local alignment
between u1 and (ψ1)z. We remark that this wave-like behaviour of the
solution along the z-direction is consistent with the nonlinear non-local wave
equation (4.10) that we derived for v = log(u2

1) for the inviscid model.
As we see in the next subsection, the inclusion of the convection term

forces the two focusing centres to travel towards each other. Moreover, the
local alignment between u1 and (ψ1)z is destroyed. As a result, the solution
becomes defocused and smoother along the symmetry axis. There is no
evidence that the solution of the full Navier–Stokes equations would develop
a finite-time singularity, at least for the time interval considered here.
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Figure 4.11. u1 (solid line) versus (ψ1)z (grey line) of the viscous model along
the symmetry axis r = 0. (a) t = 0.02; (b) t = 0.021. Adaptive mesh
computation with Nz = 4096, Nr = 400, ∆t = 2.5 × 10−7, ν = 0.001.
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Figure 4.12. ‖u1‖∞ in time, the full Navier–Stokes computation using
the solution of the 3D viscous model at t = 0.02 as the initial condition.
Adaptive mesh computation with Nz = 2048, Nr = 1024, ν = 0.001.

4.6. The stabilizing effect of the convection term

In this subsection, we show that by adding back the convection term to the
3D model, which recovers the reformulated Navier–Stokes equations, the
solution behaves completely differently. The mechanism for generating the
potential finite time singularity for the 3D model is destroyed. Even if we
start with the nearly singular solution obtained by the 3D model at t = 0.02
and use it as the initial condition for the full Navier–Stokes equations, we
observe that the maximum of u1 soon decreases in time: see Figure 4.12.
It is easy to see that the 3D axisymmetric Navier–Stokes equations with
swirl cannot develop a finite-time singularity if u1 is bounded. Thus the
fact that ‖u1‖∞ is decreasing in time is a clear indication that the solution
does not develop a finite-time singularity, at least over the time interval
considered here.

We also observe that the local alignment between u1 and (ψ1)z near the
region of maximum u1 is destroyed by including the convection term (see
Figure 4.13), as is the focusing mechanism. The solution becomes defocused
(see Figure 4.14). As time evolves, the two focusing centres approach each
other. This process creates a strong internal layer orthogonal to the z-axis
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Figure 4.13. u1 (solid line) versus (ψ1)z (grey line) along the symmetry axis
r = 0. Figure (a) corresponds to t = 0.02 (the solution from the 3D viscous
model); (b) corresponds to t = 0.021 obtained by solving the full Navier–Stokes
equations. Adaptive mesh computation with Nz = 2048, Nr = 1024, ν = 0.001.
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Figure 4.14. (a) The contour of u1 at t = 0.02 obtained from the 3D
viscous model which serves as the initial condition for the full
Navier–Stokes equations. (b) The contour of u1 at t = 0.021 obtained
by solving the full Navier–Stokes equations. (c), (d) The contours of u1

at t = 0.022 and t = 0.0235, respectively, by solving the full
Navier–Stokes equations. Adaptive mesh computation with Nz = 2048,
Nr = 1024, ν = 0.001.

and forms a jet that moves away from the symmetry axis (the z-axis). The
jet further generates some interesting vortex structures. This is illustrated
in Figure 4.14. Since the most singular part of the solution of the Navier–
Stokes equations moves away from the symmetry axis, we use a higher-
resolution adaptive mesh along the r-direction with Nr = 1024 to better
resolve the layered structure along the r-axis.

By the Caffarelli–Kohn–Nirenberg theory, the singularity of the 3D axi-
symmetric Navier–Stokes equations, if there is any, must be along the sym-
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metry axis. The fact that the most singular part of the solution moves away
from the symmetry axis indicates that the full Navier–Stokes equations will
not form a finite-time singularity, at least not for the initial condition we
consider here over the time interval for which we compute the solution. On
the other hand, the solution of the 3D model with the same initial condition
seems to develop a potential finite-time singularity in an earlier time. This
confirms that convection plays an essential role in depleting the destabilizing
effect induced by vortex stretching.

5. Concluding remarks

Our analysis and computations revealed a subtle dynamic depletion of vor-
tex stretching. Sufficient numerical resolution is essential to capture this
dynamic depletion. Our computations for the two antiparallel vortex tubes
initial data showed that the velocity is bounded and that the vortex stretch-
ing term is bounded by C‖ω‖L∞ log(‖ω‖L∞). In Hou and Li (2008b), we
also repeated the computation of R. Pelz using highly symmetric initial
data (Pelz 1997). We found that while Pelz’s vortex filament model indeed
produces a finite-time self-similar singularity, the solution of the full 3D
Euler equation with the same initial data gives only very modest growth
dynamically. No evidence of finite-time singularities was found. Pelz’s vor-
tex filament computation was inspired by his earlier computation of the
3D Navier–Stokes equations (Boratav and Pelz 1994). However, our com-
putation showed that the rapid growth of vorticity observed by Boratav
and Pelz (1994) was due to under-resolution of his numerical solution (Hou
and Li 2008b). The actual growth of maximum vorticity was only expo-
nential in the time interval when the solution was still well resolved. It is
natural to ask if the dynamic depletion that we observed is generic, and
to consider the driving mechanism for this depletion of vortex stretching.
Some recent progress has been made in analysing the dynamic depletion
of vortex stretching and nonlinear stability for 3D axisymmetric flows with
swirl (Hou and Li 2008a, Hou, Lei and Li 2008). A related study for the 2D
quasi-geostrophic model can be also found in Deng, Hou, Li and Yu (2006b).
The local geometric structure of the solution near the region of maximum
vorticity and the anisotropic scaling of the support of maximum vorticity
seem to play a key role in the dynamic depletion of vortex stretching.

We also studied the dynamic stability of the 3D Navier–Stokes equations
via an exact 1D model. This 1D model is an exact reduction of the 3D
Navier–Stokes equations along the symmetry axis for a special class of initial
data. It retains some essential nonlinear features of the 3D Navier–Stokes
equations. We proved the global regularity of this 1D model by using a
pointwise estimate. The key was to show that a positive Lyapunov function
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satisfies a new maximum principle. Here convection played an essential role
in cancelling the destabilizing vortex stretching terms. Using the solution
of the 1D model as a building block, we constructed a family of solutions
of the 3D Navier–Stokes equations which experience interesting dynamic
growth but remain smooth for all times.

To gain further understanding of the stabilizing effect of convection, we
constructed a new 3D model by neglecting the convection term from the
reformulated Navier–Stokes equations. This 3D model shares almost all
properties of the Navier–Stokes equations, including an equivalent energy
identity and a partial regularity result. Our numerical results seemed to
support the conclusion that the solution of the 3D model develops locally
self-similar isotropic singularities. But when we added the convection term
back to the 3D model, the mechanism for generating the finite-time singu-
larity in the 3D model was destroyed.

The results presented in this paper may have some important implication
to the global regularity of the 3D Navier–Stokes equations. Our studies
indicate that a successful strategy in analysing the global regularity of the
3D Navier–Stokes equations need to take advantage of the stabilizing effect
of the convection term in an essential way. So far most of the regularity
analysis for the 3D Navier–Stokes equations has not used the stabilizing
effect of the convection term. In many cases, the same results can also
be obtained for our 3D model. We are currently working to prove that
the 3D model develops finite-time singularities from smooth initial data
with finite energy. Such a theoretical result would show convincingly that
traditional energy estimates are inadequate to prove global regularity of the
3D Navier–Stokes equations. New analytical tools that exploit the local
geometric structure of the solution and the stabilizing effect of convection
would be needed.

We also investigated the performance of pseudo-spectral methods in com-
puting nearly singular solutions of fluid dynamics equations. In particu-
lar, we proposed a novel pseudo-spectral method with a high (36th)-order
Fourier smoothing which retains a significant portion of the Fourier modes
beyond the 2/3 cut-off point. We demonstrated that the pseudo-spectral
method with the high-order Fourier smoothing gives a much better per-
formance than the pseudo-spectral method with the 2/3 de-aliasing rule.
Moreover, we showed that the high-order Fourier smoothing method cap-
tures about 12 ∼ 15% more effective Fourier modes in each dimension than
the 2/3 de-aliasing method. For the 3D Euler equations, the gain in the
effective Fourier codes for the high-order Fourier smoothing method can
be as large as 20% over the 2/3 de-aliasing method. Another interesting
observation was that the error produced by the high-order Fourier smooth-
ing method is highly localized near the region where the solution is most
singular, while the 2/3 de-aliasing method tends to produce oscillations in
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the entire domain. The high-order Fourier smoothing method was found be
very stable dynamically. No high-frequency instability was observed.
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