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Abstract

We study the asymptotic speed of a random front for solutions wu:(x) to stochastic reaction-
diffusion equations of the form

Oyu = %Bfu + f(u) + o/u(l —w)W(t,z), t >0, z €R,

arising in population genetics. Here, f is a continuous function with f(0) = f(1) = 0, and such
that | f(u)| < K|u(l — u)|? with v > 1/2, and W (¢, ) is a space-time Gaussian white noise. We
assume that the initial condition ug(z) satisfies 0 < up(x) < 1 for all x € R, up(x) =1 for z < Ly
and ug(z) = 0 for © > Ry. We show that when o > 0, for each ¢ > 0 there exist R(u:) < 400
and L(ug) < —oo such that ui(z) = 0 for x > R(u;) and ug(x) = 1 for x < L(u) even if f is
not Lipschitz. We also show that for all ¢ > 0 there exists a finite deterministic speed V(o) € R
so that R(u¢)/t — V(o) as t — +oo, almost surely. This is in dramatic contrast with the
deterministic case o = 0 for nonlinearities of the type f(u) = u™(1 — u) with 0 < m < 1 when
solutions converge to 1 uniformly on R as ¢ — +o00. Finally, we prove that when v > 1/2 there
exists ¢y € R, so that 02V (o) — ¢f as 0 — +oo and give a characterization of cf. The last
result complements a lower bound obtained by Conlon and Doering [CD05] for the special case
of f(u) =u(l — u) where a duality argument is available.

1 Introduction

Reaction-diffusion equations of the form
1o
O = iaxu + f(u), (1.1)

with f(0) = f(1) = 0, are often used to model biological invasions and other spreading phenomena,
with one steady state, say, u = 1 invading another, v = 0, or vice versa. Under very mild assumptions
on f(u), such as, for instance, that f(u) is Lipschitz on [0,1] and either f(u) > 0 for u € (0,1), or
there exists 6 € (0,1) so that f(u) < 0 for u € (0,0) and f(u) > 0 for u € (6,1), such equations
admit traveling wave solutions of the form u;(z) = U(z — ct) such that

e’ = SU" + f(U), U(~o0) = 1, U+o0) =0. (1.2)
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Note that, in the probabilistic spirit of the present paper, the subscript ¢ denotes the time dependence
of the function us(z) rather than a time derivative, common to the PDE literature. It is easy to see
that

1
c/ U (2)[2da = / F(2)dz, (1.3)
R 0
thus ¢ has the same sign as

1= [ (1.4)

so that if I[f] > 0 then the steady state u = 1 is more stable, and invades the ”less stable” steady
state v = 0, and if I[f] < 0 then the opposite happens, while if I[f] = 0 then (1.1) has a time-
independent solution. It is also well-known that traveling wave solutions to (1.1) determine the
spreading speed for the solutions of the Cauchy problem. More precisely, let us(x) be the solution
to (1.1) with an initial condition ug(z) such that 0 < ug(z) < 1 for all z € R, and there exist Ly < Ry
so that ug(z) =1 for x < Lo and up(x) = 0 for x > Ry. There exists a function m(t) such that

|m(t) — cut| = o(t) as t — 400, (1.5)

so that
lut(x +m(t)) — Ue, (z)| = o(1) as t — 4o0. (1.6)

Here, depending on the nature of the nonlinearity f(u), the spreading speed c, may be either the
speed of the unique traveling wave, or the minimal speed of a traveling wave if traveling waves
are not unique. The latter happens for the class of the Fisher-KPP nonlinearities, such that f is
Lipschitz, f(0) = f(1) =0, f(u) > 0 for all uw € (0,1), and f(u) < f'(0)u for all w € [0,1]. In that

case, we have
e =/ 2f(0). (1.7)

Much more precise results than (1.5)-(1.6) on the convergence of the solutions to the Cauchy problem
to traveling waves are available, and we refer to the classical papers [AW78, Bra78, Bra83] for the
basic results, and to [NRR18, Rob13| and references therein for more recent developments. We also
point out the relation

¢ = lim /R Flun())da = /R F(Ue (2))da, (1.8)

t—4o00

that can be obtained simply by integrating (1.1) and (1.2) in space.

Note that if f’(0) blows up, then the speed of propagation may also tend to infinity, as can be
seen from (1.7). For Holder nonlinearities such that f(u) ~ u? with p € (0, 1), it was shown in [AES6]
that solutions become instantaneously strictly positive everywhere: u(t,x) > ct'/(=P) for t < 1. In
particular, if we approximate such nonlinearity by a sequence of Lipschitz nonlinearities f,,, then

the corresponding spreading speeds a(kn) blow up as n — +oc.

Reaction-diffusion equations with noise

The physical and biological systems modeled by reaction-diffusion equations are often subject to
noise. In this paper, we study solutions w(x), to the stochastic reaction-diffusion equations of the
form

Opu = %Ggu + f(u) + o/u(l —u)W(t, z) (1.9)

where W(t, x) is a space-time Gaussian white noise, and o > 0 measures its strength. Our interest is
in the effect of the noise term on the spreading speed. Since traveling waves will no longer maintain



a fixed shape due to the noise, we will refer instead to the speed of the random front, which is defined
below.

Let us give an motivation for the noise term in (1.9) similar to that given by Fisher in his
pioneering work [Fis37]. See also [Shi88]. Imagine that two populations, type A and type B, move
in a Brownian way along R, and let w(x) is the proportion of the population of type A at time ¢ at
position . When an individual of type A meets an individual of type B, it can be converted into
type B, and vice versa, and the outcome is partially random. The function f(u) in (1.9) describes
the deterministic evolution of the population of type A, due to these interactions, and it is natural
to assume that f(0) = f(1) = 0 since there are no interactions when one type is absent. The random
term in (1.9) accounts for the stochastic aspect of the interactions. We assume that for each such
meeting we have a mean-zero random variable affecting the outcome, and these random variables
are i.i.d. By the central limit theorem, the sum of such variables would be approximately Gaussian.
The independence of the variables means that the random input should be independent for different
values of t and x, giving rise to the space-time noise W(t, x). The rate of such meetings at a given
site z and time ¢ would be proportional to u¢(x)(1—wu¢(x)), which is the variance of the noise at (¢, x).
Thus we should multiply the white noise W (¢, z) by the standard deviation /u;(1 — u;). This leads
to the noise term in (1.9).

As we have mentioned, we are interested in the long time speed of a random front for the
solutions to (1.9). To this end, we define the left and the right edge of the solution as follows. Given
a function h(z) such that 0 < h(z) < 1 for all x € R, with h(z) - 1 as x — —oo and h(z) — 0
as * — 400, we set

L(h) =inf{z e R: h(z) <1} (1.10)
R(h) =sup{z € R: h(z) > 0}.

In the absence of the noise, when ¢ = 0, and for Lipschitz nonlinearities f(u), we have L(u;) = —oo
and R(u;) = +oo for all t > 0. This, however, is not necessarily the case in the presence of the noise.
In order to make this claim precise, we assume that

[ is continuous on [0, 1] and there exists Ky > 0 such that f(u) < Kgy/|u(l —u)l. (1.11)
As for the initial condition ug(x), we will assume that
0 <up(z) <1 forall z € R, and both L(ug) and R(ug) are finite. (1.12)

We will denote by Cr the set of continuous functions satisfying (1.12). In addition B; will denote the
space of functions on R taking values in [0, 1] and C; will denote the space of continuous functions
on R taking values in [0, 1].
We say that u; has a speed V(o) if the following limit exists:
R
V(o) = lim 7(%)

t—oo t

We prove the following theorem in Section 2.

Theorem 1.1. Let f(u) satisfy (1.11) and uo(z) be as in (1.12), then (1.9) with an initial condi-
tion ug(z) has a solution ui(x) taking values in Cr for t > 0. The solution is unique in law. More-
over, L(ut) and R(ut) are almost surely finite for allt > 0 and the solution has a speed V(o) € R.

We see that the noise has a very strong slowdown effect: V(o) is finite for all o > 0 even if f(u)
is Holder with an exponent m > 1/2; and not Lipschitz, such as, for instance f(u) = u™(1 — u), for
which, as we have mentioned, the speed of the front is infinite when o = 0.



Most of the papers dealing with (1.9), such as Mueller and Sowers [MS95] have treated the Fisher-
KPP nonlinearity f(u) = u(1 — u), and small noise, where o is close to 0. Mueller, Mytnik, and
Quastel [MMQ11] studied the behavior of V(o) as ¢ | 0 and verified some conjectures of Brunet and
Derrida [BD97] and [BDO00]. Less attention has been devoted to V(o) for large or intermediate values
of o, but Conlon and Doering [CDO05] proved that for f(u) = u(1l — u) there exists an asymptotic
velocity V(o) > 0 for solutions u to (1.9) for all ¢ > 0, and that

lim inf 02V (o) > 1. (1.13)
g—00
Note that (1.13) differs from (1.7) in [CDO05] because the diffusivity in that paper is taken to be 1
rather than 1/2 as chosen here. To formulate our main result, we note that a rescaling of (1.9),
discussed in Section 2 allows us to move the noise coefficient into the nonlinearity, and obtain the
rescaled equation

O = %8:%1) + o074 f(v) + Vo(1 — o)W (t, x). (1.14)

Here v is a rescaling of w which we specify later. Later we will use the results of Tribe [Tri95], and
Mueller and Tribe [MT97] for (1.14) with f = 0, a version of a continuous voter model, or a stepping
stone model in population genetics:

dw = %wa + Vw(l —w)W(t, z). (1.15)

By Theorem 1 of [MT97], we know that w¢(x — R(w;)) converges weakly to a stationary distribution
as t — oo. We denote the expectation with respect to the stationary distribution of w by E &,
where ”st” is an abbreviation for ”stationary”. For the next theorem we need an assumption on f
which is slightly stronger than (1.11): we assume

f is continuous on [0, 1] and there exists f(f >0s.t. f(u) < f(f|u(1 —u)|” for some v € (1/2,1].
(1.16)

Theorem 1.2. Suppose that ug satisfies (1.12) and f satisfies (1.16). Then we have, almost surely,

Jim o*V(o) = ¢y, (1.17)
where
cf =Byt [/Rf(w(x)) dm] (1.18)
and

lcp| < oo. (1.19)
Note that Lemma 2.1 of [Tri95] shows that

t—00

lim E, [/R wy(2) (1 — wi(z)) dx] —1. (1.20)

This immediately implies that |cf| < oo for f satisfying (1.16) with v = 1. In particular, as a
consequence of Theorem 1.2, we get that for the Fisher-KPP nonlinearity f(u) = u(1 — u), we have
lim ¢%V (o) =1,

g—00
giving a matching upper bound to the lower bound (1.13) of Conlon and Doering in [CDO05], after
adjusting for the different diffusivities adopted in the present paper and in [CD05]. For the general f
satisfying (1.16), we show that (1.19) holds in Lemma 3.4.



We also see the slowdown due to strong noise in Theorem 1.2 even for Lipschitz nonlinearities.
The large noise asymptotics in (1.17) corresponds to the speed of the front for solutions of (1.14)
that is V) (o) ~ ¢ /. However, solutions of the corresponding equation without the noise

Opv = %Bgv + o7 f(v) (1.21)

spread with the speed V() = ¢./0?, where c, is the speed of the traveling wave for (1.21) with o = 1,
so that V(")(¢) <« V(o) for ¢ > 1, and the noise slows down the propagation.

Let us also point out that expression (1.17)-(1.18) for the front speed V(o) is a direct analog
of (1.8) except now the role of the traveling wave is played by the invariant measure of wy(x).
One may conjecture that instead of the convergence to a traveling wave in shape, as in (1.6) that
happens in the deterministic case, here, in the limit ¢ — +oo, the law of w(x) after rescaling
converges, as t — 400, in the frame moving with the speed V(o), to the invariant distribution
of wy(x).

Another interesting observation is that the noise, despite its symmetry with respect to u = 0
and v = 1 can change the direction of the invasion. One may construct a nonlinearity f such that I(f)
given by (1.4) has a different sign than cf, meaning that that the speed of propagation for o = 0, in
the absence of the noise, may have a different sign than V(o) for large o > 1, changing the direction
of the invasion, because of the noise.

The paper is organized as follows. The proof of Theorem 1.1 is in Section 2. Section 3 contains
some auxiliary results on solutions to (1.15). They are used later in the proof of Theorem 1.2,
presented in Sections 4 for the upper bound, and in Section 5 for the matching lower bound on the
speed V(o) for o > 1.

Acknowledgement. The work of LM and LR was supported by a US-Israel BSF grant. LR was
supported by NSF grant DMS-1613603 and ONR, grant N00014-17-1-2145, and CM was supported
by a Simons Grant.

2 The proof of Theorem 1.1

In this section, we prove Theorem 1.1. Existence of a solution to (1.9) follows by a rather standard
argument. To prove the uniqueness, we use Girsanov’s theorem. In order to be able to apply this
theorem, we need to have an a priori bound showing that for any solutions to (1.9) taking values
in By for all t > 0 with R(ug) < +00, L(ug) > —o0, we have —oo < L(u) < R(u) < +oo for
all ¢ > 0, almost surely.

2.1 Existence of a solution

We first show that (1.9) has a mild solution. The notion of a mild solution to (1.9) follows the
standard definition, see Walsh [Wal86]. We interpret (1.9) as a shorthand for the mild form,

un(z) = /R Gul — y)uo(y)dy + /O / Grala — ) f(us(y))dyds

t
= [ [ Greste = )T = )W () (2.1)
where ug(x) is the given initial condition. Here,

Gi(z) = (2mt) " exp (—a?/(2)),



is the fundamental solution of the heat equation
Lo
0:G = EBmG.

In what follows, with some abuse of notation {G;,¢ > 0} will also denote the corresponding semi-
group, that is,

Gio(a / Gz — 1)6(y) dy, t >0, (2.2)

for any function ¢ for which the above integral is well-defined.
Almost sure existence and uniqueness of mild solutions to SPDEs of the form

Opu = %agu + f(u) + a(u)W(t, z) (2.3)

is standard [Wal86] when the coefficients are Lipschitz continuous functions of uw. Because in our
case f(u) may be not Lipschitz, and a(u) = /u(1 — u) is not Lipschitz, one needs to be slightly
more careful. Solutions to (1.9) are constructed as follows. Let the initial condition ug satisfy (1.12).
We approximate f(u) and a(u) by Lipschitz functions f,(u) and a,(u) such that

fn(o) = fn(l) = an(o) = an(l) = 07

and construct the corresponding solutions uj'(x) using the standard theory. The comparison principle
implies that u}(x) take values in [0, 1], see [Shi94]| and [Mue91]. The proof of Theorem 2.6 of [Shi94],
on pp. 436-437 of that paper, shows that the sequence u}'(z) is tight. Passing to the limit n — 400
we obtain a mild solution w;(x) to (1.9) taking values in [0, 1]. This proves existence of a solution.

2.2 Uniqueness via the Girsanov theorem

In order to prove uniqueness in law of the solution to (1.9), we will use a version of the Girsanov
theorem that will allow us to compare the laws of the solution u:(x) to (1.9) and wy(z), the solution
o (1.15), which corresponds to f = 0 in (1.9), with the same initial condition wg(x) = ug(z). Recall
that we have set o = 1, including in (1.15). Let P;, be the measure induced on the canonical path
space up to time ¢ by u, and P;,, be the measure induced by w, also up to time t. We also define
the corresponding expectations E;, and E;,,, and write P, for Py, and likewise P, for Pu,,,. We
will not use the subscripts in the situations when it is clear which probability measure is used.

In [Daw78|, Dawson gives a version of Girsanov’s theorem which applies to Py, and P;,. We
will use its variant, Theorem IV.1.6 in [Per02]. In such theorems, the change of measure always
involves an exponential term which must be a martingale. In our situation, let

//\/ws 1—)1)05 () Wi(dz, ds) _//ws 1_wj(x))dmd5' (2.4)

Here, and elsewhere we adopt the convention in the integrands that

f(w)
u(l —u)

Then Girsanov’s theorem for stochastic PDE [Daw78, Per02] says that

=0ifu=0o0ru=1.

APy 4
u 25
Py, (2.5)




as long as

/ / dzxds < 400, P,-almost surely. (2.6)
ug(x 1 — Usg w))

In particular, if (2.6) holds then (2 5) implies immediately that the solution to (1.9) is unique in
law. For the moment, as we do not have any information on the support of f(us(x)), we can not
conclude that (2.6) holds. The bulk of the rest of this section is to show that (2.6) holds for any
solution to (1.9) taking values in B for all t > 0 and such that R(up) < 400 and L(ug) > —

First, we make a much simpler observation that allows us to use Girsanov’s theorem to eliminate
the drift on a finite interval. Fix and arbitrary b > 0 and let v* denote a solution to a modified
version of (1.9), with the nonlinearity set to zero on the interval [—10b, 100]:

Oyt (x) = %@%vf (@) + f (0] (%)) a0, —108)00108,00)) T /07 (@)(1 = 0} (2))W (¢, ). (2.7)

We again write this equation in the mild form:

Wl (z) = Gl(z //Gt s(@ = 2) F(V(2)) 1 {ze(—o0,—100)U(10b,00)} 4% + NF (@), (2.8)

where

_ /0 /R Gresl — 2)1/04(2)(1 — v8(=)) W (ds, dz). (2.9)

Let P, ,» be the measure induced on the canonical path space up to time ¢ by v?, with the corre-
sponding expectation Et o> and P » be P Note that by (1.11) we have

1
/ / fu (100100} 7 s < ZObKJ%t < 400, Py-almost surely. (2.10)
us(z)(1 — us(z))
Thus we can use Girsanov’s theorem for stochastic PDE [Daw78, Per02] to get
dPt u Zb
= — et 2.11
P, (2.11)

where
s [* f(Ug(l‘))l{xe(—10b,10b)} 1 flv 1{z€ (—10b,10)}
Zy = /0 /R @ - (@) / / 21— o)) dxds. (2.12)

2.3 A bound on the front speed

The next step is to get the following bound on the speed of the front of u.

Lemma 2.1. Let u(z) be a solution to (1.9) taking values in By for all t > 0 such that the
initial condition ug(x) satisfies (1.12) with R(ug) < 0. Then, for all T > 0, both sup,«p R(u)
and sup,<p L(u) are almost surely finite. Moreover, for all T > 0 there exists Cp > 0 so that for
all b > 4VT (T f]loo V 1) we have

b2
P( sup |R(u;) — Ro| > b) +P( sup |L(u) — Lo| > b) < Crexp ( - ) (2.13)
0<t<T 0<t<T 1007

An immediate consequence is

Corollary 2.2. We have, for each T > 0:

E[OiltlET |R(us) — L(u)|] < +o0. (2.14)

In other words, any solution to (1.9) has an interface that has a finite length almost surely.



Bounds on the martingale with the cut-off

The proof of Lemma 2.1 relies on a priori bounds on the propagation of v®, solution to (2.7). First,
we need to control the modulus of continuity of the martingale N7 (-) defined in (2.9).

Lemma 2.3. Let vl(x) be a solution to (2 7) taking values in By for all t >0, such that the initial
condition vi(x) satisfies (1.12) with R(v8) < 0. Then, for all p > 1, there exists C(p) > 0 so that
for allt >0, and x,y € [b/2,9b] we have

E[IN{(z) = N (4)|*] < C(p)(Jw — y| A t1/2)P7 112 (2.15)
x /R(Gt(w —2) + Gely — 2))(©5(2) + tl| flloo L {ze(~o0,-105)U(100,00) ) 42
E[|N} () = NJ(x)[*"] < C(p)[t — 5|~ D/2¢1/2 (2.16)

x /R(Gt(w —2) + Gs(a = 2)) (05 (2) + | flloo L fze(~o0,-105)U(10b,00)3 ) d-

Proof. The proof follows the lines of the proof of Lemma 3.1 in [Tri95]. We only verify (2.15). Note
that

/Ot /R(Gt_s(x ) = Gua(y — 2)2dzds < C(lx —y| AEY2) V> 0,2,y € R. (2.17)
Burkholder’s and Holder’s inequalities give
BN~ NP < B [( [ [ Gt Gty - 0 - o deas) |
< 0N AL E [ [ [ (G = 2) = Gty = AP (A~ e des]
< o)l AR [ [ [ (Ga =) - Gty - )2 s

< C(p)(Jx —y| AtV2P7IE -/0 (t—s)~1/2 /R(Gt_s(x —2) + Gi_s(y — 2))02(2) dz ds] .

(2.18)
We used the fact that 0 < v® < 1 in the third inequality above. Note that

E[v)(z)] = Govf(x +E / /Gs r(@ = 2) f(0l(2) 1 fae(— —10b)U(10b,oo)}dZd7"}

(2.19)
< Gup(x +||f||oo/ /Gs r 2)1{e(—o00,—106)U(10b,00)}) A2 dr.

We substitute this bound into the right side of (2.18) and use the semi-group property of G¢ to get
BINY @)~ N} < o) — ol a2 { [ (6= 2( [ Gt =21+ Gty = 2l
+ [ Wl [ (Grrlo = 2) 4 Giory = D e ransionoo) de ) ds
< C(p) (| — yl A 1/2pp 1412 ( /R (Gl — 2) + Gily — 2))vb(2) d
e [ [ (@ = 2) + Gy = e e amimocy) e ).

8



Since z,y € (b/2,9b) and z > 10b we have
/ Gr(x —2)dz < / Gi(x — 2)dz, Yz € (b/2,9b),0 <r <t, (2.20)
2>10b 2>10b

and thus we get
E[|N7(z) = N7 ()] < C(p)(jz —y| A |t — /2P~

x /2 /R(Gt(x —z)+ Gi(y — 2)) (Ug(z) + t”f”Ool{ze(foo,flob)u(lob,oo)}> dz,
(2.21)
which is (2.15). The proof of (2.16) goes along similar lines. O

A corollary of Lemma 2.3 is a bound on the size of N (z).

Lemma 2.4. Let vP(x) be a solution to (2.7), taking values in By for all t > 0, and the initial
condition v§(z) satisfies (1.12) with R(v8) < 0. Then, for all t > 0, there exists C' such that

P(|N2(x)| > € for some x € (b/2,9b), s € [0,1]) (2.22)
< Ce™D(t v i??) /]R /R Gi(z — 2) (Ug(z) + ]| flloo L2 (—00,—100)U(10b,00)}) le{ze(b/Z,Qb)}) dx.

Proof. The proof goes exactly as the second part of the proof of Lemma 3.1 in [Tri95] (on p. 295) while
taking v§(2) + tll flloo 1 {2 (—o00,—106)U(10b,00)} instead of f and (b/2,9b) instead of (A, oc0) there. [

The support of the solution with a cut-off
Now, we prove the following lemma.

Lemma 2.5. Let v!(z) be a solution to (2.7) taking values in By for all t > 0 such that the initial
condition v(x) satisfies (1.12) with R(v)) < 0. Then, for all t > 0 there exists C; > 0 so that for
all b > 4v/t(t|| flloo V 1) we have

2

b
P( sup sup v(z) >0) < C(t | fl) exp ( - —) (2.23)
0<s<t ze[b,2b) 50t

Proof. We will follow the proof of Proposition 3.2 in [Tri95]. Let us take a function ¢ € L'(R)NC(R)
such that 0 < ¢(z) <1 for all z € R and {z : ¢(x) > 0} = (0,b), and set ¢p(x) = ¢(x — b). For
simplicity of notation, we define

(h.g) = /}R h(x)g() dz

for any functions h, g such that the integral above exists.
Fix t > 0 and let ¢2(z), 0 < s < t, 2 € R be the unique non-negative bounded solution to the
backward in time problem

~0,6% = 3861 — (6 + M, (2.24)

with the terminal condition ¢ (z) = 0. A similar equation to (2.24) but with different function 1
in the right side appears in the proof of Proposition 3.2 in [Tri95]. As ¢p(x) > 0 for all z € R, the
maximum principle implies existence of the solution to (2.24) and that ¢ (z) > 0 for all 0 < s < ¢
and x € R. The maximum principle also implies that

t—s
NGRS /0 / G,z — y)bu(y)dydr, s <t,

9



and thus qﬁé‘(:v) is integrable for all 0 < s < t. Next, note that the function

= b2,x<b
x > 2b,
0:

(z— 2b 2
satisfies, in the region = < b, where ¥y(x) =

1 1, 1 .2-3a o ala—12)
O = AT G A S Tt Tt T (@) S

provided that we take o > 12. As (y(z) = 400 at z = b, the maximum principle implies that, for «

sufficiently large, we have

oM(x) < T a R for all z < b, s <t,and A > 0. (2.25)
Similarly, again for « large enough, we get
& (z) < ﬁ for all 2 > 2b, s < t, and A > 0. (2.26)

Now, given any b > 4t'/2, we may use the fundamental solution for the heat equation on the half-
lines z < b — t'/2, & > 2b + t'/2 together with the upper bound in (2.25) on ¢} (z) at = = b — t'/2,
and z = 2b + /2 to conclude that there exists a1 > 0 such that

bh— 2
gb?(:v) < %exp ( - ( 205) ), for all b > 4t'/2, 2 < b—2t/2, s < t, and A > 0, (2.27)
and
20 — x)?
d)?(m) < %exp ( - (20tx)>’ for all b > 4t/2 2 > 2b+ 2t'/2, s < ¢, and A\ > 0. (2.28)

Next, by Ito’s formula, we get, for any 0 < s < t¢:

s /

exp (— 0,02) —A/03<v2/,¢b> ') =exp (= b)) + o (= b= r [ b wnhar)

X <<v /y — 05y — A¢§/ — Ap) — (F(0%) 1o, —100)0(10b,00)> Par) + 5@3(1 — ), ( ?,)2>> ds'
+ Mf ﬂﬂb ,

—_

A
where s —» M2V ,s < t, is a local martingale. In fact, M S is a square integrable martingale:

this follows easily from integrability of (¢*)2. Then we get

exp (—(o08) — [ 08 w0y ) = expt—ab ) + [ (2 [ o)

1 1
X (<_f(vg’)1(—00,—10b)u(10b,oo)7 ou) + <—ZUS' + Ub'(l — ), (63)%)) ds’ + MfA’wb- (2.29)

Note that (2.25) implies that for b > Ry we have a uniform bound

(v, 69)| < co, (2.30)
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with a constant cg that does not depend on A\. Now we define the stopping times
1
7p = inf {t >0: 3z € [b/2,30] s.t. vl(z) > 5}, pp = inf{t > 0: (W, 1) > 0}.
Note that we have

tATY
(vf/\n) 7¢t)\/\fb> + )\/ (W, hp) ds — 400 as A — +0o0, (2.31)
0

almost surely on the event {p, < t A7), thus
tATH
P <tAm) < lim B[1—exp (= fonn o) <A [ o ds)] 22
On the other hand, taking the expectation in (2.29) with s =t A 7, we get
AT
E[1-exp (= (tfrr, 6P, —A/O (us ) ds ) | <E[1 - exp (— (o], 60)]
FE[ [ (12 tomutionsey 62 + (oL cimutsnony @) d5]. (239

Note that for each 0 < s < t and z € R the family ¢)(z) is increasing in . Moreover, for s < ¢
and x > b we have ¢} (z) — +o0 as A — +oo, while for x < b, the limit ¢°(x) is finite because
of (2.25). Passing to the limit A — 400 in (2.33), using the bound in (2.32) and since v%(x) < 1 for
all s > 0,z € R, we get

P(pp <t ATp) <E[L—exp (- (v, 95%)] (2.34)
t 1
+/0 <||f”oo<1(—oo,—10b)u(10b,oo),¢>§°> + 4<1(—oo,b/2)u(3b,oo)v(¢§o)2>> ds.

Recalling (2.27)-(2.28), we have
c [0 2
Plpp <tAm) < t/ e~ (b=2)/(20%) 7. (2.35)

—0o0

t 00 —10b
N ||f||oo/ / o~ (2b—2)2/(200) dx+/ o= (-2)2/200) 3\ g
tJo \Jiow NS

C [t b/2 9 ) )
ro / o (b-2) /(10t)d$+/ o= (2-2)2/0100) g\ g
0 —00 3b

C 0>\ | Cllfll b*\ _ C(|fllos + 1) b?
<= —— e e ——).
= eXp( 40t> Ty eXp( t ) =T e exp( 40t)

We used the assumption that Ry = 0 in the first term in the right side above. To estimate the
integrals in (2.35), we used the standard Gaussian estimate

/00 exp(—a:2/2)dm <yt exp(—y2/2)
y

along with a few changes of variables.

11



Now we need to estimate
s 00 —10b
P(r, <t)=P (Elx € [b/2,3b],s < t: Gevf(x) —|—/ </ —|—/ ) Go_r(x — 2)f(02(2)) dz dr
0 \Jiw J-oo
+NP(z) > 1 /2) . (2.36)
It is easy to check that since b > 4v/t(t| f|loo V 1)
0 0 0
Gob(z) < / Guw— 2)dz < / Gi(w — 2)dz < / Gi(b)2 — 2) dz (2.37)
—(;)O —0o0 — 0o
< / G1(2—2)dz <1/10, Vs < t,x € [b/2, 3D].

Similarly, we have

t] stz <t Sl [ G-z <t [ Gre) (2.39)
10b 10b %
§tHfHOO/ G1(2)dz <0.05, Vr < s <t,x € [b/2,3b].
28(t] flloo V1)
and
—10b —10b e’}
] G- afehd <l [ Gle-b2dz<tfln [ Gia)ds (239)
. - "
< tHfHoo/ Gr(2)dz < 0.05, ¥r < s < £,z € [b/2, 3b].
40(t| flloo V1)

Altogether substituting the last inequalities into (2.36) we get
P(r, <t) <P (Ela: € [b/2,3b],s < t: N'(z) > 0.3) (2.40)

<OtV ) /R /R Gl — 2)(W(=) + 1l Flloo foe( oo 108)0(105000}) d=Liae (s 20m) do

b2
< Ot If o) exp (= =0 ), Ve > 0. € [b/2,30),
where the second inequality follows by Lemma 2.4 and in the last one we used simple Gaussian
bounds. By combining (2.40) with (2.35) we are done.
O

The proof of Lemma 2.1

Now we are ready to prove Lemma 2.1. Note that Lemma 2.5 implies a similar result for u:(z).

Lemma 2.6. Let u,(z) be a solution to (1.9) taking values in By for all t > 0 such that the initial
condition ug(x) satisfies (1.12) with R(ug) < 0. Then, for all T > 0 there exists Cr > 0 so that for
all b > 4VT (T f]loo V 1) we have

2

]P’( sup  sup w(x) >0> < C(T, HfHoo)exp(— b

— ). 2.41
0<t<T ze[b,2b] 50T> (241)
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Proof. By Girsanov’s theorem we have
P ( sup sup w(x) > 0) <E b[ezgl b ]
u 0<t<T ze[b,2t] — {suPo< i< 1 SUPLep,20) Vi (2)>0}

<Ep [€2Z%}]P)Ub< sup  sup vl(z) > O), (2.42)
0<t<T z€[b,2b]

where Z° was defined in (2.12). Note that (2.10) holds also P,s-a.s., thus from (2.12) we can easily
get

2

K, [¢2%F] < 10KT (2.43)
and combining this with (2.42) and Lemma 2.5 we obtain (2.41). O

Now, the conclusions of Lemma 2.1 follow essentially immediately. The bound (2.13) on

P( sup |R(u¢) — Ro| > b)
0<t<T

in Lemma 2.1 is a simple consequence of Lemma 2.6. The finiteness of sup,<r R(u;) follows
from (2.13). The corresponding bounds on L(u;) follow by repeating the arguments used in the
proof of Lemmas 2.3-2.6 for 1 — u(—=z) instead of u(z).

Uniqueness of the solution

So far, we have shown that both R(u:) and L(u;) are Py-a.s. finite for any solution to (1.9) taking
values in By for all ¢ > 0 such that the initial condition ug(z) satisfies (1.12). As a consequence,
(2.6) holds for any such solution to (1.9). As we have discussed in Section 2.2, it follows that we
may apply Girsanov’s theorem to immediately deduce uniqueness in law of the solution to (1.9) that
satisfies the above conditions.

2.4 Existence of the speed

The last ingredient in the proof of Theorem 1.1 is the existence of the speed.

Lemma 2.7. There exists a deterministic constant V(o) € (—o0,400) so that the limit

V(o) = lim Ri(u)

t—+oco t

(2.44)

exists almost surely.

Proof. The proof goes along the lines of the proof of the corresponding result in [CDO05]. First, we
show that the limit V(o) in (2.44) exists and V(o) < co. Let us set b(m) = R(uy,), form =0,1,2,...,
and note that by Corollary 2.2 we have

E[(b(1) — b(0))4] < 0. (2.45)

Then, as in the proof of Lemma 5.1 in [CD05] we can use the subadditive ergodic theorem to deduce
that there exists a constant c¢(o) € [—00,00), such that

lim
m—+oo m

= (o). (2.46)
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Using Lemma 2.1, we get (see Lemma 5.3 in [CDO05] for the same argument) that for all m = 1,2, ...

IP’( sup {b(s +m) = b(m), b(m +1) — b{s +m)} > \/a) < C(0) exp(—m/50). (2.47)

Then by the Borel-Cantelli lemma we get that in fact,

. b(t)
and thus V(o) = ¢(0) < o0.
To show that V(o) > —o0, one needs to consider equation for 1 — u;(—=z) and repeat the above
argument.

O]

3 The interface in the voter model

Girsanov’s theorem connecting solutions to the rescaled equation (1.14) and to the voter model (1.15)
not only allows us to deduce uniqueness in the law for the solutions to the former problem but also
obtain the asymptotics on their front speed in Theorem 1.2. As a preliminary step, in this section,
we make some observations about the latter. To begin, we rephrase Lemma 4.2(a) of [Tri95], putting
it into a form more directly useful for our purposes. Let w;(x) be the solution to (1.15) with an
initial condition wg(z) satisfying (1.12). Recall that we denote by P,, the measure induced on the
canonical path space C([0,+00); C(R)) by w, and by E,, we denote the corresponding expectation.
Recall that two random processes X; and Y; are said to be coupled if they can be defined on the same
probability space. We assume throughout the rest of the paper that f satisfies assumption (1.16).

Lemma 3.1. Given ¢ > 0, there exists T > 0 such that for all T > T, there is a coupling of
processes (wy, By : t > 0) where B a standard Brownian motion started at 0, such that

]P’w< sup |R(wt) — Bt‘ Vv ‘L(wt) — Bt} > Tl/QE) <e.

0<t<T

The following lemma shows that another good measure of the location of the interface is

M ::/0 /R\/ws(x)(l—ws(m))W(dz:,ds). (3.1)

Lemma 3.2. Let B be the Brownian motion from Lemma 3.1. Given € > 0, there exists T, > 0
such that for all T > T, we have

Po( sup [M;— By > 4T"%) <.
0<t<T

Proof. By Lemma 3.1,
E(wy) = /0 [wy(z) — 1]dx + /OO we(z)d. (3.2)
0

—0o0

is an almost surely finite functional of w;. As w(z) =1 for x < L(w;) and we(z) = 0 for x > R(w),
we have

0 R(w)VO
Ewy) = / [we(z) — 1]dz Jr/o w(z)dz,

L(wt )/\0
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thus
0 L(wy)VO 0 R(w;)VO
L(w) = / 1)z + / dr < / () — 1)dz + / wy(@)dz = Z(wy),
L(wy)AO 0 L(wy)AO 0
and likewise
0 R(w)VO 0 R(w¢)VO
R(wy) = / [—1]dx +/ dz > / [wi(x) — 1]dx +/ we(z)dr = E(wy).
R(w)AO 0 L(w)NO 0

We conclude that

Next, let 6(z) be a smooth monotonically decreasing function such that 6(z) = 1 for x < —2
and 0(z) =0 for z > —1, and set 0,,(x) = 0(nx). Then for

Cn(z) = wi(x) — O ()
we have

=(wy) = lim Z,( / (al

n—o0

The function (,(t, =) satisfies

O = 503G+ 58200 + v/l — W)V (1,). (3.4)

Integrating in ¢ and x gives

=0 (wr) = En(uwo) + / /R Vo)1 = ws(g))W (dyds). (3.5)

Passing to the limit n — 400, we arrive at

=(w) = S(uwo) + /0 / V@)L~ wa ()W (dyds) = S(wo) + My, (3.6)

As E(wp) < 400 and is not random, the conclusion of the present lemma follows from Lemma 3.1
by taking T sufficiently large. a

For any metric space E, we denote by Dg the space of cadlag functions [0,00) — E equipped
with the Skorohod topology. Define the rescaled functionals

1 1 1
Ly = gL( Wy2y), R = aR(wa2t)> M = EMcﬂt-

As a consequence of Lemmas 3.1 and 3.2, we conclude that
(L* R*, M*) = (B, B, B) in Dgs, asa — oo,

where B is a standard Brownian motion starting at 0 and = denotes convergence in law.
As in the application of the Girsanov theorem in the proof of Theorem 1.1, we will make use of
the functionals

N (e
Al ._//ws A deds, (3.7)
fw ) W (dz,ds 3.8
//Ws(x)(l_ws V() (3.8)
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and their rescaled versions

Ml = éMa%, Al = %Azzt, a> 0.
The difference in the scaling of these two functionals comes from the fact that M; is, roughly, a
Brownian motion on large time scales, and A; is deterministic to the leading order on large time
scales. Note that both A; and M; are almost surely finite if f satisfies assumption (1.11), since the
interface of w; has a finite length almost surely. However, we will need the stronger assumption (1.16)
in Lemma 3.5 below.
Let us now recall Theorem 1 of [MT97].

Theorem 3.3 ([MT97]). There exists a unique stationary measure p on Cy for (1.15). Furthermore,
for each ug € Cy, the law of wi(x + L¢) converges in total variation to p as t — oo. In addition,
the moment of the width of the interface E,, o[R(f) — L(f)[Pp(df) is finite if 0 < p < 1, and infinite
forp > 1.

The following estimate is a consequence of the second part of Theorem 3.3.

Lemma 3.4. For any n € (0, 1], we have

Ey st [/R(w(x)(l —w(x)))Tdx| < oo. (3.9)

Note that this result fails at 7 = 0: according to Theorem 3.3, the length of the interface has an
infinite expectation under the stationary distribution of w.

Proof. For n = 1 the result is known (see Lemma 2.1(a) in [Tri95]), so we assume that n € (0,1).
Let ¢ be the length of the interface of w under the stationary distribution. By applying Holder’s
and Young’s inequalities we get

Eue| /R (1) (1 w(@)))" da] < B ( /R (1) (1~ w(a)) de) "]
a(i—n)
]

< CoEua [( /R (w(z)(1 — w(z))) dx) O‘”} + CaEo st [5 =

for any o > 1. We take o« = 2/n and get

Eu | /R (w(x)(1 — w(2)))" da] < CoB( /R (w() (1~ w(2)) dz) | + CoBuu [(7].

with v = (1 —7)/(1 —n/2). Since v < 1, by Theorem 3.3 we get E, «[¢(?] < oco. In addition,
Lemma 2.1(d) in [Tri95] implies that

2
Ew,st[(/(w(m)m —w(@))de) | < o0,
R
and we are done. O
Lemma 3.5. Let f satisfy assumption (1.16), then we have convergence in law
(MFe, AP = (B, Dp), t > 0}, (3.10)

in Drz2, as a — co. Here {Btf ,t > 0} is a Brownian motion with variance D

_ @) 1
D_Ew,st[/Rw(x)(lw(x))d < o0. (3.11)
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Note that D < 400 because of Lemma 3.4 and assumption (1.16) on f.

Proof. Since w has a unique stationary distribution on the space C; of continuous functions h such
that —oo < L(h) < R(h) < 400, by the ergodic theorem we have

im a 247, f(w(@))? 2 —
Tim a2 A%, = 1Ry 0 [ it } Dt, (3.12)

uniformly on compact sets in ¢. Recall that E, s denotes the expectation with respect to the
stationary measure of w on C;. Since

va - B t>0, (3.13)

Afas
for some standard Brownian motion B, it follows from (3.12) that

M = {B] t >0} := {Bp,t >0}, (3.14)
where B pt 18 a Brownian motion with variance D. ]

Define

A = /Ot/RwS(:n)(l—ws(x))dxds, (3.15)

and its rescaled version

1
A? = 72Aa2t7 a > 0
a
Corollary 3.6. We have convergence in law
(L%, R®, M®, A%, M/ Al = {(By, B;, B, t, B!, Dt), t > 0}, (3.16)

in Dps, as a — oo. Here, By is a standard Brownian motion, BZ 18 a Brownian motion with
variance D and their correlation is given by

(B.,BY), = cyt, t >0, (3.17)
with ¢y as in (1.18).

Proof. It only remains to check the correlation:

a’t
<Mf’ _2/ /fws dmdsjﬂEwst /f da: —Cft t>0,

as a — 00, exactly as in (3.12). O

4 The proof of Theorem 1.2: the upper bound on the speed

We assume till the end of the paper, without loss of generality, that ¢y > 0. In this section, we prove
the upper bound on the front speed in Theorem 1.2.

Proposition 4.1. Suppose that ug satisfies (1.12) and f satisfies (1.16). Then with probability 1,
we have
lim sup 0%V (o) < ¢ .

o—00
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4.1 Rescaling
First, we show via a rescaling how to pass from (1.9) to (1.14). Consider the rescaled function
v(z) = uy—a, (0 2).
To get an equation for v(z), we use the mild form (2.1) and the relations
Gt (br) = b G a2 2 () (4.1)
Wb (dyds) == a~ b~ Y2W (bdy, a?ds) 2 W (dyds)
ab' W (dyds) = W (bdy, a’ds),

that hold for any a,b > 0. Here, 2 ineans equality in distribution. From (2.1), for any a,b > 0, we
get

Uarey (b2) = /R Goaalb — y)uo(y)dy + /0 ' /R Gz o (b — ) f(ual(y))dyds

a’t
to / / Goor o (b2 — )N/ () (1 — @)W (dyds) = I + II + II1.
0 R
We make the change of variables s = a?s’, y = by’ and use (4.1). For the term I we have

I=b / Gos (b — by Yuo(by )y = / Gz ( — o Yuo(by' )y (4.2)
R R

The second term can be rewritten as

a’t t
Il = / / Gazi—_s(bx — y) f(us(y))dyds = / / G o2t—a2s (b — bY') f (ug2y (by'))ba’dy ds'
0 R 0 JR

t
= a2 /0 /RGGQ(ts’)/M (@ = ¥) f(uq2y (by'))dy'ds’, &9

and changing variables, the last term is

1 =0 [ [ Guareolbr = )/ lo)(T = )W) (1.4)

t
0 [ G (0 = b)) GV (L — g ()W 0
0 JR

t
o [ 5 G el = )Vt /)L g G 20 ).
0 JR

t
= a2 [ [ Gt = 1)Vt BT = g )W ).

We take

so that ab='/2¢ = 1 and a?/b*> = 1. Defining v(z) = u(q2¢)(br) and putting together the above
terms, we see that vy(x) satisfies

u(z) = /R Gil — y)uo(y)dy + o~ /0 /R Greal — ) (va(y))dyds (4.5)

+ /0 /R Gr- (i — y)v/0 (@) (L — 0a (@) W (dyds).
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Since the solution v to (4.5) is unique in law, and since W and W are equal in law, we see that v
is the unique weak solution to (1.14) with the initial condition vo(z) = up(c~2z). Thus in general
our scaling changes the initial data. However, if ug(z) = 1(x < 0), then clearly vo(z) = ug(z).

Now it is clear that the conclusion of Proposition 4.1 would follow if we show that

limsup oV ¥ (5) < cy, (4.6)
T—00
where R
V¥ () = lim (Ut).
t—+oco ¢

Let us also note that the rescaled Girsanov functional (2.4) takes the form

~ [ Ly [ [ oy 60

= 074Mtf - 5078Ai£.

4.2 Time steps for the upper bound

Note that for the upper bound on V(o) and V(¥)(¢), we may assume without loss of generality
that the initial condition ug(x) = wvo(z) = 1(x <0), by the comparison principle and translation
invariance in law. We will define a sequence of stopping times 0 = 7p < 7 < ---, and a sequence

v,gm) (x) of solutions to (1.14) for ¢ > 7,,, with the initial conditions vgj) () > v, (z) at t = 7p,. The

comparison principle will imply that vgm) (x) > v(x) for t > 7,,. Moreover, we will choose vlgm) SO

that for each m = 0,1, 2,... the following conditions hold almost surely:
ve(x) < vgm) (), fort>r1,, zeR (4.8)
R(v!™) = mAio?, (4.9)
vg: D(x) < vsz)(x), for z € R, (4.10)

with the constant A1 to be specified later. It follows from (4.8), that for all m = 0,1,2,... and for
all ¢ > 7,,,, we have
R(v) < R(v(™), (4.11)

(m)).

almost surely. Thus, to bound R(v;) from above, it suffices to bound R(v,

Let us inductively construct 73, and vt(k) (x) for £ =0,1,.... For convenience in (4.10), we define
vﬁfl)(x) =0. Fix Tp > 0 and N € N, to be specified later, and start with 79 = 0 and vt(o) (x) = vi(x),
so that (4.8), (4.9), and (4.10) hold for m = 0 automatically. Suppose that we have defined 7,,, and
v,gm) for t > 7, and 0 < m < k, and assume that (4.8), (4.9) and (4.10) hold for 0 < m < k. Given
ng) (x), defined for t > 7, and = € R, we set

foke " f(ng) (z)) o ds
M _/Tk/R Y W (da, ds), (4.12)

)

and

1
Try1 = inf {t € [, 7 + Too®) R(vt(k)) = (k+1)\o* or ;Mtf’v’k > N}, (4.13)
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with 741 = 71, + Tpo® if the above set is empty. Then, we define v§k+1)(m) for t > 741, and x € R

as the solution to (1.14) with the initial condition

o* () = 1(z < (k + 1)Aio?).

Tk+1

Note that for m = k+ 1, (4.8) and (4.10) hold by the comparison principle. (4.9) holds by construc-
tion.
For convenience, we write
ATy, = Tl — T

and note that {A7,,} are i.i.d. random variables for m > 0.

4.3 A good event and its consequences (for the upper bound)

To get an upper bound on Vf(v)(a), it suffices to get an appropriate lower bound on 7, as m — oo.
Let us define the event
Gm = {A1y, = Tyo®}, m > 0. (4.14)

Proposition 4.1 is a consequence of the following lemma.

Lemma 4.2. Let ¢ € (0, min(1071, 0;2)) be arbitrary and set 6. = €/10. There exist T-, N., and o,
such that for To = T., N = N. and any o > 05, m >0, and

A= (cf + 0e) Tz, (4.15)

we have
A2 :=Py(Gp) 21— 0. (4.16)

Note that Ao does not depend on m since A7, are i.i.d for m > 1. We will prove Lemma 4.2 in
the next section. Now we are ready to give

Proof of Proposition 4.1. Given ¢ € (0,1/10), let T., N. and 0. be as in Lemma 4.2, and take an
arbitrary ¢ > o.. Then by Lemma 4.2, we have

Ay > 1 -4, (4.17)
and by (4.16) and the definition of G(™ with Ty = T, we get
E,[ATy] > T oo,
The strong law of large numbers implies that we have, P, almost surely,

lim ™ > T Aot (4.18)

m—oo M

Since R(v(m)) = mM1o?, we have that, also P, almost surely,

Tm

R(™) mio? Aot My
lim sup ——% = limsu = = =—0 ". 4.19
m—>oop Tm m—>oop Tm o Te)\QUS Te)\Q ( )

Furthermore, since by definition, for 7,,, <t < 7,11 we have

R(vt(m)) < (m+ Dot

20



Hence, we get that, P, almost surely, we have, using (4.17) and (4.18),

(m) 4
< BOT) i gup elm Dot

M—00 Ty <t<Timi1 m—oo Tm

< (e +e)o

V¥ (o) <limsup sup < (4.20)

/\1_0'4 < (Cf+68)0—_4
B )\2T508 - (1 —56)

Note that (4.20) holds for any o > o(j, and, since ¢ is arbitrary small, we are done. This finishes the
proof of Proposition 4.1.
O

4.4 Proof of Lemma 4.2

As G, are ii.d., it suffices to set m = 0. We fix ¢ € (0,1/10), let §. = /10, take T. sufficiently
large, so that

82T,
2 exp ( - 875) < ﬁ, (4.21)

set \1 = (¢f + 8:)1%, and let N. > (2 + d.)T.D be sufficiently large (its value will be determined
later in the proof). We define the stopping time

€ =inf{t >0: M/ > N.). (4.22)

Then by Girsanov’s theorem, we have, with Z; as in (4.7):

_ 1 _
P,(G§) = Ey [exp <Z08(TE/\55)) IGS] =E, [exp (O— 4(M§8(Ta/\€€) — 5 4A£8(T€/\£5)))
X I(R(wt) > \jo? for some t < U8T€ or 0_4Mtf > N, for some t < O'STE)}

ot 1 ot 4 = — =
=E, [exp (MYf“;/\§5 — 2A{F;/\§€> x 1 (R? > (cf + 6.)T% for some t < T, or £&° < T€>]

4 4 —
e
+ Ey [exp <M%:A§N,a — QAZ}’:A&N,U> x 1 (Rt"4 > (cf 4 6)T: for some t < TE) 1(6° > TE)}
=17+ 15.

We first bound I7:

1 _
[ =E, [exp (Mg‘;‘; - QAg;‘ng) 1(¢ < TE)} < eNE}P’w( sup M7 > N5>. (4.23)
0<t<T:

Let PB and PB’ be the measures induced on the canonical path space by the standard Brownian
motion B and by the Brownian motion with variance D, respectively, and EZ and EB" be the
corresponding expectations. Then by Lemma 3.5 we have

limsup I7 < eNEIP’Bf< sup B{ > NE) < eNeopB (\/BBTE > Ng) < 2€N66_N€2/(2T5D), (4.24)

o—00 OStSTE
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where the second inequality follows by the reflection principle and the last inequality follows by a
simple bound on Gaussian tail probabilities. By choosing N. sufficiently large, we get

lim sup I7 < £/100.

ag—00

Thus, there exists 0., such that for all ¢ > 0. we have
I7 < ¢e/50. (4.25)

Next, we bound I5. Let PB’'B be the measure induced on the canonical path space by the zero-
mean Brownian motions B, B, such that Bf has variance D, B has variance 1, and the covariance
of Bf and B is cy, and let EB’B be the corresponding expectation. We use again Corollary 3.6,
properties of weak convergence, the dominated convergence theorem (we can switch to the Skorohod
space if needed) to get

1 _
limsup I5 = limsup E,, [exp (MYJ:’”4 — §A%04)1( sup. R§4 > (cf +6:)1T2)1( sup Mtf’g4 < Ne)}

o—00 o—00 0<t<T:. 0<t<T,
: f _1pf _
S ]EBf,B |:6BT5 2DT£)1( sup Bt 2 (Cf + 58)T€) 1( sup Bif S NE):| (426)
0<t<T: 0<t<T:

I _1pp _ _

< EB’B |:€BT6 2DTEI( sup By > (¢f + 5€)TE)} = IP’B< sup (B +cpt) > (cp + 5€)T€).
0<t<T: 0<t<T:

In the last equality we used the Girsanov theorem, since under the exp(B% — %DT ) change of

measure, B is a Brownian motion with the drift 2cy (recall that the covariance of B/ and B is cy).
Now it is easy to get

]P’B< sup (Bt +cst) > (cp + (55)1_}) < ]P’B< sup B > (55’1_}) < 2 %T/2 < /100, (4.27)
0<t<T: 0<t<T:

where in the second inequality we again used reflection principle and a bound on Gaussian tail, and
the last inequality follows from (4.21). Hence, there is 0. such that for all o > 0., we have

I5 < e/50.
Combining the above estimates, we get that for ¢ > 0. we have
P,(G§) < 2¢/50 < £/10, (4.28)
so that
P,(Go) > 1 —¢/10. (4.29)

This finishes the proof of Lemma 4.2. [J

5 Proof of Theorem 1.2: the lower bound on the speed

We now prove the lower bound on V(o).

Proposition 5.1. Suppose that ug satisfies (1.12) and f satisfies (1.16). Then with probability 1,
we have
liminf 02V () > ¢ .

T—00
The proof of Proposition 5.1 follows a similar strategy to that of Proposition 4.1. As in the proof
of the upper bound, using the comparison principle and shift invariance in law, we may assume
without loss of generality that ug(xz) = vo(x) = 1(z < 0).
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5.1 Time steps for the lower bound

We start with the definition of the time steps. The main difference with the proof of the upper
bound is that we will sometimes update “backwards”, and that the ”good events” will be when the
stopping time happens before a fixed time length rather than when the stopping times happen at
a deterministic time steps, as in (4.14) in the proof of the upper bound. We will define stopping
times 0 = 79 < 7 < ---, and a sequence vgm) () of random processes, which will be solutions
to (1.14), for t > 7,,, such that for each m = 0,1,2,... the following conditions will hold almost

surely:

ve(z) > Uﬁm)(gp)’ fort > 7,, x €R (5.1)
Uﬁ:_l)(x) > ”gzl)(fU), for x € R. (5.2)

Given (5.1) and (5.2), it would follow almost surely for all m = 0,1,2,... and for all ¢ > 7, that
L(vy) > L(v{™). (5.3)

Thus, to bound L(v;) from below, it would suffice to bound L(Uim)).
We now describe the induction, starting with 79 = 0, and v,go) (x) = vi(z), so that (5.1) holds
for m = 0. Also define v(_l)(:c) = 1, so that (5.2) holds. Let us fix some constants M, To, N > 0,

to be specified later. Suppose that we have defined 7, for 0 < m < k and vt(m) for t > 7, and
0 <m <k, and that (5.1) and (5.2) hold for 0 < m < k. To define 7441, we consider, as in (4.12),

fok,_ [ f(0 (x)) o
Mt L= /‘rk/R \/'ng)(.l‘)(l _ng)(x))W(d ,d ), (54)

and set
~ 1
Tk+1 = inf {t € [, 7k + To0®) : |L(’U§k)) — L(vf)| = Mot or ;Mg’v’k 2 N} (5.5)

with the convention 7411 = 7 + ngS if the above set is empty.

We then let kaH)(:c) for t > 741, * € R be the solution to (1.14) with the initial condition

WD) () = 1(z < L)), if Ty < 7+ foo—g,
Th 1(z < L(vg,:)) — Aio?), if 71 = 1 + Too®.

Then for m = k + 1, the comparison principle gives (5.1), and (5.2) is true by definition.
As before, we write
AT = Tpy1 — Tk

and
AL, = L(u® ) - L(u®) (5.6)

Tk+1 Tk

Note that {(A7,,, ALg)} are i.i.d. random variables.
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5.2 A good event and its consequences for lower bound

We define the ”good” events
Gém) ={Ar, < ToO'S}.

and
~ ~ ~ 1
G(()l’m) = {ATm < Tood, AL, = Mo, sup thf,v,k < N},
TmStSTm+l g
~ ~ ~ 1
G((f’m) = {ATm < Tpo®, AL, = —X\iot,  sup —4Mtf’”’k < N},

Tm<t<Tm41 O

- . 1
Gé3’m) = {ATm < TQO'S, sup —4Mtf’“’k = N}.
Tm<t<Tm+41 O

To get a lower bound on V() (5) we need a lower bound on AL, as m — co. To this end the
following lemma will be helpful.

Lemma 5.2. Let ¢ € (0,1/10) be arbitrary and 6. = ¢/10. There exist T, N. and o so that for
allo > 0., m>0, Ty =T}, N = N and

M = (e = 0)T7, (5.7)
we have
P, (GS"™) > 1 —&/50, 5.8
P, (GS™) < £/20, (5.9)
P, (G™) < &/50 (5.10)

We postpone the proof of this lemma and first give

Proof of Proposition 5.1. Let us take ¢ € (O,min(lOfl,cJ?z)), and choose T, N. and o. as in
Lemma 5.2, and consider an arbitrary ¢ > o.. Lemma 5.2 implies that

P, (G™) — By (GP™) — Py (GE™) — (1 = P,(GI™)) > 1 —¢/5, (5.11)

for all 0 > o, so that for all m > 0 we have

> Mot(1 —¢/5). (5.12)
Then using the strong law of large numbers, we have that P, almost surely,
L (m) _
lim M >\ (1—¢/5)0?,

m—00 m

for all o > o.. Since 7, < mT} o8, we have that P, almost surely,

(m) (m) 501 45
timinf 207 ) iy g L) M M =/5)07 ML =€/5) s (5.13)
m—00 Tm m—oo m Tm TE*O'S Tg*
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Furthermore, since for 7,,, <t < 7,41 we have

L({™) > L(0/™) = Ao,

Tm

and A7y, < T¥08, it follows that, P, almost surely and since ¢ < 107!,

(m) (m) T 4 ~
L L Tm - A 1— _
V() (g) > liminf  inf G > lim inf () Aot M(l—e/5)
mMm—00 Ty <t<Tpm1 t M— 00 T —|-T€*O'8 T;
—e/10)T*(1 —¢/5
g OO e5) S
1z 5
> (cp —/E)o ™™

In the second inequality above we used (5.13) and the fact that 7,,, — oo, Py-a.s. since A7, > 0,
not identically zero and i.i.d. Since € was chosen to be arbitrary small we are done.

5.3 Proof of Lemma 5.2

O]

As (A4, ,ALy,) are i.i.d., the events G(()m) are also i.i.d., hence we only need to prove (5.8)-(5.10)

for m = 0 and write B o
Go=GP.GY =G0 i=1,23

Fix e € (0,1071), let 6. = /10, and let T be sufficiently large so that

pB (31 > ~6.VT, inf By>—(cs - 55)\/T) >1-¢/100, VT > T7.

(5.14)

We consider N > (2+.)T> D sufficiently large, with a precise value to be specified later, and define

the stopping time
4
€ =inf{t >0: M/ >N}

Then by Girsanov’s theorem, and since
1

o8 02

1
{ sup —4Mtjc < Ng} D { sup
0<t<Amy O 0<t<T¥

we have
x 1 (L(w(t)) > Aot for some 0 < ¢ < o3(T A gs))
x 1 (L(w(t)) > Aot for all 0 < t < of(TF A gf))

M < N forall0 <t < o®(T? Aff))]

]P)U (G(()l)) e Ew [exp (st(Tg/\Eg)) 1@81)] 2 Eu) |:eXp (0’4(M('7f8(T€*/\§E) —

1
2

Mtf < Ng} ={&>1T},

—44f
27 AoS(T;Ae)))

1 -
> E, [exp <M7]:’f4 — 2AJ}’,‘34) 1 (L§4 > A\ for some 0 <t < Tg*)

x 1 (Lf{4 > —\ for allogth;) X 1( sup M/ < N,

0<t<T>*
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Next, passing to the limit ¢ — 400, we obtain, using the weak convergence in Corollary 3.6:

1
lim infJ¢ = liminf E,, [exp (M%::’“ - 2A§34> x 1 (L§4 > (e — 8.)T for some 0 < ¢ < T;)
—00 e =

og—00 o

x 1 (Lg“ > (¢ — 6.)T for all 0 < t < T;) x 1( sup MIo" < N)]
0<t<Tr

f 1 *
> EB'.B {eBTe* 2 DT 1( sup B > (¢f — 56)T5*)1< inf By > —(cf — 56>T5*)
0<t<T 0<t<T¢

X 1< sup Bf <N5>}. (5.16)
0<t<Tz

We rewrite this, using Girsanov’s theorem for correlated Brownian motions with a drift, as

I _1pp=
lim inf J§ > EB’-B {eBTS 2 DT 1( sup B > (¢f — 5€)T*> X 1( inf By > —(cf — 56)T*)]

& 13

o—00 0<t<T> 0<t<T¥

t B[ BlL.-iDTr

—EB ’B[e e 2 1( sup BthNeﬂ

0<t<T
= IP’B< sup (By+ Cft) > (Cf — 55)T€*, inf *(Bt + Cft) > —(Cf — 5€)T;)

0<t<T 0<t<T?

- IPB'f< sup BJ + Dt > Ng). (5.17)

0<t<T:

The first term in the right side can be bounded as

]P’B< sup (By+cst) = (ef —0)I7, int (Bt—l—c]ct)>—(0f—55)T€*)

0<t<Tx* <t<Ty
B " . .
> P (BT; T2 2 (ep = 0TS, dnf Bu> ~(ef 6S)T5)

_pB (BT; > —6.17, inf Bi>—(cf - 65)T*)
<I<T

£

—pB (31 > —0.\/T¢, inf By > —(c;—0.) T;) > 1—£/100, (5.18)

where the last inequality follows by (5.14). The second term in the right side of (5.17) can be bounded
using the reflection principle for Brownian motion, bounds on tails of Gaussian probabilities and by
choosing N, > (2 + 0.)T D sufficiently large, so that

IPBf( sup B + Dt > Ne) < ]P’Bf( sup Bf > N.— DT;)
0<t<T 0<t<T>

(N. — DT})?

< opB (\/EBT; > N, — DT;) < 2exp ( - 5rD

) < ¢/100. (5.19)

Combining (5.15)-(5.19) we get that for N, sufficiently large we have
P,(GS) > 1 —¢/50, (5.20)

which is (5.8).
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Next, we bound }P’U(C:’(()Q)). Again, using Girsanov’s theorem we write

~(2)y _ 40t f
Pv(GO ) =Eu [exp (ZUS(TE*/\gf)) 1682)} <Ey [eXp <U 4(M0—8(TE*/\£E) ) 08(T;A56))
x 1 (L(wt) < =Xt for some 0 < t < o®(TY A §E)>

1
X 1<—4Mtf < N.forall0<t< UST;ﬂ
g
+E —4(, — - )] x 1 Ll >N
w| P WMos(mengs) T g o8 (T2 NE9) . ;;j;Tg gt = e
0'4 1 7(7'4 . 4 ~ 4
< Ew[exp (ij:;* — 5‘4%2‘ ) X l(ogl%fT; L7 < —)\1) X 1(0;1;%; Mot < NEH

_ 1 _ 1
B (M S ) 1, 202 )] = s
SIS0 L.

The term J3 , is exactly as IT in (4.23), thus, as in (4.25) we have, by choosing N sufficiently large:
5, < /50, (5.21)

for all o sufficiently large. As for J5;, proceeding similarly to (5.16), we obtain

f _1 *
limsup J5, < EF'B [eBTs* 2 DT 1<0<itn<fT* B, < —(cf — 65)T€*) X 1( sup B < Ngﬂ
T—00 AR 0<t<T¥

<pB( < (o A P i
<P <0§1%ng(Bt+cft)_ (cj = 6)T2) <P (Og};Bt_ (e = 0)/T)

< £/100. (5.22)

Here, the last inequality follows from (5.14). Combining (5.21) and (5.22) we see that for N,
sufficiently large we have

liminfJ5 < 32/100, (5.23)
and (5.9) follows.

To bound 683), once again by Girsanov’s theorem and recalling the definition of J5,, we obtain

_ _ 1
]P’U(G((]?')) =E, [exp (ZO-8(TE*/\§5)) 1@55’)} < E, {exp <o’ 4(MCJ:S(T;/\§E) — 30 4A£8(T;A£E))>

x 1( sup M7 > NE)] — J5, < /50,
0<t<T?*

where the last inequality follows from (5.21) for N, sufficiently large and all o sufficiently large.
Thus (5.10) follows, and the proof of Lemma 5.2 is complete. [
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