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We consider a dispersive Navier-Stokes (DNS) system in the form

∂tρ+∇x · (ρu) = 0 ,

∂t(ρu) +∇x· (ρu⊗ u) +∇x(ρθ) = ∇x ·Σ+∇x · Σ̃ ,

∂t(ρe) +∇x · (ρeu+ ρθu) = ∇x · (Σu+ q) +∇x · (Σ̃u+ q̃) ,

(ρ, u, θ)(x,0) = (ρin, uin, θin)(x) ,
(1)

where ρ(x, t) is the mass density, u(x, t) is the bulk velocity, and θ(x, t)
is the temperature at a position x ∈ Rd and time t ≥ 0. We assume that

d ≥ 2. The total energy density is given by ρe = 1
2ρ|u|

2 + d
2ρθ.

The Navier-Stokes stress tensor Σ and heat flux −q are given by

Σ = µ(θ)Dxu , q = κ(θ)∇xθ , (2)

where the strain-rate tensor is given by Dxu = ∇xu+ (∇xu)T − 2
dI∇x · u,

while µ(θ) ≥ 0 and κ(θ) ≥ 0 are the coefficients of shear viscosity and

heat conductivity.



The dispersive corrections to the stress tensor Σ̃ and the heat flux q̃ are

given by

Σ̃ = τ1(ρ, θ)
(
∇2
x θ − 1

d∆xθI
)

+ τ2(ρ, θ)
(
∇xθ ⊗∇xθ − 1

d |∇xθ|
2I
)

+ τ3(ρ, θ)
(
∇xρ⊗∇xθ +∇xθ ⊗∇xρ− 2

d∇xρ ·∇xθI
)
,

q̃ = τ4(ρ, θ)
(
∆xu+ d−2

d ∇x∇x · u
)

+ τ5(ρ, θ)Dxu ·∇xθ + τ6(ρ, θ)Dxu ·∇xρ

+ τ7(ρ, θ)
(
∇xu− (∇xu)

T
)
·∇xθ ,

(3)

where τi(ρ, θ) for i = 1, · · · ,7 are additional transport coefficients.

The previous lecture presented the kinetic origins of such systems. Here

we present a local well-posedness result over the whole space.



The dispersive Navier-Stokes (DNS) system (1) has transport coefficients

µ(θ), κ(θ), and τi(ρ, θ) for i = 1, · · · ,7 with forms that depend upon

details of the underlying kinetic equation. In particular, the transport coef-

ficients τi(ρ, θ) for i = 1, · · · ,6 satisfy the relations

τ4 =
θ

2
τ1 ,

τ2
θ

+
2τ5
θ2

= ∂θ

(
τ4
θ2

)
, θτ3 + τ6 = 2∂ρτ4 . (4)

These relations ensure that the DNS system (1) inherits an entropy struc-

ture from the underlying kinetic equation in which the mathematical entropy

density η is essentially the Euler entropy given by

η = ρ log

(
ρ

θd/2

)
.



Direct calculation from system (1) shows that η satisfies

∂tη +∇x ·

(
η u+

q

θ
+

q̃

θ

)

= −

(
Σ

θ
:∇xu+

q

θ2
· ∇xθ

)
−

(
Σ̃

θ
: ∇xu+

q̃

θ2
·∇xθ

)
.

(5)

It follows from the constitutive relations (2) that

Σ

θ
: ∇xu+

q

θ2
· ∇xθ =

µ

2θ
|Dxu|

2 +
κ

θ2
|∇xθ|

2 ≥ 0 ,

while it follows from constitutive relations (3) and (4) that

Σ̃ :
∇xu

θ
+ q̃ ·

∇xθ

θ2
= ∇x ·

(
τ1
2θ

Dxu ·∇xθ

)
.

One thereby sees that the dispersion terms containing Σ̃ and q̃ contribute

only to the entropy flux in the entropy equation (5). DNS systems (1) de-

rived from kinetic equations therefore formally dissipate the Euler entropy

in the same way as the compressible Navier-Stokes system.



Local Well-Posedness

The above calculation indicates that the DNS system is formally well-posed

over domains without boundary. More specifically, its linearization about

any nonzero constant state is well-posed in L2(dx;R×Rd×R). Our main

theorem establishes the local well-posedness of the DNS system.

Because our theory is local in time, we will not need the entropy structure of

the system, and so will not assume that (4) holds. We will however assume

that µ(θ), κ(θ), and τi(ρ, θ) for i = 1, · · · ,7 are smooth functions of ρ

and θ with µ(θ), κ(θ), and τ1(ρ, θ)τ4(ρ, θ) being strictly positive whenever

ρ and θ are bounded away from zero.



In our proof of local well-posedness, dispersive regularization plays a cru-

cial role. We use the fact that solutions of dispersive equations gain spatial

differentiability provided the initial data satisfy certain asymptotic flatness

conditions at infinity.

This type of smoothing was noticed by Kato when he showed that solu-

tions of the KdV equation gain half a spatial derivative compared to its ini-

tial data. Better, Constantin and Saut showed that solutions of dispersive

equations of order m gain m−1
2 derivatives locally for positive times.

Based on this smoothing, various well-posedness results have been es-

tablished for semilinear or quasi-linear dispersive equations and systems

with strict or uniform dispersive effects. However, these existing results do

not apply directly to the DNS system because its dispersion is degenerate.



One degeneracy occurs because the mass equation has no dissipative

or dispersive terms. Another degeneracy occurs because the dispersive

terms ∇x · Σ̃ and ∇x · q̃ have the form

∇x · Σ̃ = d−1
d τ1∆x∇xθ + lower order terms ,

∇x · q̃ = 2d−1
d τ4∆x∇x· u+ lower order terms .

Hence, if u is decomposed into its divergence free part and its gradient

part then only the gradient part is smoothed by dispersion.

These degeneracies suggest that we decompose the DNS system into a

strictly dispersive subsystem and a nondispersive subsystem. We treat

the strictly dispersive subsystem in the style of Kenig, Ponce, and Vega

(2004). The coupling of these subsystems is treated using both dissipative

and dispersive regularization.



Our main result implies the following.

Well-Posedness Theorem. In dimension d ≥ 2, let s1, s ∈ R+ such that

s1 ≥ d/2+6 and s = max{s1+6, N + d/2+4} where N(d) ∈ N is to

be given. Let ρ̄ > 0 and θ̄ > 0 be constants. Let ρin, uin, and θin satisfy:

•
∥∥∥ρin − ρ̄

∥∥∥
Hs+1

+
∥∥∥(uin, θin − θ̄)

∥∥∥
Hs

+
∑

1≤|α|≤s1

( ∥∥∥〈x〉2∂αxρ
in
∥∥∥
H1

+
∥∥∥〈x〉2∂αx (u

in, θin)
∥∥∥
L2

)
≤ Cin < ∞ ,

(6)

where α ∈ Nd denote multi-indices with |α| = α1 + α2 + · · · + αd

and we define 〈x〉2 ≡ 1 + |x|2;



• there exists a constant αin > 0 such that for every x ∈ Rd

αin ≤ ρin(x) , αin ≤ θin(x) ,

αin ≤ µ(θin) , αin ≤ κ(θin) ,

αin ≤ 4(d−1)2

d3
·
τ1(ρ

in(x), θin(x))τ4(ρ
in(x), θin(x))

ρin(x)2
;

(7)

• the Hamiltonian defined by

hin(x, ξ) = 2(d−1)

d3/2

(
τ1(ρ

in(x), θin(x))τ4(ρ
in(x), θin(x))

ρin(x)2

)1
2

|ξ|3

(8)

generates a flow that is non-trapping.



Then for some T0 > 0 depending only on Cin, αin, and d there exists

unique functions ρ, u, and θ with

ρ− ρ̄ ∈ C([0, T0];H
s) ∩ L∞([0, T0];H

s+1) ,

(u, θ − θ̄) ∈ C([0, T0];H
s−1) ∩ L∞([0, T0];H

s) ,
(9)

such that (ρ, u, θ) solves the DNS initial-value problem (1).

Here L2 denotes the Lebesgue space L2(Rd;Rm) where Rm is the Eu-

clidian space implied by the context, and ‖ · ‖L2 denotes its norm. Similarly,

Hs denotes the Sobolev space Hs(Rd;Rm) where Rm is the Euclidian

space implied by the context, and ‖ · ‖Hs denotes its norm.



To prove the above theorem, we construct an approximating sequence of

solutions by adding an artificial hyperviscosity term to the DNS system (1).

An a priori estimate is established that is independent of the artificial hyper-

viscosity. Then using this a priori estimate and letting the artificial hypervis-

cosity term vanish, we show that the approximating sequence converges

to a solution of the original system. Uniqueness is also shown by the a

priori estimate.

In our proof we first establish an estimate for a linear system that we will

later use to construct our approximating sequence of solutions to the DNS

system (1) plus an artificial hyperviscosity. We then establish the a priori

estimate for this regularized DNS system. Finally, we show the existence

of the approximating sequence and the convergence of this sequence to

the unique solution to the original DNS system.



Regularized DNS System

We first express the DNS system (1) as a evolution system for (ρ, u, θ) and

then add fourth-order artificial hyperviscosity terms to obtain the regular-

ized DNS system

∂tρ = −ǫ∆2
xρ− ρ∇x · u− u ·∇xρ ,

∂tu = −ǫ∆2
xu+

1

ρ
∇x ·Σ+

1

ρ
∇x · Σ̃−

1

ρ
∇x(ρθ)− u ·∇xu ,

∂tθ = −ǫ∆2
xθ + 2

d

1

ρ
∇x· q + 2

d

1

ρ
∇x · q̃ +

2
d

Σ̃ : ∇xu

ρ
+ 2

d

Σ : ∇xu

ρ

− 2
dθ∇x· u− u ·∇xθ ,

(ρ, u, θ)(x,0) = (ρin, uin, θin)(x) ,

(10)

where Σ and q are given by (2) while Σ̃ and q̃ are given by (3).



The structure of this system becomes more explicit if we use (3) to express

Σ̃ and q̃ in terms of the fluid variables (ρ, u, θ). One finds that

∇x· Σ̃ = d−1
d τ1(ρ, θ)∆x∇xθ

+Aρ(ρ, θ,∇xρ,∇xθ) : ∇2
x ρ+Aθ(ρ, θ,∇xρ,∇xθ) : ∇2

x θ

+Bρ(ρ, θ,∇xρ,∇xθ) ·∇xρ+Bθ(ρ, θ,∇xρ,∇xθ) ·∇xθ ,

∇x · q̃ = 2(d−1)
d τ4(ρ, θ)∆x∇x · u

+Au(ρ, θ,∇xρ,∇xθ)
...∇2

x u+ τ5(ρ, θ)Dxu : ∇2
x θ

+ τ6(ρ, θ)Dxu : ∇2
x ρ+Bu(ρ, θ,∇xρ,∇xθ) : ∇xu ,

where Aρ(ρ, θ,∇xρ,∇xθ), Aθ(ρ, θ,∇xρ,∇xθ), and Au(ρ, θ,∇xρ,∇xθ) are

d×d×d three-tensors that are linear in (∇xρ,∇xθ), while Bρ(ρ, θ,∇xρ,∇xθ),

Bθ(ρ, θ,∇xρ,∇xθ), and Bu(ρ, θ,∇xρ,∇xθ) are d × d two-tensors that are

quadratic in (∇xρ,∇xθ). The forms of Bρ and Bθ are not uniquely specified

above, but their specific forms do not affect our subsequent arguments.



The regularized DNS system (10) thereby has the form

∂tρ = −ǫ∆2
xρ− ρ∇x· u− u ·∇xρ ,

∂tu = −ǫ∆2
xu+

1

ρ
∇x · [µDxu]

+ d−1
d

τ1
ρ
∆x∇xθ +

Aρ

ρ
:∇2

x ρ+
Aθ

ρ
:∇2

x θ

+
Bρ

ρ
·∇xρ+

Bθ

ρ
·∇xθ −

1

ρ
∇x(ρθ)− u ·∇xu ,

∂tθ = −ǫ∆2
xθ + 2

d

1

ρ
∇x · [κ∇xθ] +

4(d−1)
d2

τ4
ρ
∆x∇x · u

+ 2
d

Au

ρ
...∇2

x u+ 1
d

τ1 +2τ5
ρ

Dxu : ∇2
x θ + 2

d

τ6
ρ
Dxu : ∇2

x ρ

+ 2
d

Bu

ρ
:∇xu+ 1

d

τ2
ρ
∇xθ ·Dxu ·∇xθ + 1

d

τ3
ρ
∇xρ ·Dxu ·∇xθ

+ 1
d

µ

ρ
|Dxu|

2 − 2
dθ∇x · u− u ·∇xθ .

(11)



Associated Linear System

By replacing certain (ρ, u, θ) above by a given state (ρ̂, û, θ̂) we obtain

∂tρ̃ = −ǫ∆2
xρ̃− ρ̂∇x · ũ− û ·∇xρ̃ ,

∂tũ = −ǫ∆2
xũ+

1

ρ̂
∇x ·

[
µ(θ̂)Dxũ

]

+ τ̂1∆x∇xθ̃ + Âρ :∇2
x ρ̃+ Âθ : ∇2

x θ̃

+ B̂ρ · ∇xρ̃+ B̂θ ·∇xθ̃ −∇xθ̃ −
θ̂

ρ̂
∇xρ̃− û ·∇xũ ,

∂tθ̃ = −ǫ∆2
xθ̃ + 2

d

1

ρ̂
∇x ·

[
κ(θ̂)∇xθ̃

]

+ τ̂4∆x∇x · ũ+ Âu ...∇2
x ũ+ τ̂5Dxû :∇2

x θ̃ + τ̂6Dxû :∇2
x ρ̃

+ B̂u :∇xũ+ τ̂2∇xθ̂ ·Dxũ ·∇xθ̂ + τ̂3∇xρ̂ ·Dxũ ·∇xθ̂

+ 1
d

µ(θ̂)

ρ̂
Dxû :Dxũ− 2

d θ̂∇x · ũ− û ·∇xθ̃ ,

(12)



where

τ̂1 = d−1
d

τ1(ρ̂, θ̂)

ρ̂
,

τ̂3 = 1
d

τ3(ρ̂, θ̂)

ρ̂
,

τ̂5 = 1
d

τ1(ρ̂, θ̂) + 2τ5(ρ̂, θ̂)

ρ̂
,

Âρ =
Aρ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

Âθ =
Aθ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

Âu = 2
d

Au(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

τ̂2 = 1
d

τ2(ρ̂, θ̂)

ρ̂
,

τ̂4 = 4(d−1)
d2

τ4(ρ̂, θ̂)

ρ̂
,

τ̂6 = 2
d

τ6(ρ̂, θ̂)

ρ̂
,

B̂ρ =
Bρ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

B̂θ =
Bθ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

B̂u = 2
d

Bu(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
.

(13)

The associated linear system (12) is satisfied by (ρ̃, ũ, θ̃) = (ρ−ρ̄, u, θ−θ̄)
whenever (ρ̂, û, θ̂) = (ρ, u, θ) solves the regularized DNS system (11).



Notation. We will use Ψm to denote any pseudo-differential operator (ΨDO)

of order m whenever its specific form is not important. We will denote the

space of all mth order symbols as Sm. For a symbol p(ξ) ∈ Sm, let |p|
(j)
Sm

be the seminorm defined as

|p|
(j)
Sm = sup

α,β

{
‖〈ξ〉−m+α∂αξ ∂

β
xp(·, ·)‖L∞(Rd×Rd) : |α+ β| ≤ j

}
,

where 〈ξ〉 = (1 + |ξ|2)−1/2. The following theorem is a classical result

for ΨDO’s.

Thm: Let m, s ∈ R. Let p(ξ) ∈ Sm be the symbol of the pseudo-

differential operator Ψp. Then Ψp : Hm+s(Rd) → Hs(Rd) is a bounded

linear operator. Moreover, there exist N = N(d,m, s) ∈ N and c =

c(d,m, s) such that

‖Ψpf‖Hs ≤ c|p|
(N)
Sm ‖f‖Hm+s . (14)



With this notation we see that the linear system (12) has the form

∂tρ̃ = −ǫ∆2
xρ̃− ρ̂∇x · ũ− û ·∇xρ̃ ,

∂tũ = −ǫ∆2
xũ+

1

ρ̂
∇x ·

[
µ(θ̂)Dxũ

]
+ τ̂1∆x∇xθ̃

+Ψ2(ρ̃, θ̃) +Ψ1(ρ̃, θ̃)− û ·∇xũ ,

∂tθ̃ = −ǫ∆2
xθ̃ + 2

d

1

ρ̂
∇x ·

[
κ(θ̂)∇xθ̃

]
+ τ̂4∆x∇x · ũ

+Ψ2(ρ̃, ũ, θ̃) +Ψ1ũ− û ·∇xθ̃ ,

(15)

where Ψ1 and Ψ2 are first and second order ΨDOs whose coefficients

depend algebraically upon (ρ̂, θ̂,∇xρ̂, Dxû,∇xθ̂).

The key point here is that all derivatives of solutions to the nonlinear system

satisfy equations of this form.



The earlier discussion of degeneracies suggests that we decompose u into

its divergence free part Pu and its gradient part Qu. System (15) is thereby

decomposed into its nondispersive part

∂tρ = −ǫ∆2
xρ− û · ∇xρ+Ψ1Qu ,

∂tPu = −ǫ∆2
xPu+ µ̂∆xPu+Ψ2(ρ, θ) +Ψ1(ρ, u, θ) ,

(16)

and its strictly dispersive part

∂tQu = −ǫ∆2
xQu+ µ̂

(
∆x + d−2

d ∇x∇x·
)
Qu

+∇x (τ̂1∆xθ) +Ψ2(ρ, θ) +Ψ1(ρ, u, θ) ,

∂tθ = −ǫ∆2
xθ + κ̂∆xθ

+ τ̂4∆x∇x ·Qu+Ψ2(ρ, Pu,Qu) +Ψ1(ρ, u, θ) ,

(17)

where µ̂ = µ(θ̂)/ρ̂ and κ̂ = 2
dκ(θ̂)/ρ̂. Notice that these two parts couple

through the lower order terms Ψ2(ρ, Pu,Qu, θ) and Ψ1(ρ, Pu,Qu, θ).



We drop the tildes on (ρ̃, ũ, θ̃) and write the regularized system (15) as

∂t(ρ, u, θ) = −ǫ∆2
x(ρ, u, θ) + L(ρ̂, û, θ̂)(ρ, u, θ) , (18)

where the linear operator L is defined through (15) and has the form

L(ρ̂, û, θ̂)(ρ, u, θ) =



L1(ρ̂, û, θ̂)(ρ, u, θ)
L2(ρ̂, û, θ̂)(ρ, u, θ)
L3(ρ̂, û, θ̂)(ρ, u, θ)




=




Ψ1(ρ, u)
ΨDu+Ψ3θ +Ψ2(ρ, θ) +Ψ1(ρ, u, θ)
ΨDθ +Ψ3u+Ψ2(ρ, u, θ) +Ψ1(u, θ)


 .



Outline of Proof

• Derive an estimate for the linear system

∂tU = −ǫ∆2
xU + L(Û)U .

• Use this estimate to get an a-priori estimate for the nonlinear system

∂tU
ǫ = −ǫ∆2

xU
ǫ + L(U ǫ)U ǫ .

• Use a fixed-point argument to obtain O(ǫ3) existence, and extend it to

O(ǫ0) existence by the a-piori estimate.

• Let ǫ → 0 and show that U ǫ → U where U satisfies the DNS system

∂tU = L(U)U .



In order to obtain bounds on the solutions of linear system (15) we make

the following assumptions on (ρ̂, û, θ̂). These assumptions are the key to

choosing the proper space for our well-posedness result.

A1. Asymptotic flatness. There exists constants cA, T1 > 0 such that

∀(x, t) ∈ Rd × [0, T1],

|∂t(ρ̂, û, θ̂)|+ |∇x(ρ̂, û, θ̂)|+ |∂t∇x(ρ̂, û, θ̂)| ≤
cA
〈x〉2

(19)

with 〈x〉2 = 1+ |x|2.

A2. Regularity. There exists T2 > 0 such that (ρ̂, û, θ̂) ∈ CN+1
b (Rd ×

[0, T2]) for N sufficiently large such that the proofs involving the ΨDO’s

can be carried out. Here CN+1
b (Rd × [0, T2]) is the set of functions that

have continuous bounded derivatives up to order N + 1. Again use cA
to denote the uniform upper bound of the coefficients of Ψ2 in CN

b (Rd ×

[0, T2]).



A3. Lower bounds. There exists a constant αin > 0 such that ρ̂, θ̂ ≥

αin > 0. This together with the uniform bounds on ρ̂, θ̂ guarantees the

existence of a constant τ0 > 0 such that 1
τ0

≥ τ̂1/τ̂4 ≥ τ0 > 0.

A4. Nontrapping condition. Let hin(x, ξ) =
√
τ̂1(x,0)τ̂4(x,0) |ξ|

3 as

defined in (8) and Hhin be the corresponding Hamiltonian flow. Then Hhin

is non-trapping, that is, if (X,Ξ)(t;x, ξ) is a solution to

dX

dt
= ∇ξh

in(X,Ξ) , X(0) = x ,

dΞ

dt
= −∇xh

in(X,Ξ) , Ξ(0) = ξ ,

then for any (x, ξ) 6= (0,0),

|X(t)| → ∞ as t → ±∞ .



Our linear estimate is the following.

Theorem. 1 Let (ρ̂, û, θ̂) ∈ C([0, T ];H∞) be functions that satisfy as-

sumptions A1 −A4. Then for every solution (ρ, u, θ) ∈ C([0, T ];H∞) of

the linear system there exists T > 0 depending on the constants c0, cA,

and αin in the assumptions and c > 0 depending on Cin and αin such

that the following bound holds :

sup
[0,T ]

(
‖ρ‖2

H1 + ‖(u, θ)‖2
L2

)
(t) +

∫ T

0
‖∇x(u, θ)‖

2
L2(s) ds

≤ c
(
‖ρin − ρ̄‖2

H1 + ‖(uin, θin − θ̄)‖2
L2

)
.

Both c and T are independent of ǫ.

Remark. All spatial derivatives satisfy similar bounds because they each

satisfy a similar linear system.



Low Mach Number Limits: Results and Open Problems

• Boussinesq-balance incompressible Navier-Stokes system (L-Sun-Trivisa,

SIAM J. Math. Analysis 44 (2012), 1760-1807)

• Sone’s ghost effect system (L-Sun-Trivisa, preprint 2009)

• Dominant-balance incompressible Navier-Stokes system (open)



Well-Posedness Open Problems

• Domains with boundaries

• Momentum flux with (Dxu)2 terms

Thank You!


