
Chapter 1. The Holomorphic Functions

March 31, 2003

We begin with the description of complex numbers and their basic algebraic prop-
erties. We will assume that the reader had some previous encounters with the complex
numbers and will be fairly brief, with the emphasis on some specifics that we will need
later.

1 The Complex Plane

1.1 The complex numbers

We consider the set C of pairs of real numbers (x, y), or equivalently of points on the
plane R2. Two vectors z1 = (x1, x2) and z2 = (x2, y2) are equal if and only if x1 = x2

and y1 = y2. Two vectors z = (x, y) and z̄ = (x,−y) that are symmetric to each other
with respect to the x-axis are said to be complex conjugate to each other. We identify
the vector (x, 0) with a real number x. We denote by R the set of all real numbers (the
x-axis).

Exercise 1.1 Show that z = z̄ if and only if z is a real number.

We introduce now the operations of addition and multiplication on C that turn it into
a field. The sum of two complex numbers and multiplication by a real number λ ∈ R
are defined in the same way as in R2:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), λ(x, y) = (λx, λy).

Then we may write each complex number z = (x, y) as

z = x · 1 + y · i = x+ iy, (1.1)

where we denoted the two unit vectors in the directions of the x and y-axes by 1 = (1, 0)
and i = (0, 1).

You have previously encountered two ways of defining a product of two vectors:
the inner product (z1 · z2) = x1x2 + y1y2 and the skew product [z1, z2] = x1y2 − x2y1.
However, none of them turn C into a field, and, actually C is not even closed under these
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operations: both the inner product and the skew product of two vectors is a number, not
a vector. This leads us to introduce yet another product on C. Namely, we postulate
that i · i = i2 = −1 and define z1z2 as a vector obtained by multiplication of x1 + iy1 and
x2 + iy2 using the usual rules of algebra with the additional convention that i2 = −1.
That is, we define

z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1). (1.2)

More formally we may write

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

but we will not use this somewhat cumbersome notation.

Exercise 1.2 Show that the product of two complex numbers may be written in terms of
the inner product and the skew product as z1z2 = (z̄1 · z2) + i[z̄1, z2], where z̄1 = x1 − iy1

is the complex conjugate of z1.

Exercise 1.3 Check that the product (1.2) turns C into a field, that is, the distributive,
commutative and associative laws hold, and for any z 6= 0 there exists a number z−1 ∈ C
so that zz−1 = 1. Hint: z−1 =

x

x2 + y2
− iy

x2 + y2
.

Exercise 1.4 Show that the following operations do not turn C into a field: (a) z1z2 =
x1x2 + iy1y2, and (b) z1z2 = x1x2 + y1y2 + i(x1y2 + x2y1).

The product (1.2) turns C into a field (see Exercise 1.3) that is called the field of complex
numbers and its elements, vectors of the form z = x + iy are called complex numbers.
The real numbers x and y are traditionally called the real and imaginary parts of z and
are denoted by

x = Rez, y = Imz. (1.3)

A number z = (0, y) that has the real part equal to zero, is called purely imaginary.
The Cartesian way (1.1) of representing a complex number is convenient for per-

forming the operations of addition and subtraction, but one may see from (1.2) that
multiplication and division in the Cartesian form are quite tedious. These operations,
as well as raising a complex number to a power are much more convenient in the polar
representation of a complex number:

z = r(cosφ+ i sinφ), (1.4)

that is obtained from (1.1) passing to the polar coordinates for (x, y). The polar coordi-
nates of a complex number z are the polar radius r =

√
x2 + y2 and the polar angle φ,

the angle between the vector z and the positive direction of the x-axis. They are called
the modulus and argument of z are denoted by

r = |z|, φ = Argz. (1.5)
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The modulus is determined uniquely while the argument is determined up to addition
of a multiple of 2π. We will use a shorthand notation

cosφ+ i sinφ = eiφ. (1.6)

Note that we have not yet defined the operation of raising a number to a complex power,
so the right side of (1.6) should be understood at the moment just as a shorthand for
the left side. We will define this operation later and will show that (1.6) indeed holds.
With this convention the polar form (1.4) takes a short form

z = reiφ. (1.7)

Using the basic trigonometric identities we observe that

r1e
iφ1r2e

iφ2 = r1(cosφ1 + i sinφ1)r2(cosφ2 + i sinφ2) (1.8)

= r1r2(cosφ1 cosφ2 − sinφ1 sinφ2 + i(cosφ1 sinφ2 + sinφ1 cosφ2))

= r1r2(cos(φ1 + φ2) + i sin(φ1 + φ2)) = r1r2e
i(φ1+φ2).

This explains why notation (1.6) is quite natural. Relation (1.8) says that the modulus
of the product is the product of the moduli, while the argument of the product is the
sum of the arguments.

Exercise 1.5 Show that if z = reiφ then z−1 =
1

r
e−iφ, and more generally if z1 = r1e

iφ1,

z2 = r2e
iφ2 with r2 6= 0, then

z1

z2

=
r1e

iφ1

r2eiφ2
=
r1
r2
ei(φ1−φ2). (1.9)

Sometimes it is convenient to consider a compactification of the set C of complex num-
bers. This is done by adding an ideal element that is call the point at infinity z = ∞.
However, algebraic operations are not defined for z = ∞. We will call the compactified
complex plane, that is, the plane C together with the point at infinity, the closed com-
plex plane, denoted by C. Sometimes we will call C the open complex plane in order to
stress the difference between C and C.

One can make the compactification more visual if we represent the complex numbers
as points not on the plane but on a two-dimensional sphere as follows. Let ξ, η and ζ
be the Cartesian coordinates in the three-dimensional space so that the ξ and η-axes
coincide with the x and y-axes on the complex plane. Consider the unit sphere

S : ξ2 + η2 + ζ2 = 1 (1.10)

in this space. Then for each point z = (x, y) ∈ C we may find a corresponding point
Z = (ξ, η, ζ) on the sphere that is the intersection of S and the segment that connects
the “North pole” N = (0, 0, 1) and the point z = (x, y, 0) on the complex plane.
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The mapping z → Z is called the stereographic projection. The segment Nz may
be parameterized as ξ = tx, η = ty, ζ = 1 − t, t ∈ [0, 1]. Then the intersection point
Z = (t0x, t0y, 1− t0) with t0 being the solution of

t20x
2 + t20y

2 + (1− t0)
2 = 1

so that (1 + |z|2)t0 = 2. Therefore the point Z has the coordinates

ξ =
2x

1 + |z|2
, η =

2y

1 + |z|2
, ζ =

|z|2 − 1

1 + |z|2
. (1.11)

The last equation above implies that
2

1 + |z|2
= 1 − ζ. We find from the first two

equations the explicit formulae for the inverse map Z → z:

x =
ξ

1− ζ
, y =

η

1− ζ
. (1.12)

Expressions (1.11) and(1.12) show that the stereographic projection is a one-to-one
map from C to S\N (clearly N does not correspond to any point z). We postulate that
N corresponds to the point at infinity z = ∞. This makes the stereographic projection
be a one-to-one map from C̄ to S. We will usually identify C̄ and the sphere S. The
lattter is called the sphere of complex numbers or the Riemann sphere. The open plane
C may be identified with S\N , the sphere with the North pole deleted.

Exercise 1.6 Let t and u be the longitude and the latitude of a point Z. Show that the
corresponding point z = seit, where s = tan(π/4 + u/2).

We may introduce two metrics (distances) on C according to the two geometric descrip-
tions presented above. The first is the usual Euclidean metric with the distance between
the points z1 = x1 + iy1 and z2 = x2 + iy2 in C given by

|z2 − z1| =
√

(x1 − x2)2 + (y1 − y2)2. (1.13)

The second is the spherical metric with the distance between z1 and z2 defined as the
Euclidean distance in the three-dimensional space between the corresponding points Z1

and Z2 on the sphere. A straightforward calculation shows that

ρ(z1, z2) =
2|z2 − z1|√

1 + |z1|2
√

1 + |z2|2
. (1.14)

This formula may be extended to C by setting

ρ(z,∞) =
2√

1 + |z|2
. (1.15)

Note that (1.15) may be obtained from (1.14) if we let z1 = z, divide the numerator and
denominator by |z2| and let |z2| → +∞.
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Exercise 1.7 Use the formula (1.11) for the stereographic projection to verify (1.14).

Clearly we have ρ(z1, z2) ≤ 2 for all z1, z2 ∈ C. It is straightforward to verify that both
of the metrics introduced above turn C into a metric space, that is, all the usual axioms
of a metric space are satisfied. In particular, the triangle inequality for the Euclidean
metric (1.13) is equivalent to the usual triangle inequality for two-dimensional plane:
|z1 + z2| ≤ |z1|+ |z2|.

Exercise 1.8 Verify the triangle inequality for the metric ρ(z1, z2) on C defined by
(1.14) and (1.15)

We note that the Euclidean and spherical metrics are equivalent on bounded sets M ⊂ C
that lie inside a fixed disk {|z| ≤ R}, R < ∞. Indeed, if M ⊂ {|z| ≤ R} then (1.14)
implies that for all z1, z2 ∈M we have

2

1 +R2
|z2 − z1| ≤ ρ(z1, z2) ≤ 2|z2 − z1| (1.16)

(this will be elaborated in the next section). Because of that the spherical metric is
usually used only for unbounded sets. Typically, we will use the Euclidean metric for C
and the spherical metric for C.

Now is the time for a little history. We find the first mention of the complex numbers as
square rots of negative numbers in the book ”Ars Magna” by Girolamo Cardano published in
1545. He thought that such numbers could be introduced in mathematics but opined that this
would be useless: ”Dismissing mental tortures, and multiplying 5 +

√
−15 by 5 −

√
−15, we

obtain 25− (−15). Therefore the product is 40. .... and thus far does arithmetical subtlety go,
of which this, the extreme, is, as I have said, so subtle that it is useless.” The baselessness of
his verdict was realized fairly soon: Raphael Bombelli published his “Algebra” in 1572 where
he introduced the algebraic operations over the complex numbers and explained how they
may be used for solving the cubic equations. One may find in Bombelli’s book the relation
(2 +

√
−121)1/3 + (2 −

√
−121)1/3 = 4. Still, the complex numbers remained somewhat of a

mystery for a long time. Leibnitz considered them to be “a beautiful and majestic refuge of
the human spirit”, but he also thought that it was impossible to factor x4 +1 into a product of
two quadratic polynomials (though this is done in an elementary way with the help of complex
numbers).

The active use of complex numbers in mathematics began with the works of Leonard
Euler. He has also discovered the relation eiφ = cosφ + i sinφ. The geometric interpretation
of complex numbers as planar vectors appeared first in the work of the Danish geographical
surveyor Caspar Wessel in 1799 and later in the work of Jean Robert Argand in 1806. These
papers were not widely known - even Cauchy who has obtained numerous fundamental results
in complex analysis considered early in his career the complex numbers simply as symbols
that were convenient for calculations, and equality of two complex numbers as a shorthand
notation for equality of two real-valued variables.

The first systematic description of complex numbers, operations over them, and their
geometric interpretation were given by Carl Friedreich Gauss in 1831 in his memoir “Theoria
residuorum biquadraticorum”. He has also introduced the name “complex numbers”.
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1.2 The topology of the complex plane

We have introduced distances on C and C that turned them into metric spaces. We will
now introduce the two topologies that correspond to these metrics.

Let ε > 0 then an ε-neighborhood U(z0, ε) of z0 ∈ C in the Euclidean metric is the
disk of radius ε centered at z0, that is, the set of points z ∈ C that satisfy the inequality

|z − z0| < ε. (1.17)

An ε-neighborhood of a point z0 ∈ C is the set of all points z ∈ C such that

ρ(z, z0) < ε. (1.18)

Expression (1.15) shows that the inequality ρ(z,∞) < ε is equivalent to |z| >
√

4

ε2
− 1.

Therefore an ε-neighborhood of the point at infinity is the outside of a disk centered at
the origin complemented by z = ∞.

We say that a set Ω in C (or C) is open if for any point z0 ∈ Ω there exists a
neighborhood of z0 that is contained in Ω. It is straightforward to verify that this
notion of an open set turns C and C into topological spaces, that is, the usual axioms of
a topological space are satisfied.

Sometimes it will be convenient to make use of the so called punctured neighborhoods,
that is, the sets of the points z ∈ C (or z ∈ C) that satisfy

0 < |z − z0| < ε, 0 < ρ(z, z0) < ε. (1.19)

We will introduce in this Section the basic topological notions that we will constantly
use in the sequel.

Definition 1.9 A point z0 ∈ C (resp. in C) is a limit point of the set M ⊂ C (resp. C)
if there is at least one point of M in any punctured neighborhood of z0 in the topology
of C (resp. C). A set M is said to be closed if it contains all of its limit points. The
union of M and all its limit points is called the closure of M and is denoted M .

Example 1.10 The set Z of all integers {0,±1,±2, . . . } has no limit points in C and
is therefore closed in C. It has one limit point z = ∞ in C that does not belong to Z.
Therefore Z is not closed in C.

Exercise 1.11 Show that any infinite set in C has at least one limit point (compactness
principle).

This principle expresses the completeness (as a metric space) of the sphere of complex
numbers and may be proved using the completeness of the real numbers. We leave
the proof to the reader. However, as Example 1.10 shows, this principle fails in C.
Nevertheless it holds for infinite bounded subsets of C, that is, sets that are contained
in a disk {|z| < R}, R <∞.
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Inequality (1.16) shows that a point z0 6= ∞ is a limit point of a set M in the
topology of C if and only if it is a limit point of M in the topology of C. In other words,
when we talk about finite limit points we may use either the Euclidean or the spherical
metric. That is what the equivalence of these two metrics on bounded sets, that we
have mentioned before, means.

Definition 1.12 A sequence {an} is a mapping from the set N of non-negative integers
into C (or C). A point a ∈ C (or C) is a limit point of the sequence {an} if any
neighborhood of a in the topology of C (or C) contains infinitely many elements of the
sequence. A sequence {an} converges to a if a is its only limit point. Then we write

lim
n→∞

an = a. (1.20)

Remark 1.13 The notions of the limit point of a sequence {an} and of the set of values
{an} are different. For instance, the sequence {1, 1, 1, . . . } has a limit point a = 1, while
the set of values consists of only one point z = 1 and has no limit points.

Exercise 1.14 Show that 1) A sequence {an} converges to a if and only if for any ε > 0
there exists N ∈ N so that |an − a| < ε for all n ≥ N (if a 6= ∞), or ρ(an, a) < ε (if
a = ∞). 2) A point a is a limit point of a sequence {an} if and only if there exists a
subsequence {ank

} that converges to a.

The complex equation (1.20) is equivalent to two real equations. Indeed, (1.20) is
equivalent to

lim
n→∞

|an − a| = 0, (1.21)

where the limit above is understood in the usual sense of convergence of real-valued
sequences. Let a 6= ∞, then without any loss of generality we may assume that an 6= ∞
(because if a 6= ∞ then there exists N so that an 6= ∞ for n > N and we may restrict
ourselves to n > N) and let an = αn+iβn, a = α+iβ (for a = ∞ the real and imaginary
parts are not defined). Then we have

max(|αn − α|, |βn − β|) ≤
√
|αn − α|2 + |βn − β|2 ≤ |αn − α|+ |βn − β|

and hence (1.21) and the squeezing theorem imply that (1.20) is equivalent to a pair of
equalities

lim
n→∞

αn = α, lim
n→∞

βn = β. (1.22)

In the case when a 6= 0 and a 6= ∞ we may assume that an 6= 0 and an 6= ∞ and write
an = rne

iφn , a = reiφ. Then

|an − a|2 = r2 + r2
n − 2rrn cos(φ− φn) = (r − rn)

2 + 2rrn(1− cos(φ− φn)) (1.23)

and hence (1.20) holds if
lim
n→∞

rn = r, lim
n→∞

φn = φ. (1.24)

Conversely, if (1.20) holds then (1.23) implies that the first equality in (1.24) holds and
that limn→∞ cos(φ − φn) = 1. Therefore if we choose φn ∈ [0, 2π) then (1.20) implies
also the second equality in (1.24).

7



Exercise 1.15 Show that 1) the sequence an = ein diverges, and 2) if a series
∑∞

n=1 an
converges and |arg an| ≤ α < π/2, then the series converges absolutely. Here arg an is
the value of Arg an that satisfies −π < arg an ≤ π.

We will sometimes use the notion of the distance between two sets M and N , which is
equal to the least upper bound of all distances between pairs of points from M and N :

ρ(M,N) = inf
z∈M,z′∈N

ρ(z, z′). (1.25)

One may use the Euclidean metric to define the distance between sets as well, of course.

Theorem 1.16 Let M and N be two non-overlapping closed sets: M ∩N = ∅, then the
distance between M and N is positive.

Proof. Let us assume that ρ(M,N) = 0. Then there exist two sequences of points
zn ∈ M and z′n ∈ N so that limn→∞ ρ(zn, z

′
n) = 0. According to the compactness

principle the sequences zn and z′n have limit points z and z′, respectively. Moreover,
since both M and N are closed, we have z ∈ M and z′ ∈ N . Then there exist a
subsequence nk → ∞ so that both znk

→ z and z′nk
→ z′. The triangle inequality for

the spherical metric implies that

ρ(z, z′) ≤ ρ(z, znk
) + ρ(znk

, z′nk
) + ρ(z′nk

, z′).

The right side tends to zero as k → ∞ while the left side does not depend on k.
Therefore, passing to the limit k →∞ we obtain ρ(z, z′) = 0 and thus z = z′. However,
z ∈M and z′ ∈ N , which contradicts the assumption that M ∩N = ∅. �

1.3 Paths and curves

Definition 1.17 A path γ is a continuous map of an interval [α, β] of the real axis into
the complex plane C (or C). In other words, a path is a complex valued function z = γ(t)
of a real argument t, that is continuous at every point t0 ∈ [α, β] in the following sense:
for any ε > 0 there exists δ > 0 so that |γ(t) − γ(t0)| < ε (or ρ(γ(t), γ(t0)) < ε if
γ(t0) = ∞) provided that |t− t0| < δ. The points a = γ(α) and b = γ(β) are called the
endpoints of the path γ. The path is closed if γ(α) = γ(β). We say that a path γ lies in
a set M if γ(t) ∈M for all t ∈ [α, β].

Sometimes it is convenient to distinguish between a path and a curve. In order to
introduce the latter we say that two paths

γ1 : [α1, β1] → C and γ2 : [α2, β2] → C

are equivalent (γ1 ∼ γ2) if there exists an increasing continuous function

τ : [α1, β1] → [α2, β2] (1.26)

such that τ(α1) = α2, τ(β1) = β2 and so that γ1(t) = γ2(τ(t)) for all t ∈ [α1, β1].
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Exercise 1.18 Verify that relation ∼ is reflexive: γ ∼ γ, symmetric: if γ1 ∼ γ2, then
γ2 ∼ γ1 and transitive: if γ1 ∼ γ2 and γ2 ∼ γ3 then γ1 ∼ γ3.

Example 1.19 Let us consider the paths γ1(t) = t, t ∈ [0, 1]; γ2(t) = sin t, t ∈ [0, π/2];
γ3(t) = cos t, t ∈ [0, π/2] and γ4(t) = sin t, t ∈ [0, π]. The set of values of γj(t) is always
the same: the interval [0, 1]. However, we only have γ1 ∼ γ2. These two paths trace
[0, 1] from left to right once. The paths γ3 and γ4 are neither equivalent to these two,
nor to each other: the interval [0, 1] is traced in a different way by those paths: γ3 traces
it from right to left, while γ4 traces [0, 1] twice.

Exercise 1.20 Which of the following paths: a) e2πit, t ∈ [0, 1]; b) e4πit, t ∈ [0, 1]; c)
e−2πit, t ∈ [0, 1]; d) e4πi sin t, t ∈ [0, π/6] are equivalent to each other?

Definition 1.21 A curve is an equivalence class of paths. Sometimes, when this will
cause no confusion, we will use the word ’curve’ to describe a set γ ∈ C that may be
represented as an image of an interval [α, β] under a continuous map z = γ(t).

Below we will introduce some restrictions on the curves and paths that we will consider.
We say that γ : [α, β] → C is a Jordan path if the map γ is continuous and one-to-one.
The definition of a closed Jordan path is left to the reader as an exercise.

A path γ : [α, β] → C (γ(t) = x(t) + iy(t)) is continuously differentiable if derivative
γ′(t) := x′(t) + iy′(t) exists for all t ∈ [α, β]. A continuously differentiable path is said
to be smooth if γ′(t) 6= 0 for all t ∈ [α, β]. This condition is introduced in order to avoid
singularities. A path is called piecewise smooth if γ(t) is continuous on [α, β], and [α, β]
may be divided into a finite number of closed sub-intervals so that the restriction of γ(t)
on each of them is a smooth path.

We will also use the standard notation to describe smoothness of functions and
paths: the class of continuous functions is denoted C, or C0, the class of continuously
differentiable functions is denoted C1, etc. A function that has n continuous derivatives
is said to be a Cn-function.

Example 1.22 The paths γ1, γ2 and γ3 of the previous example are Jordan, while γ4 is
not Jordan. The circle z = eit, t ∈ [0, 2π] is a closed smooth Jordan path; the four-petal
rose z = eit cos 2t, t ∈ [0, 2π] is a smooth non-Jordan path; the semi-cubic parabola
z = t2(t + i), t ∈ [−1, 1] is a Jordan continuously differentiable piecewise smooth path.

The path z = t

(
1 + i sin

(
1

t

))
, t ∈ [−1/π, 1/π] is a Jordan non-piecewise smooth

path.

One may introduce similar notions for curves. A Jordan curve is a class of paths that
are equivalent to some Jordan path (observe that since the change of variables (1.26) is
one-to-one, all paths equivalent to a Jordan path are also Jordan).

The definition of a smooth curve is slightly more delicate: this notion has to be
invariant with respect to a replacement of a path that represents a given curve by an
equivalent one. However, a continuous monotone change of variables (1.26) may map
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a smooth path onto a non-smooth one unless we impose some additional conditions on
the functions τ allowed in (1.26).

More precisely, a smooth curve is a class of paths that may be obtained out of a
smooth path by all possible re-parameterizations (1.26) with τ(s) being a continuously
differentiable function with a positive derivative. One may define a piecewise smooth
curve in a similar fashion: the change of variables has to be continuous everywhere, and
in addition have a continuous positive derivative except possibly at a finite set of points.

Sometimes we will use a more geometric interpretation of a curve, and say that a
Jordan, or smooth, or piecewise smooth curve is a set of points γ ⊂ C that may be
represented as the image of an interval [α, β] under a map z = γ(t) that defines a
Jordan, smooth or piecewise smooth path.

1.4 Domains

We say that a set D is pathwise-connected if for any two points a, b ∈ D there exists a
path that lies in D and has endpoints a and b.

Definition 1.23 A domain D is a subset of C (or C) that is both open and pathwise-
connected.

The limit points of a domain D that do not belong to D are called the boundary points
of D. These are the points z so that any neighborhood of z contains some points in D
and at least one point not in D. Indeed, if z0 ∈ ∂D then any neighborhood of z contains
a point from D since z0 is a limit point of D, and it also contains z0 itself that does not
lie in D. Conversely, if any neighborhood of z0 contains some points in D and at least
one point not in D then z0 /∈ D since D is open, and z0 is a limit point of D, so that
z0 ∈ ∂D. The collection of all boundary points of D is called the boundary of D and is
denoted by ∂D. The closure of D is the set D̄ = D ∪ ∂D. The complement of D is the
set Dc = C\D̄, the points z that lie in Dc are called the outer points of D.

Exercise 1.24 Show that the set Dc is open.

Theorem 1.25 The boundary ∂D of any domain D is a closed set.

Proof. Let ζ0 be a limit point of ∂D. We have to show that ζ0 ∈ ∂D. Let U be a
punctured neighborhood of ζ0. Then U contains a point ζ ∈ ∂D. Furthermore, there
exists a neighborhood V of ζ so that V ⊂ U . However, since ζ is a boundary point of D,
the set V must contain points both from D and not from D. Therefore U also contains
both points from D and not in D and hence ζ0 ∈ ∂D. �

We will sometimes need some additional restrictions on the boundary of domains.
The following definition is useful for these purposes.

Definition 1.26 The set M is connected if it is impossible to split it as M = M1 ∪M2

so that both M1 and M2 are not empty while the intersections M̄1 ∩M2 and M1 ∩ M̄2

are empty.
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Exercise 1.27 Show that a closed set is connected if and only if it cannot be represented
as a union of two non-overlapping non-empty closed sets.

One may show that a pathwise connected set is connected. The converse, however, is
not true.

Let M be a non-connected set. A subset N ⊂ M is called a connected component
if M if N is connected and is not contained in any other connected subset of M . One
may show that any set is the union of its connected components (though, it may have
infinitely many connected components).

A domain D ⊂ C is simply connected if its boundary ∂D is a connected set.

Example 1.28 (a) The interior of figure eight is not a domain since it is not pathwise-
connected. (b) The set of points between two circles tangent to each other is a simply
connected domain.

Sometimes we will impose further conditions. A domain D is Jordan if its boundary is
a union of closed Jordan curves. A domain D is bounded if it lies inside a bounded disk
{|z| < R, R <∞}. A set M is properly embedded in a domain D if its closure M̄ in C
is contained in D. We will then write M ⊂⊂ D.

We will often make use of the following theorem. A neighborhood of a point z in the
relative topology of a set M is the intersection of a usual neighborhood of z and M .

Theorem 1.29 Let M ⊂ C be a connected set and let N be its non-empty subset. If N
is both open and closed in the relative topology of M then M = N .

Proof. Let the set N ′ = M\N be non-empty. The closure N̄ of N in the usual
topology of C is the union of its closure (N̄)M of N in the relative topology of M ,
and some other set (possibly empty) that does not intersect M . Therefore we have
N̄ ∩ N ′ = (N̄)M ∩ N ′. However, N is closed in the relative topology of M so that
(N̄)M = N and hence (N̄)M ∩N ′ = N ∩N ′ = ∅.

Furthermore, since N is also open in the relative topology of M , its complement N ′

in the same topology is closed (the limit points of N ′ may not belong to N since the
latter is open, hence they belong to N ′ itself). Therefore we may apply the previous
argument to N ′ and conclude that N̄ ′ ∩ N is empty. This contradicts the assumption
that M is connected. �

2 Functions of a complex variable

2.1 Functions

A complex valued function f : M → C, where M ⊂ C is one-to-one, if for any two
points z1 6= z2 in M the images w1 = f(z1), w2 = f(z2) are different: w1 6= w2. Later
we will need the notion of a multi-valued function that will be introduced in Chapter 3.

Defining a function f : M → C is equivalent to defining two real-valued functions

u = u(z), v = v(z). (2.1)

11



Here u : M → R and v : M → R are the real and imaginary parts of f : f(x + iy) =
u(x+ iy) + iv(x+ iy). Furthermore, if f 6= 0, 6= ∞ (this notation means that f(z) 6= 0
and f(z) 6= ∞ for all z ∈M) we may write f = ρeiψ with

ρ = ρ(z), ψ = ψ(z) + 2kπ, (k = 0,±1, . . . ). (2.2)

At the points where f = 0, or f = ∞, the function ρ = 0 or ρ = ∞ while ψ is not
defined.

We will constantly use the geometric interpretation of a complex valued function.
The form (2.1) suggests representing f as two surfaces u = u(x, y), v = v(x, y) in the
three-dimensional space. However, this is not convenient since it does not represent
(u, v) as one complex number. Therefore we will represent a function f : M → C as a
map of M into a sphere C.

We now turn to the basic notion of the limit of a function.

Definition 2.1 Let the function f be defined in a punctured neighborhood of a point
a ∈ C. We say that the number A ∈ C is its limit as z goes to a and write

lim
z→a

f(z) = A, (2.3)

if for any neighborhood UA of A their exists a punctured neighborhood U ′
a of a so that

for all z ∈ U ′
a we have f(z) ∈ UA. Equivalently, for any ε > 0 there exists δ > 0 so that

the inequality
0 < ρ(z, a) < δ (2.4)

implies
ρ(f(z), A) < ε. (2.5)

If a,A 6= ∞ then (2.4) and (2.5) may be replaced by the inequalities 0 < |z − a| < δ
and |f(z) − A| < ε. If a = ∞ and A 6= ∞ then they may written as δ < |z| < ∞,
|f(z)− A| < ε. You may easily write them in the remaining cases a 6= ∞, A = ∞ and
a = A = ∞.

We set f = u + iv. It is easy to check that for A 6= ∞, A = A1 + iA2, (2.3) is
equivalent to two equalities

lim
z→a

u(z) = A1, lim
z→a

v(z) = A2. (2.6)

If we assume in addition that A 6= 0 and choose arg f appropriately then (2.3) may be
written in polar coordinates as

lim
z→a

|f(z)| = |A|, lim
z→a

arg f(z) = argA. (2.7)

The elementary theorems regarding the limits of functions in real analysis, such as on
the limit of sums, products and ratios may be restated verbatim for the complex case
and we do not dwell on their formulation and proof.
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Sometimes we will talk about the limit of a function along a set. Let M be a set, a
be its limit point and f a function defined on M . We say that f tends to A as z tends
to a along M and write

lim
z→a,z∈M

f(z) = A (2.8)

if for any ε > 0 there exists δ > 0 so that if z ∈ M and 0 < ρ(z, a) < δ we have
ρ(f(z), A) < ε.

Definition 2.2 Let f be defined in a neighborhood of a ∈ C. We say that f is contin-
uous at a if

lim
z→a

f(z) = f(a). (2.9)

For the reasons we have just discussed the elementary theorems about the sum, product
and ratio of continuous functions in real analysis translate immediately to the complex
case.

One may also define continuity of f at a along a set M , for which a is a limit point,
if the limit in (2.9) is understood along M . A function that is continuous at every point
of M (along M) is said to be continuous on M . In particular if f is continuous at every
point of a domain D it is continuous in the domain.

We recall some properties of continuous functions on closed sets K ⊂ C:
1. Any function f that is continuous on K is bounded on K, that is, there exists A ≥ 0
so that |f(z)| ≤ A for all z ∈ K.
2. Any function f that is continuous on K attains its maximum and minimum, that is,
there exist z1, z2 ∈ K so that |f(z1)| ≤ |f(z)| ≤ |f(z2)| for all z ∈ K.
3. Any function f that is continuous on K is uniformly continuous, that is, for any
ε > 0 there exists δ > 0 so that |f(z1)− f(z2)| < ε provided that ρ(z1, z2) < δ.

The proofs of these properties are the same as in the real case and we do not present
them here.

2.2 Differentiability

The notion of differentiability is intricately connected to linear approximations so we
start with the discussion of linear functions of complex variables.

Definition 2.3 A function f : C → C is C-linear, or R-linear, respectively, if
(a) l(z1 + z2) = l(z1) + l(z2) for all z1, z2 ∈ C,
(b) l(λz) = λl(z) for all λ ∈ C, or, respectively, λ ∈ R.

Thus R-linear functions are linear over the field of real numbers while C-linear are linear
over the field of complex numbers. The latter form a subset of the former.

Let us find the general form of an R-linear function. We let z = x + iy, and use
properties (a) and (b) to write l(z) = xl(1)+ yl(i). Let us denote α = l(1) and β = l(i),
and replace x = (z + z̄)/2 and y = (z − z̄)/(2i). We obtain the following theorem.
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Theorem 2.4 Any R-linear function has the form

l(z) = az + bz̄, (2.10)

where a = (α− iβ)/2 and b = (α+ iβ)/2 are complex valued constants.

Similarly writing z = 1 · z we obtain

Theorem 2.5 Any C-linear function has the form

l(z) = az, (2.11)

where a = l(1) is a complex valued constant.

Theorem 2.6 An R-linear function is C-linear if and only if

l(iz) = il(z). (2.12)

Proof. The necessity of (2.12) follows immediately from the definition of a C-linear
function. Theorem 2.4 implies that l(z) = az + bz̄, so l(iz) = i(az − bz̄). Therefore,
l(iz) = il(z) if and only if

iaz − bz̄ = iaz + ibz̄.

Therefore if l(iz) = il(z) for all z ∈ C then b = 0 and hence l is C-linear.
We set a = a1 + ia2, b = b1 + ib2, and also z = x+ iy, w = u+ iv. We may represent

an R-linear function w = az + bz̄ as two real equations

u = (a1 + b1)x− (a2 − b2)y, v = (a2 + b2)x+ (a1 − b1)y.

Therefore geometrically an R-linear function is an affine transform of a plane y = Ax
with the matrix

A =

(
a1 + b1 −(a2 − b2)

a2 + b2 a1 − b1

)
. (2.13)

Its Jacobian is
J = a2

1 − b21 + a2
2 − b22 = |a|2 − |b|2. (2.14)

This transformation is non-singular when |a| 6= |b|. It transforms lines into lines, parallel
lines into parallel lines and squares into parallelograms. It preserves the orientation when
|a| > |b| and changes it if |a| < |b|.

However, a C-linear transformation w = az may not change orientation since its
jacobian J = |a|2 ≥ 0. They are not singular unless a = 0. Letting a = |a|eiα and
recalling the geometric interpretation of multiplication of complex numbers we find that
a non-degenerate C-linear transformation

w = |a|eiαz (2.15)

is the composition of dilation by |a| and rotation by the angle α. Such transformations
preserve angles and map squares onto squares.
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Exercise 2.7 Let b = 0 in (2.13) and decompose A as a product of two matrices, one
corresponding to dilation by |a|, another to rotation by α.

We note that preservation of angles characterizes C-linear transformations. Moreover,
the following theorem holds.

Theorem 2.8 If an R-linear transformation w = az + bz̄ preserves orientation and
angles between three non-parallel vectors eiα1, eiα2, eiα3, αj ∈ R, j = 1, 2, 3, then w is
C-linear.

Proof. Let us assume that w(eiα1) = ρeiβ1 and define w′(z) = e−iβ1w(zeiα1). Then
w′(z) = a′z + b′z̄ with

a′ = aei(α1−β1)a, b′ = be−i(α1+β1),

and, moreover w′(1) = e−iβ1ρeiβ1 = ρ > 0. Therefore we have a′ + b′ > 0. Furthermore,
w′ preserves the orientation and angles between vectors v1 = 1, v2 = ei(α2−α1) and
v3 = ei(α3−α1). Since both v1 and its image lie on the positive semi-axis and the angles
between v1 and v2 and their images are the same, we have w′(v2) = h2v2 with h2 > 0.
This means that

a′eiβ2 + b′e−iβ2 = h2e
iβ2 , β2 = α2 − α1,

and similarly
a′eiβ3 + b′e−iβ3 = h3e

iβ3 , β3 = α3 − α1,

with h3 > 0. Hence we have

a′ + b′ > 0, a′ + b′e−2iβ2 > 0, a′ + b′e−2iβ3 > 0.

This means that unless b′ = 0 there exist three different vectors that connect the vector
a′ to the real axis, all having the same length |b′|. This is impossible, and hence b′ = 0
and w is C-linear.

Exercise 2.9 (a) Give an example of an R-linear transformation that is not C-linear
but preserves angles between two vectors.
(b) Show that if an R-linear transformation preserves orientation and maps some square
onto a square it is C-linear.

Now we may turn to the notion of differentiability of complex functions. Intuitively,
a function is differentiable if it is well approximated by linear functions. Two differ-
ent definitions of linear functions that we have introduced lead to different notions of
differentiability.

Definition 2.10 Let z ∈ C and let U be a neighborhood of z. A function f : U → C is
R-differentiable (respectively, C-differentiable) at the point z if we have for sufficiently
small |∆z|:

∆f = f(z + ∆z)− f(z) = l(∆z) + o(∆z), (2.16)

where l(∆z) (with z fixed) is an R-linear (respectively, C-linear) function of ∆z, and
o(∆z) satisfies o(∆z)/∆z → 0 as ∆z → 0. The function l is called the differential of f
at z and is denoted df .
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The increment of an R-differentiable function has, therefore, the form

∆f = a∆z + b∆z + o(∆z). (2.17)

Taking the increment ∆z = ∆x along the x-axis, so that ∆z = ∆x and passing to the
limit ∆x→ 0 we obtain

lim
∆x→0

∆f

∆x
=
∂f

∂x
= a+ b.

Similarly, taking ∆z = i∆y (the increment is long the y-axis) so that ∆z = −i∆y we
obtain

lim
∆y→0

∆f

i∆y
=

1

i

∂f

∂y
= a− b.

The two relations above imply that

a =
1

2

(
∂f

∂x
− i

∂f

∂y

)
, b =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

These coefficients are denoted as

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,
∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(2.18)

and are sometimes called the formal derivatives of f at the point z. They were first
introduced by Riemann in 1851.

Exercise 2.11 Show that (a)
∂z

∂z̄
= 0,

∂z̄

∂z̄
= 1; (b)

∂

∂z̄
(f + g) =

∂f

∂z̄
+
∂g

∂z̄
,
∂

∂z̄
(fg) =

∂f

∂z̄
g + f

∂g

∂z̄
.

Using the obvious relations dz = ∆z, dz̄ = ∆z̄ we arrive at the formula for the differential
of R-differentiable functions

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄. (2.19)

Therefore, all the functions f = u + iv such that u and v have usual differentials as
functions of two real variables x and y turn out to be R-differentiable. This notion does
not bring any essential new ideas to analysis. The complex analysis really starts with
the notion of C-differentiability.

The increment of a C-differentiable function has the form

∆f = a∆z + o(∆z) (2.20)

and its differential is a C-linear function of ∆z (with z fixed). Expression (2.19) shows
that C-differentiable functions are distinguished from R-differentiable ones by an addi-
tional condition

∂f

∂z̄
= 0. (2.21)
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If f = u+ iv then (2.18) shows that

∂f

∂z̄
=

1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2

(
∂u

∂y
+
∂v

∂x

)
so that the complex equation (2.21) may be written as a pair of real equations

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
. (2.22)

The notion of complex differentiability is clearly very restrictive: while it is fairly difficult
to construct an example of a continuous but nowhere real differentiable function, most
trivial functions turn out to be non-differentiable in the complex sense. For example,

the function f(z) = x+2iy is nowhere C-differentiable:
∂u

∂x
= 1,

∂v

∂y
= 2 and conditions

(2.22) fail everywhere.

Exercise 2.12 1. Show that C-differentiable functions of the form u(x) + iv(y) are
necessarily C-linear.
2. Let f = u+ iv be C-differentiable in the whole plane C and u = v2 everywhere. Show
that f = const.

Let us consider the notion of a derivative starting with that of the directional derivative.
We fix a point z ∈ C, its neighborhood U and a function f : U → C. Setting ∆z =
|∆z|eiθ we obtain from (2.17) and (2.19):

∆f =
∂f

∂z
|∆z|eiθ +

∂f

∂z̄
|∆z|e−iθ + o(∆z).

We divide both sides by ∆z, pass to the limit |∆z| → 0 with θ fixed and obtain the
derivative of f at the point z in direction θ:

∂f

∂zθ
= lim

|∆z|→0,arg z=θ

∆f

∆z
=
∂f

∂z
+
∂f

∂z̄
e−2iθ. (2.23)

This expression shows that when z is fixed and θ changes between 0 and 2π the point
∂f

∂zθ
traverses twice a circle centered at

∂f

∂z
with the radius

∣∣∣∣∂f∂z̄
∣∣∣∣.

Hence if
∂f

∂z̄
6= 0 then the directional derivative depends on direction θ, and only if

∂f

∂z̄
= 0, that is, if f is C-differentiable, all directional derivatives at z are the same.

Clearly, the derivative of f at z exists if and only if the latter condition holds. It is
defined by

f ′(z) = lim
∆z→0

∆f

∆z
. (2.24)

The limit is understood in the topology of C. It is also clear that if f ′(z) exists then it

is equal to
∂f

∂z
. This proposition is so important despite its simplicity that we formulate

it as a separate theorem.
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Theorem 2.13 Complex differentiability of f at z is equivalent to the existence of the
derivative f ′(z) at z.

Proof. If f is C-differentiable at z then (2.20) with a =
∂f

∂z
implies that

∆f =
∂f

∂z
∆z + o(∆z).

Then, since lim
∆z→0

o(∆z)

∆z
= 0, we obtain that the limit f ′(z) = lim

∆z→0

∆f

∆z
exists and is

equal to
∂f

∂z
. Conversely, if f ′(z) exists then by the definition of the limit we have

∆f

∆z
= f ′(z) + α(∆z),

where α(∆z) → 0 as ∆z → 0. Therefore the increment ∆f = f ′(z)∆z + α(∆z)∆z may
be split into two parts so that the first is linear in ∆z and the second is o(∆z), which is
equivalent to C-differentiability of f at z.�

The definition of the derivative of a function of a complex variable is exactly the
same as in the real analysis, and all the arithmetic rules of dealing with derivatives
translate into the complex realm without any changes. Thus the elementary theorems
regarding derivatives of a sum, product, ratio, composition and inverse function apply
verbatim in the complex case. We skip their formulation and proofs.

Let us mention a remark useful in computations. The derivative of a function f =
u + iv does not depend on direction (if it exists), so it may be computed in particular
in the direction of the x-axis:

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
. (2.25)

We should have convinced ourselves that the notion of C-differentiability is very
natural. However, as we will see later, C-differentiability at one point is not sufficient
to build an interesting theory. Therefore we will require C-differentiability not at one
point but in a whole neighborhood.

Definition 2.14 A function f is holomorphic (or analytic) at a point z ∈ C if it is
C-differentiable in a neighborhood of z.

Example 2.15 The function f(z) = |z|2 = zz̄ is clearly R-differentiable everywhere in

C. However,
∂f

∂z̄
= 0 only at z = 0, so f is only C-differentiable at z = 0 but is not

holomorphic at this point.

The set of functions holomorphic at a point z is denoted by Oz. Sums and products of
functions in Oz also belong to Oz, so this set is a ring. We note that the ratio f/g of
two functions in Oz might not belong to Oz if g(z) = 0.
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Functions that are C-differentiable at all points of an open set D ⊂ C are clearly
also holomorphic at all points z ∈ D. We say that such functions are holomorphic in D
and denote their collection by O(D). The set O(D) is also a ring. In general a function
is holomorphic on a set M ⊂ C if it may extended to a function that is holomorphic on
an open set D that contains M .

Finally we say that f is holomorphic at infinity if the function g(z) = f(1/z) is
holomorphic at z = 0. This definition allows to consider functions holomorphic in C.
However, the notion of derivative at z = ∞ is not defined.

The notion of complex differentiability lies at the heart of complex analysis. A special
role among the founders of complex analysis was played by Leonard Euler, ”the teacher of
all mathematicians of the second half of the XVIIIth century” according to Laplace. Let us
describe briefly his life and work.

Euler was born in 1707 into a family of a Swiss pastor and obtained his Master’s diploma
at Basel in 1724. He studied theology for some time but then focused solely on mathematics
and its applications. Nineteen-year old Euler moved to Saint Petersburg in 1727 and took
the vacant position in physiology at the Russian Academy of Sciences that had been created
shortly before his arrival. Nevertheless he started to work in mathematics, and with remarkable
productivity on top of that: he published more than 50 papers during his first fourteen year
long stay at Saint Petersburg, being also actively involved in teaching and various practical
problems.

Euler moved to Berlin in 1741 where he worked until 1766 but he kept his ties to the Saint
Petersburg Academy, publishing more than 100 papers and books in its publications. Then
he returned to Saint Petersburg where he stayed until his death. Despite almost complete
blindness Euler prepared more than 400 papers during his second seventeen year long stay in
Saint Petersburg.

In his famous monographies ”Introductio in analys in infinitorum” (1748), ”Institutiones
calculi integralis” (1755) and ”Institutiones calculi integralis” (1768-70) Euler has developed
mathematical analysis as a branch of mathematical science for the first time. He was the creator
of calculus of variations, theory of partial differential equations and differential geometry and
obtained outstanding results in number theory.

Euler was actively involved in applied problems alongside his theoretical work. For instance
he took part in the creation of geographic maps of Russia and in the expert analysis of the
project of a one-arc bridge over the Neva river proposed by I. Kulibin, he studied the motion
of objects through the air and computed the critical stress of columns. His books include
”Mechanica” (1736-37), a book on Lunar motion (1772) and a definitive book on navigation
(1778). Euler died in 1783 and was buried in Saint Petersburg. His descendants stayed in
Russia: two of his sons were members of the Russian Academy of Sciences and a third was a
general in the Russian army.

Euler has introduced the elementary functions of a complex variable in the books men-
tioned above and found relations between them, such as the Euler formula eiφ = cosφ+ i sinφ
mentioned previously and systematically used complex substitutions for computations of inte-
grals. In his book on the basics of fluid motion (1755) Euler related the components u and v
of the flow to expressions udy− vdx and udx+ vdy. Following D’Alembert who published his
work three years earlier Euler formulated conditions that turn the above into exact differential
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forms:
∂u

∂x
= −∂v

∂y
,
∂u

∂y
=
∂v

∂x
. (2.26)

He found the general form of a solution of such system:

u− iv =
1
2
φ(x+ iy)− i

2
ψ(x+ iy)

u+ iv =
1
2
φ(x− iy) +

i

2
ψ(x− iy),

where φ and ψ are arbitrary (according to Euler) functions. Relations (2.26) are simply the
conditions for complex differentiability of the function f = u− iv and have a simple physical
interpretation (see the next section). Euler has also written down the usual conditions of
differentiability (2.22) that differ from (2.26) by a sign. In 1776 the 69 year old Euler wrote a
paper where he pointed out that these conditions imply that the expression (u+iv)(dx+idy) is
an exact differential form, and in 1777 he pointed out their application to cartography. Euler
was the first mathematician to study systematically the functions of complex variables
and their applications in analysis, hydrodynamics and cartography.

However, Euler did not have the total understanding of the full implications of
complex differentiability. The main progress in this direction was started by the work of
Cauchy 70 years later and then by Riemann 30 years after Cauchy. The two conditions
of C-differentiability,

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x

are called the Cauchy-Riemann equations, though historically they should probably be
called D’Alembert-Euler equations.

2.3 Geometric and Hydrodynamic Interpretations

The differentials of an R-differentiable and, respectively, a C-differentiable function at
a point z have form

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄, df = f ′(z)dz. (2.27)

The Jacobians of such maps are given by (see (2.14))

Jf (z) =

∣∣∣∣∂f∂z
∣∣∣∣2 − ∣∣∣∣∂f∂z̄

∣∣∣∣2 , Jf (z) = |f ′(z)|2. (2.28)

Let us assume that f is R-differentiable at z and z is not a critical point of f , that is,
Jf (z) 6= 0. The implicit function theorem implies that locally f is a homeomorphism,
that is, there exists a neighborhood U of z so that f maps U continuously and one-
to-one onto a neighborhood of f(z). Expressions (2.28) show that in general Jf may
have an arbitrary sign if f is just R-differentiable. However, the critical points of a C-
differentiable map coincide with the points where derivative vanishes, while such maps
preserve orientation at non-critical points: Jf (z) = |f ′(z)′|2 > 0.
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Furthermore, an R-differentiable map is said to be conformal at z ∈ C if its differ-
ential df at z is a non-degenerate transformation that is a composition of dilation and
rotation. Since the latter property characterizes C-linear maps we obtain the following
geometric interpretation of C-differentiability:

Complex differentiability of f at a point z together with the condition f ′(z) 6= 0 is
equivalent to f being a conformal map at z.

A map f : D → C conformal at every point z ∈ D is said to be conformal in D. It
is realized by a holomorphic function in z with no critical points (f ′(z) 6= 0 in D). Its
differential at every point of the domain is a composition of a dilation and a rotation,
in particular it conserves angles. Such mappings were first considered by Euler in 1777
in relation to his participation in the project of producing geographic maps of Russia.
The name “conformal mapping” was introduced by F. Schubert in 1789.

So far we have studied differentials of maps. Let us look now at how the properties
of the map itself depend on it being conformal. Assume that f is conformal in a
neighborhood U of a point z and that f ′ is continuous in U1. Consider a smooth path
γ : I = [0, 1] → U that starts at z, that is, γ′(t) 6= 0 for all t ∈ I and γ(0) = z. Its
image γ∗ = f ◦ γ is also a smooth path since

γ′∗(t) = f ′[γ(t)]γ′(t), t ∈ I, (2.29)

and f ′ is continuous and different from zero everywhere in U by assumption.
Geometrically γ′(t) = ẋ(t) + iẏ(t) is the vector tangent to γ at the point γ(t), and

|γ′(t)|dt =
√
ẋ2 + ẏ2dt = ds is the differential of the arc length of γ at the same point.

Similarly, |γ∗(t)|dt = ds∗ is the differential of the arc length of γ∗ at the point γ∗(t). We
conclude from (2.29) at t = 0 that

|f ′(z)| = |γ′∗(0|
|γ′(0)|

=
ds∗
ds
. (2.30)

Thus the modulus of f ′(z) is equal to the dilation coefficient at z under the mapping f .
The left side does not depend on the curve γ as long as γ(0) = z. Therefore under

our assumptions all arcs are dilated by the same factor. Therefore a conformal map f
has a circle property: it maps small circles centered at z into curves that differ from
circles centered at f(z) only by terms of the higher order.

Going back to (2.29) we see that

arg f ′(z) = arg γ′∗(0)− arg γ′(0), (2.31)

so that arg f ′(z) is the rotation angle of the tangent lines at z under f .
The left side also does not depend on the choice of γ as long as γ(0) = z, so that all

such arcs are rotated by the same angle. Thus a conformal map f preserves angles: the
angle between any two curves at z is equal to the angle between their images at f(z).

1We will later see that existence of f ′ implies its continuity and, moreover, existence of derivatives
of all orders.
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If f is holomorphic at z but z is a critical point then the circle property holds
in a degenerate form: the dilation coefficient of all curves at z is equal to 0. Angle
preservation does not hold at all, for instance under the mapping z → z2 the angle
between the lines arg z = α1 and arg z = α2 doubles! Moreover, smoothness of curves
may be violated at a critical point. For instance a smooth curve γ(t) = t+it2, t ∈ [−1, 1]
is mapped under the same map z → z2 into the curve γ∗(t) = t2(1 − t2) + 2it3 with a
cusp at γ∗(0) = 0.

Exercise 2.16 Let u(x, y) and v(x, y) be real valued R-differentiable functions and let

∇u =
∂u

∂x
+ i

∂u

∂y
, ∇v =

∂v

∂x
+ i

∂v

∂y
. Find the geometric meaning of the conditions

(∇u,∇v) = 0 and |∇u| = |∇v|, and their relation to the C-differentiability of f = u+ iv
and the conformity of f .

Let us now find the hydrodynamic meaning of complex differentiability and deriva-
tive. We consider a steady two-dimensional flow. That means that the flow vector field
v = (v1, v2) does not depend on time. The flow is described by

v = v1(x, y) + iv2(x, y). (2.32)

Let us assume that in a neighborhood U of the point z the functions v1 and v2 have
continuous partial derivatives. We will also assume that the flow v is irrotational in U ,
that is,

curlv =
∂v2

∂x
− ∂v1

∂y
= 0 (2.33)

and incompressible:

divv =
∂v1

∂x
+
∂v2

∂y
= 0 (2.34)

at all z ∈ U .
Condition (2.33) implies the existence of a potential function φ such that v = ∇φ,

that is,

v1 =
∂φ

∂x
, v2 =

∂φ

∂y
. (2.35)

The incompressibility condition (2.34) implies that there exists a stream function ψ so
that

v2 = −∂ψ
∂x

, v1 =
∂ψ

∂x
. (2.36)

We have dψ = −v2dx+ v1dy = 0 along the level set of ψ and thus
dy

dx
=
v2

v1

. This shows

that the level set is an integral curve of v.
Consider now a complex function

f = φ+ iψ, (2.37)
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that is called the complex potential of v. Relations (2.35) and (2.36) imply that φ and
ψ satisfy

∂φ

∂x
=
∂ψ

∂y
,
∂φ

∂y
= −∂ψ

∂x
. (2.38)

The above conditions coincide with (2.22) and show that the complex potential f is
holomorphic at z ∈ U .

Conversely let the function f = φ + iψ be holomorphic in a neighborhood U of a
point z, and let the functions φ and ψ be twice continuously differentiable. Define the

vector field v = ∇φ =
∂φ

∂x
+ i

∂φ

∂y
. It is irrotational in U since curlv =

∂2φ

∂x∂y
− ∂2φ

∂y∂x
= 0.

It is also incompressible since divv =
∂2φ

∂2x
+
∂2φ

∂2y
=

∂2φ

∂x∂y
− ∂2φ

∂y∂x
= 0. The complex

potential of the vector field v is clearly the function f .
Therefore the function f is holomorphic if and only if it is the complex potential of

a steady fluid flow that is both irrotational and incompressible.
It is easy to establish the hydrodynamic meaning of the derivative:

f ′ =
∂φ

∂x
+ i

∂ψ

∂x
= v1 − iv2, (2.39)

so that the derivative of the complex potential is the vector that is the complex conjugate
of the flow vector. The critical points of f are the points where the flow vanishes.

Example 2.17 Let us find the complex potential of an infinitely deep flow over a flat
bottom with a line obstacle of height h perpendicular to the bottom. This is a flow in
the upper half-plane that goes around an interval of length h that we may consider lying
on the imaginary axis.

The boundary of the domain consists, therefore, of the real axis and the interval
[0, ih] on the imaginary axis. The boundary must be the stream line of the flow. We
set it to be the level set ψ = 0 and will assume that ψ > 0 everywhere in D. In order
to find the complex potential f it suffices to find a conformal mapping of D onto the
upper half-plane ψ > 0. One function that provides such a mapping may be obtained as
follows. The mapping z1 = z2 maps D onto the plane without the half-line Rez1 ≥ −h2,
Imz1 = 0. The map z2 = z1+h

2 maps this half-line onto the positive semi-axis Rez2 ≥ 0,
Imz2 = 0. Now the mapping w2 =

√
z2 =

√
|z2|ei(arg z2)/2 with 0 < arg z2 < 2π maps the

complex plane without the positive semi-axis onto the upper half-plane. It remains to
write explicitly the resulting map

w =
√
z2 =

√
z1 + h2 =

√
z2 + h2 (2.40)

that provides the desired mapping of D onto the upper half-plane. We may obtain the
equation for the stream-lines of the flow by writing (φ + iψ)2 = (x + iy)2 + h2. The
streamline ψ = ψ0 is obtained by solving

φ2 − ψ2
0 = h2 + x2 − y2, 2φψ0 = 2xy.
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This leads to φ = xy/ψ0 and

y = ψ0

√
1 +

h2

x2 + ψ2
0

. (2.41)

The magnitude of the flow is |v| =

∣∣∣∣dwdz
∣∣∣∣ =

|z|√
|z|2 + h2

and is equal to one at infinity.

The point z = 0 is the critical point of the flow. One may show that the general form
of the solution is

f(z) = v∞
√
z2 + h2, (2.42)

where v∞ > 0 is the flow speed at infinity.

3 Properties of Fractional Linear Transformations

We will now study some simplest classes of functions of a complex variable.

3.1 Fractional Linear Transformations

Fractional linear transformations are functions of the form

w =
az + b

cz + d
, ad− bc 6= 0, (3.1)

where a, b, c, d are fixed complex numbers, and z is the complex variable. The condition
ad − bc 6= 0 is imposed to exclude the degenerate case when w = const (if ad − bc = 0
then the numerator is proportional to the denominator for all z). When c = 0 one must
have d 6= 0, then the function (3.1) takes the form

w =
a

d
z +

b

d
= Az +B (3.2)

and becomes an entire linear function. Such function is either constant if A = 0, or a
composition of a shift z → z′ = z + B/A and dilation and rotation z′ → w = Az′, as
can be seen from the factorization w = A(z +B/A) if A 6= 0.

The function (3.1) is defined for all z 6= −d/c,∞ if c 6= 0, and for all finite z if c = 0.
We define it at the exceptional points setting w = ∞ at z = −d/c and w = a/c at
z = ∞ (it suffices to set w = ∞ at z = ∞ if c = 0). The following theorem holds.

Theorem 3.1 A fractional linear transformation (3.1) is a homeomorphism (that is, a
continuous and one-to-one map) of C onto C.

Proof. We assume that c 6= 0 - the simplifications in the case c = 0 are obvious. The
function w(z) is defined everywhere in C. We may solve (3.1) for z to obtain

z =
dw − b

a− cw
(3.3)
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and find that each w 6= a/c,∞ has exactly one pre-image. Moreover, the extension of
w(z) to C defined above shows that ∞ = w(−d/c) and a/c = w(∞). Therefore the
function (3.1) is bijection of C onto itself. It remains to show that (3.1) is continuous.
However, its continuity is obvious at z 6= −d/c,∞. The continuity of (3.1) at those
points follows from the fact that

lim
z→−d/c

az + b

cz + d
= ∞, lim

z→∞

az + b

cz + d
=
a

c
.�

We would like to show now that the map (3.1) preserves angles everywhere in C.
This follows from the existence of the derivative

dw

dz
=

ad− bc

(cz + d)2
6= 0

for z 6= −d/c,∞. In order to establish this property for the two exceptional points (both
are related to infinity: one is infinity and the other is mapped to infinity) we have to
define the notion of the angle at infinity.

Definition 3.2 Let γ1 and γ2 be two paths that pass through the point z = ∞ and have
tangents at the North Pole in the stereographic projection. The angle between γ1 and γ2

at z = ∞ is the angle between their images Γ1 and Γ2 under the map

z → 1/z = Z (3.4)

at the point Z = 0.

Exercise 3.3 The readers who are not satisfied with this formal definition should look
at the following problems:
(a) Show that the stereographic projection C → S preserves angles, that is, it maps a
pair of intersecting lines in C onto a pair of circles on S that intersect at the same angle.
(b) Show that the mapping z → 1/z of the plane C corresponds under the stereographic
projection to a rotation of the sphere S around its diameter passing through the points
z = ±1. (Hint: use expressions (1.14).)

Theorem 3.4 Fractional linear transformations (3.1) are conformal2 everywhere in C.

Proof. The theorem has already been proved for non-exceptional points. Let γ1 and
γ2 be two smooth (having tangents) paths intersecting at z = −d/c at an angle α. The
angle between their images γ∗1 and γ∗2 by definition is equal to the angle between the
images Γ∗1 and Γ∗2 of γ∗1 and γ∗2 under the map W = 1/w at the point W = 0. However,
we have

W (z) =
cz + d

az + b
,

2A map is conformal at z = ∞ if it preserves angles at this point.
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so that Γ∗1 and Γ∗2 are the images of γ1 and γ2 under this map. The derivative

dW

dz
=

bc− ad

(az + b)2

exists at z = −d/c and is different from zero. Therefore the angle between Γ∗1 and Γ∗2
at W = 0 is equal to α, and the theorem is proved for z = −d/c. It suffices to apply
the same consideration to the inverse function of (3.1) that is given by (3.3) in order to
prove the theorem at z = ∞. �

We would like now to show that fractional linear transformations form a group. Let
us denote the collection of all such functions by Λ. Let L1 and L2 be two fractional
linear transformations:

L1 : z → a1z + b1
c1z + d1

, a1d1 − b1c1 6= 0

L2 : z → a2z + b2
c2z + d2

, a2d2 − b2c2 6= 0.

Their product is the composition of L1 and L2:

L : z → L1 ◦ L2(z).

The map L is clearly a fractional linear transformation (this may be checked immediately
by a direct substitution)

L : w =
az + b

cz + d
,

and, moreover, ad − bc 6= 0 since L maps C onto C and does not degenerate into a
constant.

We check that the group axioms hold.
(a) Associativity: for any three maps L1, L2, L3 ∈ Λ we have

L1 ◦ (L2 ◦ L3) = (L1 ◦ L2) ◦ L3. (3.5)

Indeed, both sides of (3.5) represent the fractional linear transformation L1(L2(L3(z))).
(b) Existence of unity: the unity is clearly the identity transformation

E : z → z. (3.6)

(c) Existence of the inverse: for any L ∈ Λ there exists an inverse map L−1 ∈ Λ so
that

L−1 ◦ L = L ◦ L−1 = E. (3.7)

Indeed, the inverse to (3.1) is given by the map (3.3).
Therefore we have proved the following theorem.

Theorem 3.5 Fractional linear transformations form a group with respect to composi-
tion.

The group Λ is not commutative. For instance, if L1(z) = z + 1, L2(z) = 1/z, then

L1 ◦ L2(z) =
1

z
+ 1 while L2 ◦ L1(z) =

1

z + 1
.

The entire linear transformations (3.2) with A 6= 0 form a subgroup Λ0 ⊂ Λ of
mappings from Λ that have z = ∞ as a fixed point.
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3.2 Geometric properties

Let us present two elementary properties of fractional linear transformations. In order
to formulate the first one we introduce the convention that a circle in C is either a
circle or a straight line on the complex plane C (both are mapped onto circles under the
stereographic projection).

Theorem 3.6 Fractional linear transformations map a circle in C onto a circle in C.

Proof. The statement is trivial if c = 0 since entire linear transformations are a
composition of a shift, rotation and dilation that all have the property stated in the
theorem. If c 6= 0 then the mapping may be written as

L(z) =
az + b

cz + d
=
a

c
+

bc− ad

c(cz + d)
= A+

B

z + C
. (3.8)

Therefore L is a composition L = L1 ◦ L2 ◦ L3 of three maps:

L1(z) = A+Bz, L2(z) =
1

z
, L3(z) = z + C.

It is clear that L1 (dilation with rotation followed by a shift) and L3 (a shift) map circles
in C onto circles in C. It remains to prove this property for the map

L2(z) =
1

z
. (3.9)

Observe that any circle in C may be represented as

E(x2 + y2) + F1x+ F2y +G = 0, (3.10)

where E may vanish (then this is a straight line). Conversely, any such equation repre-
sents a circle in C that might degenerate into a point or an empty set (we rule out the
case E = F1 = F2 = G = 0). Using the complex variables z = x + iy and z̄ = x − iy,

that is, x = (z + z̄)/2, y =
1

2i
(z − z̄) we may rewrite (3.10) as

Ezz̄ + Fz + F̄ z̄ +G = 0, (3.11)

with F = (F1 − iF2)/2, F̄ = (F1 + iF2)/2.
In order to obtain the equation for the image of the circle (3.11) under the map (3.9)

it suffices to set z = 1/w in (3.11) to get

E + Fw̄ + W̄w +Gww̄ = 0. (3.12)

This is an equation of the same form as (3.11). The cases when such an equation
degenerates to a point or defines an empty set are ruled out by the fact that (3.9) is a
bijection. Therefore the image of the circle defined by (3.10) is indeed a circle in C.
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We have seen above that a holomorphic function f at a non-critical point z0 maps
infinitesimally small circles centered at z0 onto curves that are close to circles centered
at f(z0) up to higher order corrections. Theorem 3.6 shows that fractional linear trans-
formations map all circles in C onto circles exactly. It is easy to see, however, that the
center of a circle is not mapped onto the center of the image.

In order to formulate the second geometric property of the fractional linear trans-
formations we introduce the following definition.

Definition 3.7 Two points z and z∗ are said to be conjugate with respect to a circle
Γ = {|z − z0| = R} in C if
(a) they lie on the same half-line originating at z0 (arg(z − z0) = arg(z∗ − z0)) and
|z − z0||z∗ − z0| = R2, or, equivalently,
(b) any circle γ in C that passes through z and z∗ is orthogonal to Γ.

The equivalence of the two definitions is shown as follows. Let z and z∗ satisfy part
(a) and γ be any circle that passes through z and z∗. Elementary geometry implies
that if ζ is the point where the tangent line to γ that passes though z0 touches γ, then
|ζ − z0|2 = |z − z0||z∗ − z0| = R2 and hence ζ ∈ Γ so that the circles γ and Γ intersect
orthogonally. Conversely, if any circle that passes through z and z∗ is orthogonal to Γ
then in particular so is the straight line that passes through z and z∗. Hence z0, z and
z∗ lie on one straight line. It easy to see that z and z∗ must lie on the same side of z0.
Then the same elementary geometry calculation implies that |z − z0||z∗ − z0| = R2.

The advantage of the geometric definition (b) is that it may be extended to circles
in C: if Γ is a straight line it leads to the usual symmetry. Definition (a) leads to a
simple formula that relates the conjugate points: the conditions

arg(z − z0) = arg(z∗ − z0), |z − z0||z∗ − z0| = R2,

may be written as

z∗ − z =
R2

z − z0

. (3.13)

The mapping z → z∗ that maps each point z ∈ C into the point z∗ conjugate to z
with respect to a fixed circle Γ is called inversion with respect to Γ.

Expression (3.13) shows that inversion is a function that is complex conjugate of a
fractional linear transformation. Therefore inversion is an anticonformal transformation
in C: it preserves “absolute value of angles” but changes orientation.

We may now formulate the desired geometric property of fractional linear transfor-
mations and prove it in a simple way.

Theorem 3.8 A fractional linear transformation L maps points z and z∗ that are con-
jugate with respect to a circle Γ onto points w and w∗ that are conjugate with respect to
the image L(Γ).

Proof. Consider the family {γ} of all circles in C that pass through z and z∗. All
such circles are orthogonal to Γ. Let γ′ be a circle that passes through w and w∗.
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According to Theorem 3.6 the pre-image γ = L−1(γ′) is a circle that passes through z
and z∗. Therefore the circle γ is orthogonal to Γ. Moreover, since L is a conformal map,
γ′ = L(γ) is orthogonal to L(Γ), and hence the points w and w∗ are conjugate with
respect to L(Γ). �

3.3 Fractional linear isomorphisms and automorphisms

The definition of a fractional linear transformation

L(z) =
az + b

cz + d
(3.14)

involves four complex parameters a, b, c and d. However, the mapping really depends
only on three parameters since one may divide the numerator and denominator by one
of the coefficients that is not zero. Therefore it is natural to expect that three given
points may be mapped onto three other given points by a unique fractional linear trans-
formation.

Theorem 3.9 Given any two triplets of different points z1, z2, z3 ∈ C and w1, w2, w3 ∈
C there exists a unique fractional linear transformation L so that L(zk) = wk, k = 1, 2, 3.

Proof. First we assume that none of zk and wk is infinity. The existence of L is easy to
establish. We first define fractional linear transformations L1 and L2 that map z1, z2, z3

and w1, w2, w3, respectively, into the points 0, 1 and ∞:

L1(z) =
z − z1

z − z2

· z3 − z2

z3 − z1

, L2(w) =
w − w1

w − w2

· w3 − w2

w3 − w1

. (3.15)

Then the mapping
w = L(z) = L−1

2 ◦ L1(z), (3.16)

that is determined by solving L2(w) = L1(z) for w(z):

z − z1

z − z2

· z3 − z2

z3 − z1

=
w − w1

w − w2

· w3 − w2

w3 − w1

, (3.17)

satisfies L(zk) = wk, k = 1, 2, 3 by construction.
We show next uniqueness of such L. Let λ(z) be a fractional linear transformation

that satisfies λ(zk) = wk, k = 1, 2, 3. Let us define µ(z) = L2 ◦ λ ◦ L−1
1 (z) with L1 and

L2 defined by (3.15). Then we have µ(0) = 0, µ(1) = 1, µ(∞) = ∞. The last condition
implies that µ is an entire linear transformation: µ(z) = αz+ β. Then µ(0) = 0 implies
β = 0 and finally µ(1) = 1 implies that α = 1 so that µ(z) = z. Therefore we have
L2 ◦ λ ◦ L−1

1 = E is the identity transformation and hence λ = L−1
2 ◦ L1 = L.

Let us consider now the case when one of zk or wk may be infinity. Then expression
(3.17) still makes sense provided that the numerator and denominator of the fraction
where such zk or wk appears are replaced by one. This is possible since each zk and wk
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appears exactly once in the numerator and once in the denominator. For instance, if
z1 = w3 = ∞ expression (3.17) takes the form

1

z − z2

· z3 − z2

1
=
w − w1

w − w2

· 1

1
.

Therefore Theorem 3.9 holds for C. �
Theorems 3.9 and 3.6 imply that any circle Γ in C may be mapped onto any other

circle Γ∗ in C: it suffices to map three points on Γ onto three points on Γ∗ using Theorem
3.9 and use Theorem 3.6. It is clear from the topological considerations that the disk
B bounded by Γ is mapped onto one of the two disks bounded by Γ∗ (it suffices to find
out to which one some point z0 ∈ B is mapped). It is easy to conclude from this that
any disk B ⊂ C may be mapped onto any other disk B∗ ⊂ C.

A fractional linear transformation of a domain D on D∗ is called a fractional linear
isomorphism. The domains D and D∗ for which such an isomorphism exists are called
FL-isomorphic. We have just proved that

Theorem 3.10 Any two disks in C are FL-isomorphic.

Let us find for instance all such isomorphisms of the upper half plane H = {Imz > 0}
onto the unit disk D = {|z| < 1}. Theorem 3.9 would produce an ugly expression so we
take a different approach. We fix a point a ∈ H that is mapped into the center of the
disk w = 0. According to Theorem 3.9 the point ā that is conjugate to a with respect
to the real axis should be mapped onto the point w = ∞ that is conjugate to w = 0
with respect to the unit circle {|w| = 1}. However, a fractional linear transformation is
determined by the points that are mapped to zero and infinity, up to a constant factor.

Therefore the map should be of the form w = k
z − a

z − ā
.

We have |z − a| = |z − ā| when z = x is real. Therefore in order for the real axis to
be mapped onto the unit circle by such w(z) we should have |k| = 1, that is, k = eiθ.
Thus, all FL-isomorphisms of the upper half plane H = {Imz > 0} onto the unit disk
D = {|z| < 1} have the form

w = eiθ
z − a

z − ā
, (3.18)

where a is an arbitrary point in the upper half plane (Ima > 0) and θ ∈ R is an arbitrary
real number. The map (3.18) depends on three real parameters: θ and two coordinates
of the point a that is mapped onto the center of the disk. The geometric meaning of θ
is clear from the observation that z = ∞ is mapped onto w = eiθ - the change of θ leads
to rotation of the disk.

An FL-isomorphism of a domain on itself is called an FL-automorphism. Clearly
the collection of all FL-isomorphisms of a domain is a group that is a subgroup of the
group Λ of all fractional linear transformations.

The set of all FL-automorphisms C → C coincides, obviously, with the group Λ. It
is also clear that the collection of all FL-automorphisms C → C coincides with the set
Λ0 of all entire linear transformations of the form z → az + b, a 6= 0. We compute the
group of FL-automorphisms of the unit disk before we conclude.
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We fix a point a, |a| < 1 that is mapped onto the center w = 0. The point a∗ = 1/ā
that is conjugate to a with respect to the unit circle {|z| = 1} should be mapped to
z = ∞. Therefore any such map should have the form

w = k
z − a

z − 1/ā
= k1

z − a

1− āz
,

where k and k1 are some constants. The point z = 1 is mapped onto a point on the unit

circle and thus |k1|
∣∣∣∣1− a

1− ā

∣∣∣∣ = |k1| = 1. hence we have k1 = eiθ with θ ∈ R. Therefore

such maps have the form

w = eiθ
z − a

1− āz
. (3.19)

Conversely, any function of the form (3.19) maps the unit disk onto the unit disk. Indeed,
it maps the points a and 1/ā that are conjugate with respect to the unit circle to w = 0
and w = ∞, respectively. Therefore w = 0 must be the center of the image w(Γ) of the
unit circle Γ (since it is conjugate to infinity with respect to the image circle). However,

|w(1)| =

∣∣∣∣1− a

1− ā

∣∣∣∣ = 1 and hence w(Γ) is the unit circle. Moreover, w(0) = −eiθa lies

inside the unit disk so the unit disk is mapped onto the unit disk.

3.4 Some elementary functions

The function
w = zn, (3.20)

where n is a positive integer, is holomorphic in the whole plane C. Its derivative
dw

dz
=

nzn−1 when n > 1 is different from zero for z 6= 0, hence (3.20) is conformal at all
z ∈ C\{0}. Writing the function (3.20) in the polar coordinates as z = reiφ, w = ρeiψ

we obtain
ρ = rn, ψ = nφ. (3.21)

We see that this mapping increases angles by the factor of n at z = 0 and hence the
mapping is not conformal at this point.

Expressions (3.21) also show that two points z1 and z2 that have the same absolute
value and arguments that differ by a multiple of 2π/n:

|z1| = |z2|, arg z1 = arg z2 + k
2π

n
(3.22)

are mapped onto the same point w. Therefore, when n > 1 this is not a one-to-one map
in C. In order for it to be an injection D → C the domain D should not contain any
points z1 and z2 related as in (3.22).

An example of a domain D so that (3.20) is an injection from D into C is the
sector D = {0 < arg z < 2π/n}. This sector is mapped one-to-one onto the domain
D∗ = {0 < arg z < 2π}, that is, the complex plane without the positive semi-axis.
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The rational function

w =
1

2

(
z +

1

z

)
(3.23)

is called the Joukovsky function. It is holomorphic in C\{0}. Its derivative

dw

dz
=

1

2

(
1− 1

z2

)
is different from zero everywhere except z = ±1. Thus (3.23) is conformal at all finite
points z 6= 0,±1. The point z = 0 is mapped onto w = ∞. The fact that w(z) is
conformal at z = 0 follows from the existence and non-vanishing of the derivative

d

dz

(
1

w

)
= 2

1− z2

(1 + z2)2

at z = 0. According to our definition the conformality of w = f(z) at z = ∞ is
equivalent to the conformality of w̃ = f(1/z) at z = 0. However, we have w̃(z) = w(z)
for the Joukovsky function and we have just proved that w(z) is conformal at z = 0.
Therefore it is also conformal at z = ∞.

The function (3.23) maps two different points z1 and z2 onto the same point w if

z1 +
1

z1

− z2 −
1

z2

= (z1 − z2)

(
1− 1

z1z2

)
= 0,

that is, if
z1z2 = 1. (3.24)

An example of a domain where w(z) is one-to-one is the outside of the unit disk: D ={
z ∈ C : |z| > 1

}
. In order to visualize the mapping (3.23) we let z = reiφ, w = u+ iv

and rewrite (3.23) as

u =
1

2

(
r +

1

r

)
cosφ, v =

1

2

(
r − 1

r

)
sinφ. (3.25)

We see that the Joukovsky function transforms the circles {|z| = r0}, r0 > 1 into

ellipses with semi-axes ar0 =
1

2

(
r +

1

r

)
and br0 = 1

2

(
r − 1

r

)
and focal points at w = ±1

(since a2
r0
− b2r0 = 1 for all r0). Note that as r → 1 the ellipses tend to the interval

[−1, 1] ⊂ R, while for large r the ellipses are close to the circle {|z| = r}. The rays
{φ = φ0, 1 < r <∞} are mapped onto parts of hyperbolas

u2

cos2 φ0

− v2

sin2 φ0

= 1

with the same focal points w = ±1. Conformality of (3.23) implies that these hyperbolas
are orthogonal to the family of ellipses described above.
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The above implies that the Joukovsky function maps one-to-one and conformally the
outside of the unit disk onto the complex plane without the interval [−1, 1].

The mapping is not conformal at z = ±1. It is best seen from the representation

w − 1

w + 1
=

(
z − 1

z + 1

)2

. (3.26)

This shows that (3.23) is the composition of three mappings

ζ =
z + 1

z − 1
, ω = ζ2, w =

1 + ω

1− ω
(3.27)

(the last mapping is the inverse of ω =
w − 1

w + 1
). The first and the last maps in (3.27) are

fractional linear transformations and so are conformal everywhere in C. The mapping
ω = ζ2 doubles the angles at ζ = 0 and ζ = ∞ that correspond to z = ±1. Therefore
the Joukovsky function doubles the angles at these points.

Exercise 3.11 Use the decomposition (3.27) to show that the Joukovsky function maps
the outside of a circle γ that passes through z = ±1 and forms an angle α with the real
axis onto the complex plane without an arc that connects z = ±1 and forms angle 2α
with the real axis. One may also show that circles that are tangent to γ at z = 1 or
z = −1 are mapped onto curves that look like an airplane wing. This observation allowed
Joukovsky (1847-1921) to create the first method of computing the aerodynamics of the
airplane wings.

3.5 The exponential function

We define the function ez in the same way as in real analysis:

ez = lim
n→+∞

(
1 +

z

n

)n
. (3.28)

Let us show the existence of this limit for any z ∈ C. We set z = x + iy and observe
that ∣∣∣(1 +

z

n

)n∣∣∣ =

(
1 +

2x

n
+
x2 + y2

n2

)n/2
and

arg
(
1 +

z

n

)n
= n arctan

y/n

1 + x/n
.

This shows that the limits

lim
n→∞

∣∣∣(1 +
z

n

)n∣∣∣ = ex, lim
n→∞

arg
(
1 +

z

n

)n
= y

exist. Therefore the limit (3.28) also exists and may be written as

ex+iy = ex(cos y + i sin y). (3.29)
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Therefore
|ez| = eRez, arg ez = Imz. (3.30)

We let x = 0 in (3.29) and obtain the Euler formula

eiy = cos y + i sin y, (3.31)

that we have used many times. However, so far we have used the symbol eiy as a short-
hand notation of the right side, while now we may understand it as a complex power of
the number e.

Let us list some basic properties of the exponential function.
1. The function ez is holomorphic in the whole plane C. Indeed, letting ez = u+iv we

find that u = ex cos y, v = ey sin y. The functions u and v are everywhere differentiable
in the real sense and the Cauchy-Riemann equations hold everywhere:

∂u

∂x
=
∂v

∂y
= ex cos y,

∂u

∂y
= −∂v

∂x
= ex sin y.

Therefore the function (3.29) defines an extension of the real exponential function to
the whole complex plane and the extended function is holomorphic. We will later see
that such extension is unique.

2. The usual formula for the derivative of ez holds. Indeed, we may compute the
derivative along the direction x since we know that it exists. Therefore

(ez)′ =
∂

∂x
(ex cos y + iex sin y) = ez. (3.32)

The exponential function never vanishes saince |ez| = ex > 0 and hence (ez)′ 6= 0 so that
the mapping w = ez is conformal everywhere in C.

3. The usual product formula holds

ez1+z2 = ez1ez2 . (3.33)

Indeed, setting zk = xk + iyk, k = 1, 2 and using the expressions for sine and cosine of
a sum we may write

ex1(cos y1 + i sin y1)e
x2(cos y2 + i sin y2) = ex−1+x−2(cos(y1 + y2) + i sin(y1 + y2)).

Thus addition of complex numbers z1 and z2 corresponds to multiplication of the images
ez1 and ez2 . In other words the function ez transforms the additive group of the field of
complex numbers into its multiplicative group: under the map z → ez:

z1 + z2 → ez1 · ez2 . (3.34)

4. The function ez is periodic with an imaginary period 2πi. Indeed, using the Euler
formula we obtain e2πi = cos(2π) + i sin(2π) = 1 and hence we have for all z ∈ C:

ez+2πi = ez · e2πi = ez.
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On the other hand, assume that ez+T = ez. Multiplying both sides by e−z we get
eT = 1, which implies eT1(cosT2 + i sinT2) = 1, with T = T1 + iT2. Evaluating the
absolute value of both sides we see that eT1 = 1 so that T1 = 0. Then the real part of
the above implies that cosT2 = 1, and the imaginary part shows that sinT2 = 0. We
conclude that T = 2πni and 2πi is indeed the basic period of ez.

The above mentioned considerations also show that for the map ez : D → C to be
one-to-one the domain D should contain no points that are related by

z1 − z2 = 2πin, n = ±1,±2, . . . (3.35)

An example of such a domain is the strip {0 < Imz < 2π. Setting z = x + iy and
w = ρeiψ we may write w = ez as

ρ = ex, ψ = y. (3.36)

This shows that this map transforms the lines y = y0 into the rays ψ = y0 and the
intervals {x = x0, 0 < y < 2π} into circles without a point {ρ = ex0 , 0 < ψ < 2π}. The
strip {0 < y < 2π} is therefore transformed into the whole plane without the positive
semi-axis. The twice narrower strip {0 < y < π} is mapped onto the upper half-plane
Imw > 0.

3.6 The trigonometric functions

The Euler formula shows that we have eix = cosx+ i sin x, e−ix = cosx− i sin x for all
real x ∈ R so that

cosx =
eix + e−ix

2
, sin x =

eix − e−ix

2i
.

These expressions may be used to continue cosine and sine as holomorphic functions in
the whole complex plane setting

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
(3.37)

for all z ∈ C. It is clear that the right side in (3.38) is holomorphic.
All properties of these functions follow from the corresponding properties of the

exponential function. They are both periodic with the period 2π: the exponential
function has the period 2πi but expressions in (3.37) have the factor of i in front of z.
Cosine is an even function, sine is odd. The usual formulas for derivatives hold:

(cos z)′ = i
eiz − e−iz

2
= − sin z

and similarly (sin z)′ = cos z. The usual trigonometric formulas hold, such as

sin2 z + cos2 z = 1, cos z = sin
(
z +

π

2

)
,

etc. The reader will have no difficulty deriving these expressions from (3.37).
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The trigonometric functions of a complex variable are closely related to the hyper-
bolic ones defined by the usual expressions

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
. (3.38)

They are related to sine and cosine by

cosh z = cos iz, sinh z = − sin iz (3.39)

cos z = cosh iz, sin z = −i sinh iz

as may be seen by comparing (3.37) and (3.38).
Using the formulas for cosine of a sum and relations (3.39) we obtain

cos(x+ iy) = cosx cosh y − i sinx sinh y,

so that

| cos z| =
√

cos2 x cosh2 y + sin2 x sinh2 y

=

√
cos2 x(1 + sinh2 y) + (1− cos2 x) sinh2 y =

√
cos2 x+ sinh2 y. (3.40)

We see that | cos z| goes to infinity as y →∞.
Let us consider for example the map of half-strip D = {−π/2 < x < π/2, y > 0}

by the function w = sin z. We represent this map as a composition of the familiar maps

z1 = iz, z2 = ez1 , z3 =
z2

i
, w =

1

2

(
z3 +

1

z3

)
.

This shows that w = sin z maps conformally and one-to-one the half-strip D onto the
upper half-plane. Indeed, z1 maps D onto the half-strip D1 = {x1 < 0, − π/2 < y1 <
π/2}; z2 maps D1 onto the semi-circle D2 = {|z| < 1, − π/2 < arg z < π/2}; z3

maps D2 onto the semi-circle D3 = {|z| < 1, π < arg z < 2π}. Finally, the Joukovksy
function w maps D3 onto the upper half-plane. The latter is best seen from (3.25): the
interval [0, 1] is mapped onto the half-line [1,+∞), the interval [−1, 0) is mapped onto
the half-line (−∞, 1], and the arc {|z| = 1, π < arg z < 2π} is mapped onto the interval
(−1, 1) of the x-axis. This shows that the boundary of D3 is mapped onto the real axis.

Furthermore, (3.25) shows that for z3 = ρeiφ we have Im w =
1

2

(
ρ− 1

ρ

)
sinφ > 0 so

that the interior of D3 is mapped onto the upper half plane (and not onto the lower
one).

Tangent and cotangent of a complex variable are defined by

tan z =
sin z

cos z
, cot z =

cos z

sin z
(3.41)

and are rational functions of the complex exponential:

tan z = −ie
iz − e−iz

eiz + e−iz
, cot z = i

eiz + e−iz

eiz − e−iz
. (3.42)
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These functions are holomorphic everywhere in C except for the points where the de-
nominators in (3.42) vanish (the numerators do not vanish at these points). Let us
find such points for cot z. We have sin z = 0 there, or eiz = e−iz so that z = nπ,
n = ±1,±2, . . . - we see that the singularities are all on the real line.

Tangent and cotangent remain periodic in the complex plane with the real period π,
and all the usual trigonometric formulas involving these functions still hold. Expression
(3.40) and the corresponding formula for sine shows that

| tan z| =

√
sin2 x+ sinh2 y

cos2 x+ sinh2 y
. (3.43)

The mappings realized by the functions w = tan z and w = cot z are a composition of
known maps. For instance, w = tan z can be reduced to the following:

z1 = 2iz, z2 = ez1 , w = −iz2 − 1

z2 + 1
.

This function maps conformally and one-to-one the strip D = {−π/4 < x < π/4} onto
the interior of the unit disk: z1 maps D onto the strip D1 = {−π/2 < y1 < π/2}; z2

maps D1 onto the half plane D2 = {x2 > 0}; z3 maps the imaginary axis onto the unit

circle:

∣∣∣∣−iiy − 1

iy + 1

∣∣∣∣ =
|1− iy|
|1 + iy|

= 1, and the interior point z2 = 1 of D2 is mapped onto

w = 0, an interior point of the unit disk.

4 Exercises for Chapter 1

1. Let us define multiplication for two vectors z1 = (x1, y1) and z2 = (x2, y2) in R2 by

z1 ? z2 = (x1x2 + y1y2, x1y2 + x2y1).

This corresponds to the ”i2 = 1” rule.
(a) Show that this set is not a field and find divisors of zero.
(b) Let z̄ = (x1,−y1) and define the absolute value as ‖z‖ =

√
|z ? z̄|. Find the set

of points such that ‖z‖ = 0. Show that absolute value of a product is the product of
absolute values. Show that ‖z‖ = 0 is a necessary and sufficient condition for z to be a
divisor of zero.
(c) Given z2 so that ‖z‖ 6= 0 define the ratio as

z1 ? ?z2 =
z1 ? z̄2

z2 ? z̄2

with the denominator on the right side being a real number. Show that (z1?z2)??z2 = z1.
(d) Let us define a derivative of a function w = f(z) = u+ iv as

f ′(z) = lim
∆z→0,‖∆z‖6=0

∆w ? ?∆z
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if the limit exists. Show that in order for such a derivative to exist if f is continuously
differentiable in the real sense it is necessary and sufficient that

∂u

∂x
=
∂v

∂y
,
∂u

∂y
=
∂v

∂x
.

(e) Find the geometric properties of the maps w = z ? z and w = 1 ? ?z.
(f) Define ez∗ = ex(cosh y, sinh y) and sin∗ z = (sinx cos y, cosx sin y). Find the simi-
larities and differences of these functions from the usual exponential and trigonometric
functions and describe their geometric properties.

2. Prove that
(a) if the points z1, . . . , zn lie on the same side of a line passing through z = 0 then
n∑
k=1

zk 6= 0.

(b) if
n∑
k=1

z−1
k = 0 then the points {zk} may not lie on the same side of a line passing

through z = 0.

3. Show that for any polynomial P (z) =
n∏
k=1

(z − ak) the zeros of the derivative

P ′(z) =
n∑
k=1

∏
j 6=k

(z−aj) belong to the convex hull of the set of zeros {ak} of the polynomial

P (z) itself.

4. Show that the set of limit points of the sequence an =
n∏
k=1

(
1 +

i

k

)
, n = 1, 2, . . .

is a circle. (Hint: show that first that |an| is an increasing and bounded sequence and
then analyze the behavior of arg an).

5. let f = u + iv have continuous partial derivatives in a neighborhood of z0 ∈ C.
Show that the Cauchy-Riemann conditions for its C-differentiability may be written in
a more general form: there exist two directions s and n such that n is the rotation of
s counterclockwise by 90 degrees, and the directional derivatives of u and v are related
by

∂u

∂s
=
∂v

∂n
,
∂u

∂n
= −∂v

∂s
.

In particular the conditions of C-differentiability in the polar coordinates have the form

∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= −∂v

∂r
.

6. Let the point z move on the complex plane according to z = reit, where r is
constant and t is time. Find the velocity of the point w = f(z), where f is a holomorphic
function on the circle {|z| = r}. (Answer: izf ′(z).)

7. Let f be holomorphic in the disk {|z| ≤ r} and f ′(z) 6= 0 on γ = {|z| = r}. Show

that the image f(γ) is a convex curve if and only if Re

(
zf ′′(z)

f ′(z)

)
+ 1 ≥ 0. (Hint: first
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show that convexity is equivalent to
∂

∂φ

(π
2

+ φ+ arg f ′(re
iφ

)
)
≥ 0.)

8. Find the general form of a fractional linear transformation that corresponds to
the rotation of the Riemann sphere in the stereographic projection around two points

lying on the same diameter. (Answer:
w − a

1 + āw
= eiθ

z − a

1 + āz
.)

9. Show that a map w =
az + b

cz + d
, ad−bc = 1 preserves the distances on the Riemann

sphere if and only if c = −b̄ and d = ā.
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