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Abstract
We consider the heat equation with a multiplicative Gaussian potential in dimensions d ≥ 3.

We show that the renormalized solution converges to the solution of a deterministic diffusion
equation with an effective diffusivity. We also prove that the renormalized large scale random
fluctuations are described by the Edwards-Wilkinson model, that is, the stochastic heat equation
(SHE) with additive white noise, with an effective variance.

1 Introduction
We consider the solutions to the heat equation with a smooth Gaussian random potential:

∂tu = 1
2∆u+ λV (t, x)u, x ∈ Rd, d ≥ 3. (1.1)

Here, λ > 0 is a constant, and the random potential V (t, x) is a mean-zero Gaussian field that we
assume to be of the form

V (t, x) =
∫
Rd+1

φ(t− s)ψ(x− y)dW (s, y),

where dW (s, y) is a space-time white noise built on a probability space (Σ,F ,P). We assume that
the non-negative functions φ, ψ ∈ C∞c , that φ is supported on [0, 1], and that ψ is even and supported
on {x : |x| ≤ 1/2}. The covariance function of V is

R(t, x) = E[V (0, 0)V (t, x)] =
∫
R
φ(t+s)φ(s)ds

∫
Rd
ψ(x+y)ψ(y)dy. (1.2)

Here, E denotes the expectation on Σ. The above assumptions on the correlation function R(t, x) are
made mostly to simplify the notation, and the only essential technical assumptions are that R(t, x) is
compactly supported in t and is rapidly decaying in x.

As we are interested in the large scale and long time asymptotics of u(t, x), we consider the
rescaled function

uε(t, x) := u( t
ε2 ,

x

ε
),

with ε� 1. The function uε satisfies

∂tuε = 1
2∆uε + λ

ε2V ( t
ε2 ,

x

ε
)uε. (1.3)

We assume that the initial condition uε(0, x) = u0(x) ∈ Cb(Rd). Throughout the paper, we stay
in the weak disorder regime and assume that λ ∈ (0, λ0), with a small but fixed constant λ0 only
depending on d, φ and ψ. Our main result is as follows.
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Theorem 1.1. There exist c1, c2 depending on λ, φ, and ψ such that for any t > 0 and g ∈ C∞c (Rd),
we have ∫

Rd
uε(t, x) exp

{
− c1t

ε2 − c2
}
g(x)dx→

∫
Rd
ū(t, x)g(x)dx, as ε→ 0, (1.4)

in probability, and

1
εd/2−1

∫
Rd

(uε(t, x)− E[uε(t, x)]) exp
{
− c1t

ε2 − c2
}
g(x)dx⇒

∫
Rd

U (t, x)g(x)dx (1.5)

in distribution. Here, ū is the solution of the effective heat equation

∂tū = 1
2∇ · aeff∇ū, ū(0, x) = u0(x), (1.6)

with the effective diffusion matrix aeff ∈ Rd×dsym defined in (4.284.28) below, and U solves the additive
stochastic heat equation

∂tU = 1
2∇ · aeff∇U + λνeff ūẆ, U (0, x) = 0, (1.7)

with the effective variance ν2
eff > 0 defined in (5.65.6) below.

The renormalization constants c1 and c2 are identified in (A.2A.2) below.

1.1 Background and related problems

The study of singular stochastic PDEs has witnessed important progress in recent years, with different
approaches developed to make sense of equations which are genuinely ill-posed due to the lack of
regularity and the need to make sense of the multiplication of distributions [1313, 1414, 1515, 1919, 2323]. The
existing works typically prove that the solution of the equation with the mollified white noise, after a
suitable renormalization, converges to some limit that is independent of the way in which the noise is
mollified.

Here, we consider a slightly different situation: the rescaled random field in (1.31.3) is not a
mollification of the white noise, and does not directly converge to the white noise in d ≥ 3 as ε→ 0.
We rather have, formally,

1
ε2V

( t
ε2 ,

x

ε

)
∼ εd/2−1ν0Ẇ (t, x),

with
ν2

0 =
∫
Rd+1

R(s, y)dsdy. (1.8)

Hence, one could think that the noise in (1.31.3) is small and would not produce a non-trivial effect on
the solutions, so that the limit would be simply the unperturbed heat equation. This is problematic –
if we formally replace the random potential in (1.31.3) by εd/2−1Ẇ (t, x), we obtain the multiplicative
stochastic heat equation. Giving a meaning to its solutions in d ≥ 3 brings about the aforementioned
question of making sense of multiplying two distributions u and Ẇ . Hence, the issue of the limit is
much more delicate. Theorem 1.11.1 shows that even though the random potential in (1.31.3) formally
converges to zero, it still affects the solutions in a non-trivial way: (i) on the level of the law of large
numbers, the solution of (1.31.3) converges to a solution of the deterministic diffusion equation (1.61.6),
with an effective diffusivity that is modified by the presence of the noise, and (ii) on the level of the
central limit theorem, the random fluctuations, after a rescaling, fall into the Edwards-Wilkinson
universality class in d ≥ 3, as in (1.71.7), with an effective (and not a “naive-guess” ν0) variance. We
stress that both the diffusion matrix and the variance of the noise are homogenized in the limit.
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We mention two related problems. The weak coupling regime analyzed in [1111] concerns the
situation when the potential in (1.11.1) is asymptotically small:

∂tu = 1
2∆u+ εV (t, x)u, x ∈ Rd, d ≥ 3. (1.9)

It was shown that no renormalization is required: the diffusively rescaled solution

uε(t, x) = u(t/ε2, x/ε)e−Vefft

converges in probability to the solution of the diffusion equation

∂tū = 1
2∆ū, ū(0, x) = u0(x), (1.10)

with an un-modified diffusivity. The effective potential Veff is explicit:

Veff =
∫ ∞

0
EB[R(t, Bt)]dt.

As far as fluctuations are concerned, using a simpler version of what is done in the present paper,
one can show that for any t > 0 and g ∈ C∞c (Rd) we have, as ε→ 0:

1
εd/2

∫
Rd

(uε(t, x)− E[uε(t, x)])e−Vefftg(x)dx⇒
∫
Rd

U (t, x)g(x)dx (1.11)

in distribution. Here, U solves the stochastic heat equation with additive space-time white noise

∂tU = 1
2∆U + ν0ūẆ, U (0, x) = 0. (1.12)

Note that neither the diffusivity nor the variance of the noise in (1.121.12) are homogenized in the weak
coupling regime. Indeed, equations (1.101.10) and (1.121.12) are precisely the “naive guesses” for the leading
order equation and its approximation that fail in our case, when the potential is not weak – it has no
pre-factor ε in (1.11.1) unlike in (1.91.9).

The case when V is white in time but not in space was considered in [2222]:

V (t, x) = Ẇψ(t, x) =
∫
ψ(x− y)dW (t, y).

Equation (1.11.1) is interpreted in [2222] in the Itô sense:

∂tu = 1
2∆u+ λẆψ(t, x)u, x ∈ Rd, d ≥ 3. (1.13)

It was shown in [2222, Theorem 2.1] that there exists λ1 > 0 so that if λ ∈ (0, λ1), then the rescaled
solution uε(t, x) = u(t/ε2, x/ε) satisfies∫

Rd
uε(t, x)g(x)dx→

∫
Rd
ū(t, x)g(x)dx

in probability for any g ∈ C∞c (Rd). Here, ū solves the heat equation

∂tū = 1
2∆ū, ū(0, x) = u0(x),

with an un-modified diffusivity. The same approach as in the present paper gives in that case
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Theorem 1.2. There exists λ1 = λ1(ψ) so that for all 0 < λ < λ1 we have

1
εd/2−1

∫
Rd

(uε(t, x)− E[uε(t, x)])g(x)dx⇒
∫
Rd

U (t, x)g(x)dx, (1.14)

as ε→ 0, with U solving
∂tU = 1

2∆U + λνeff ūẆ, U (0, x) = 0, (1.15)

and
ν2

eff =
∫
Rd
Rψ(x)EB

[
exp

{1
2λ

2
∫ ∞

0
Rψ(x+Bs)ds

}]
dx.

In this case, only the variance of the noise is homogenized but not the diffusivity. Thus, both
these regimes also lead to an Edwards-Wilkinson limit, with an un-modified diffusivity, and with
either a “naive-guess” noise variance (the weak coupling case), or a homogenized noise variance (in
the white in time case), whereas (1.31.3) leads to both homogenized diffusivity and variance.

We mention the very recent paper [2121] that considers essentially the same setup as in the present
paper. The main result of [2121] implies (1.41.4) except that the convergence is established for the averages
and not in probability, and the renormalization in the exponent is less explicit than in (1.41.4).

In dimensions d = 1, 2, similar problems have been discussed in the literature. For the random
PDE (1.31.3), with λ = λ(ε) → 0 chosen appropriately, and after a possible renormalization, the
solution uε converges to the solution to the stochastic heat equation with multiplicative space-time
white noise in d = 1 [88, 1616, 1717], and a Gaussian field in d = 2 within the weak-disorder regime [77, 1010].
For random polymers and interacting particle systems, the partition function or the height function
plays the role of the solution to certain “PDE”, and their convergences to the SHE/KPZ equation
have been proved in d = 1 e.g. in [11, 22, 33].

We comment briefly on the strategy of the proof. The Feynman-Kac representation expresses the
solution to the random PDE in the form of a partition function of a directed polymer in a random
environment, and the appearance of the effective diffusivity in the limit can be interpreted as the
convergence of a diffusively rescaled polymer path converging to a Brownian motion in d ≥ 3, see
the results in [44, 1212, 2121] for the annealed continuous setting and [66, 1818] for the quenched discrete
setting. By a construction similar to [2121], we utilize the finite range in time correlation of V (t, x)
to decompose the polymer path into length-one increments and establish a Markovian dynamics
in the space of path increments. The latter Markov chain satisfies the Doeblin condition, greatly
simplifying the analysis. The proof of the Edwards-Wilkinson limit for the fluctuations relies on the
Clark-Ocone formula which expresses the random fluctuation in terms of a stochastic integral, and
the fact that uε(t, x) essentially only depends on dW (s, x) locally around s = t/ε2.

It may be possible to apply a PDE approach, such as using the correctors in the standard
homogenization theory, to identity the limit and prove the convergence. However, the particular
scaling considered here requires the construction of infinitely many correctors. Controlling these
correctors becomes increasingly more difficult as their order increases. Therefore, we find the
probabilistic methods more convenient to use here.

1.2 Connections to the KPZ equation

The recent work [2020], which employs completely different methods, is closely related to ours. It
considers the KPZ equation, related to (1.31.3) by a Cole-Hopf transformation. The setup and result
are close but not exactly the same as here and we discuss below the connection.

Starting from (1.11.1), applying the centered Cole-Hopf transformation

h(t, x) = λ−1 log u(t, x)− c0t,
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one obtains
∂th = 1

2∆h+ 1
2λ|∇h|

2 + V (t, x)− c0, x ∈ Rd, d ≥ 3, (1.16)

with a constant c0. Define
hε(t, x) := ε−d/2+1h( t

ε2 ,
x

ε
), (1.17)

which satisfies
∂thε = 1

2∆hε + 1
2λε

d/2−1|∇hε|2 + ε−d/2−1
(
V ( t

ε2 ,
x

ε
)− c0

)
. (1.18)

The rescaled random potential ε−d/2−1V (t/ε2, x/ε) converges to the space-time white noise, while
the nonlinear term formally disappears as ε→ 0 in d ≥ 3. The authors in [2020, Theorem 0.1] show
that if the initial condition h0(x) for the un-scaled KPZ equation (1.161.16) is rapidly decaying, then
for λ sufficiently small, the Edwards-Wilkinson model shows up in the limit:

hε(t, x)− E[hε(t, x)]→H (t, x), (1.19)

in the sense of convergence of the corresponding multipoint correlation functions. Here, H is the
solution to

∂tH = 1
2Deff∆H + µeffẆ (1.20)

with zero initial conditions, for some Deff , µeff > 0. One difference from our setting is that we consider
the initial conditions for the un-scaled stochastic heat equation (1.11.1) that vary on a macroscopic
scale: u(0, x) = u0(εx). Disregarding this difference, we try to interpret the convergence in (1.191.19) on
the level of the stochastic heat equation, using the relation

uε(t, x) = exp
(
λεd/2−1hε(t, x) + λc0t

ε2

)
.

Theorem 1.11.1 shows that
1

εd/2−1

∫
Rd

(
eλε

d/2−1hε(t,x) − E[eλεd/2−1hε(t,x)]
)
eλc0t/ε

2
e−c1t/ε

2−c2g(x)dx⇒
∫
Rd

U (t, x)g(x)dx. (1.21)

If we use the approximation

eλε
d/2−1hε(t,x) ≈ 1 + λεd/2−1hε(t, x),

and choose λc0 = c1, then (1.191.19) and (1.211.21) are equivalent.
Organization of the paper. The paper is organized as follows. In Section 22 we introduce a

tilted Brownian motion and use the Clark-Ocone formula to establish in Lemma 2.12.1 a representation
for the fluctuation as a stochastic integral, and obtain in Lemma 2.22.2 an expression for its variance.
In Section 33 we prove Theorem 1.11.1. Assuming the main technical result, Proposition 3.23.2, we show
that the fluctuation does depend only on the “recent past” of the noise, and use this to prove the
central limit theorem for the fluctuations. The proof of Proposition 3.23.2 presented in Section 55 relies
on the properties of a Markov chain on the space of path increments that is constructed in Section 44.
Finally, some technical results are proved in the Appendix.

Acknowledgments

O.Z. thanks Herbert Spohn for bringing [2020] to his attention and motivating this study, and Chiranjib
Mukherjee for making [2121] available to us and for useful discussions. Y.G. was partially supported by
the NSF through DMS-1613301, L.R. was partially supported by the NSF grant DMS-1613603 and
ONR grant N00014-17-1-2145, and O.Z. was partially supported by a Poincare visiting professorship
at Stanford, and by an Israel Science Foundation grant.

5



2 Preliminaries: a stochastic integral and variance representation
The goal in this section is to express the deviation of the solution of (1.11.1) from its mean in terms
of a stochastic integral given by the Clark-Ocone formula, and present a convenient formula for its
second moment. Let B be a standard Brownian motion starting from the origin that is independent
from the random potential V , and let EB denote the expectation with respect to B. We define the
renormalization constant

ζt := logEB
[

exp
{λ2

2

∫
[0,t]2

R(s− u,Bs −Bu)dsdu
}]
, (2.1)

and denote by ÊB,t the expectation with respect to a tilted Brownian path on [0, t]: for any integrable
random variable f(B) depending on B = {Bs : s ≥ 0}, set

ÊB,t[f(B)] := EB
[
f(B) exp

{λ2

2

∫
[0,t]2

R(s− u,Bs −Bu)dsdu− ζt
}]
. (2.2)

For two independent tilted Brownian motions B1, B2 on [0, t], we write

ÊB,t[f(B1, B2)] = EB
[
f(B1, B2)

2∏
i=1

exp
{1

2λ
2
∫

[0,t]2
R(s− u,Bi

s −Bi
u)dsdu− ζt

}]
.

For t > 0, x ∈ Rd and every realization of the Brownian motion, we define

Φt,x,B(s, y) :=
∫ t

0
φ(t− r − s)ψ(x+Br − y)dr, (2.3)

and the square-integrable martingale

Mt,x,B(r) :=
∫ r

−∞

∫
Rd

Φt,x,B(s, y)dW (s, y), (2.4)

with quadratic variation
〈Mt,x,B〉r =

∫ r

−∞

∫
Rd
|Φt,x,B(s, y)|2dsdy. (2.5)

Since φ is supported on [0, 1], Φt,x,B(s, y) 6= 0 only when s ∈ [−1, t].
The following lemma expresses the random fluctuations of u(t, x) in terms of a stochastic integral.

Lemma 2.1. Let u(t, x) be a solution to (1.11.1), then for any t > 0 and x ∈ Rd, we have

(u(t, x)−E[u(t, x)])e−ζt = λ

t∫
−1

∫
Rd

ÊB,t
[
u(0, x+Bt)Φt,x,B(r, y) exp

{
λMt,x,B(r)−λ

2

2 〈Mt,x,B〉r
}]
dW (r, y).

(2.6)

Proof. Since φ(s) = 0 for s < 0, u(t, x) is adapted to the filtration generated by dW up to t, denoted
by Ft. By the Clark-Ocone formula, we have

u(t, x)− E[u(t, x)] =
∫ t

−∞
E[Dr,yu(t, x)|Fr]dW (r, y).
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Here, Dr,y denotes the Malliavin derivative. As the function φ(s) is supported in [0, 1], the random
potential V (t, x) for t > 0 depends only on Ẇ (r, y) for r > −1, and so does u(t, x) for t > 0.
Therefore, the Malliavin derivative vanishes for r < −1, and we have

u(t, x)− E[u(t, x)] =
∫ t

−1
E[Dr,yu(t, x)|Fr]dW (r, y). (2.7)

To compute the Malliavin derivative in (2.72.7), we note that by the Feynman-Kac formula, the solution
can be written as

u(t, x) = EB
[
u(0, x+Bt) exp

{
λ

∫ t

0
V (t− s, x+Bs)ds

}]
.

Rewriting the exponent above as∫ t

0
V (t− s, x+Bs)ds =

∫ t

0

(∫
Rd+1

φ(t− s− s′)ψ(x+Bs − y′)dW (s′, y′)
)
ds

=
∫
Rd+1

Φt,x,B(s′, y′)dW (s′, y′),

we see that the Malliavin derivative is given by

Dr,yu(t, x) = λEB
[
u(0, x+Bt)Φt,x,B(r, y) exp

{
λ

∫
Rd+1

Φt,x,B(s′, y′)dW (s′, y′)
}]
,

so that

E[Dr,yu(t, x)|Fr] = λEB
(
u(0, x+Bt)Φt,x,B(r, y)E

[
exp

{
λ

∫
Rd+1

Φt,x,B(s′, y′)dW (s′, y′)
}∣∣∣Fr]). (2.8)

For the conditional expectation in the right side, we write∫
Rd+1

Φt,x,B(s′, y′)dW (s′, y′) =
(∫ r

−∞
+
∫ ∞
r

)∫
Rd

Φt,x,B(s′, y′)dW (s′, y′),

which gives

E
[

exp
{
λ

∫
Rd+1

Φt,x,B(s′, y′)dW (s′, y′)
}∣∣∣Fr] = exp

{
λMt,x,B(r)− λ2

2 〈Mt,x,B〉r
}

× exp
{λ2

2

∫
Rd+1
|Φt,x,B(s′, y′)|2ds′dy′

}
.

(2.9)

With the help of the definition (2.32.3) of Φt,x,B, together with expression (1.21.2) for R(t, x) and the fact
that the function ψ is even, the last integral in (2.92.9) can be written as∫

Rd+1
|Φt,x,B(s′, y′)|2ds′dy′ =

∫
[0,t]2

R(s− u,Bs −Bu)dsdu. (2.10)

Finally, using (2.82.8), (2.92.9) and (2.102.10), as well as the definition (2.22.2) of the tilted measure ÊB,t, in (2.72.7),
completes the proof of (2.62.6). �
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An expression for the variance

We now use Lemma 2.12.1 for the re-scaled solution uε(t, x) = u(t/ε2, x/ε), with uε(0, x) = u0(x). For
any test function g ∈ C∞c (Rd), we have∫

Rd
(uε(t, x)− E[uε(t, x)])e−ζt/ε2g(x)dx = λ

∫ t/ε2

−1

∫
Rd
Zεt (r, y)dW (r, y), (2.11)

with

Zεt (r, y) :=
∫
Rd
g(x)ÊB,t/ε2

[
u0(x+ εBt/ε2)Φε

t,x,B(r, y) exp
{
λM ε

t,x,B(r)− λ2

2 〈M
ε
t,x,B〉r

}]
dx, (2.12)

where
Φε
t,x,B := Φt/ε2,x/ε,B, M ε

t,x,B := Mt/ε2,x/ε,B.

Thus, the proof of the fluctuation convergence (1.51.5) in Theorem 1.11.1 reduces to the analysis of the
stochastic integral

1
εd/2−1

∫ t/ε2

−1

∫
Rd
Zεt (r, y)dW (r, y), (2.13)

provided that we can replace ζt/ε2 7→ c1t/ε
2 + c2 as ε→ 0.

We express the variance of the stochastic integral in (2.132.13) in a more explicit form. First, we
need to introduce some notation. We define

Rψ(x) =
∫
Rd
ψ(x− y)ψ(y)dy, Rφ(t1, t2) =

∫ ∞
0

φ(s− t1)φ(s− t2)ds. (2.14)

Since ψ is supported on {x : |x| ≤ 1/2} and φ on [0, 1], we know that Rψ is supported on {x : |x| ≤ 1}
and Rφ(t1, t2) = 0 if t1 < −1 or t2 < −1. In addition, Rφ(t1, t2) = 0 if |t1 − t2| ≥ 1.

From now on, we fix t > 0. Given two continuous paths B1, B2 ∈ C([0, t/ε2]), we set

∆Bi
u,v = Bi

v −Bi
u.

For x1, x2, y ∈ Rd, s1, s2 ∈ [0, 1], r ∈ [0, t] and −1 < M1,M2 ≤ r/ε2, we define

Iε = Iε(x1, x2, y, s1, s2, r) =
2∏
i=1

g(εxi + y − εBi
t−r
ε2
−si

)u0(εxi + y + ε∆Bi
t−r
ε2
−si, tε2

), (2.15)

and

Jε(M1,M2) = Jε(M1,M2, x1, x2, s1, s2, r)

= λ2
∫ M1

−1

∫ M2

−1
Rφ(u1, u2)Rψ(x1 − x2 + ∆B1

t−r
ε2
−s1, t−r

ε2
+u1
−∆B2

t−r
ε2
−s2, t−r

ε2
+u2

)du1du2.
(2.16)

To simplify the notation, we write Iε and Jε(M1,M2) and keep their dependence on Bi, xi, y, si, r
implicit.

Lemma 2.2. For any −1 ≤ t1 < t2 ≤ t− ε2, we have, with ds̄ = ds1ds2 and dx̄ = dx1dx2:

1
εd−2E

[∫ t2/ε2

t1/ε2

∫
Rd
|Zεt (r, y)|2dydr

]
=
∫ t2

t1

∫
R3d

∫
[0,1]2

ÊB,t/ε2
[
IεeJε(

r
ε2
, r
ε2

)
] 2∏
i=1

φ(si)ψ(xi) ds̄dx̄dydr.

(2.17)
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Proof. The proof is a straightforward calculation with multiple changes of variables. We first write

|Zεt (r, y)|2 = ÊB,t/ε2
∫
R2d

2∏
i=1

g(xi)u0(xi + εBi
t/ε2)Φε

t,xi,Bi
(r, y) exp

{
λM ε

t,xi,Bi
(r)− 1

2λ
2〈M ε

t,xi,Bi
〉r
}
dx̄.

Taking the expectation E above, for each B1, B2 fixed we have

E
[ 2∏
i=1

e
λMε

t,xi,B
i (r)−

1
2λ

2〈Mε
t,xi,B

i 〉r
]

= e
λ2〈Mε

t,x1,B1 ,M
ε
t,x2,B2 〉r ,

with
〈M ε

t,x1,B1 ,M ε
t,x2,B2〉r =

∫ r

−∞

∫
Rd

Φε
t,x1,B1(s′, z)Φε

t,x2,B2(s′, z)dzds′.

Next, we write

Φε
t,x1,B1(r, y)Φε

t,x2,B2(r, y) =
∫

[0,t/ε2]2

2∏
i=1

φ( t
ε2 − si − r)ψ(xi

ε
+Bi

si − y)ds1ds2. (2.18)

We consider the integral in x, y and change variables xi 7→ εxi − εBi
si + εy, y 7→ y/ε to obtain

E
[∫

Rd
|Zεt (r, y)|2dy

]
= ÊB,t/ε2

∫
[0,t/ε2]2

∫
R3d

2∏
i=1

g(xi)u0(xi + εBi
t/ε2)ψ(xi

ε
+Bi

si − y)φ( t
ε2 − si − r)

× exp
{
λ2
∫ r

−∞

∫
Rd

Φε
t,x1,B1(s′, z)Φε

t,x2,B2(s′, z)dzds′
}
dx̄dyds̄

= εdÊB,t/ε2
∫

[0,t/ε2]2

∫
R3d

2∏
i=1

g(εxi + y − εBi
si)u0(εxi + y + εBi

t/ε2 − εB
i
si)ψ(xi)φ( t

ε2 − si − r)

× exp
{
λ2
∫ r

−∞

∫
Rd

Φε
t,εx1−εB1

s1+y,B1(s′, z)Φε
t,εx2−εB2

s2+y,B2(s′, z)dzds′
}
dx̄dyds̄.

(2.19)
The exponent in the last line above can be written as∫ r

−∞

∫
Rd

Φε
t,εx1−εB1

s1+y,B1(s′, z)Φε
t,εx2−εB2

s2+y,B2(s′, z)dzds′

=
∫ r

−∞

∫
Rd

∫
[0,t/ε2]2

φ( t
ε2 − u1 − s′)φ( t

ε2 − u2 − s′)ψ(x1 −B1
s1 + y

ε
+B1

u1 − z)

× ψ(x2 −B2
s2 + y

ε
+B2

u2 − z)du1du2dzds
′

=
∫

[0,t/ε2]2
Rφ(u1 + r − t

ε2 , u2 + r − t

ε2 )Rψ(x1 − x2 + ∆B1
s1,u1 −∆B2

s2,u2)du1du2,

(2.20)

with Rφ, Rψ defined in (2.142.14). Next, we also integrate in the r-variable, with a change of variable
r 7→ r/ε2, so that

E
[∫ t2/ε2

t1/ε2

∫
Rd
|Zεt (r, y)|2dydr

]
= εd−2

∫ t2

t1

∫
R3d

∫
[0,t/ε2]2

ÊB,t/ε2 [IeJ ] ds̄dx̄dydr, (2.21)

with

I =
2∏
i=1

g(εxi + y − εBi
si)u0(εxi + y + ε∆Bi

si,
t
ε2

)φ( t− r
ε2 − si)ψ(xi),

J = λ2
∫

[0,t/ε2]2
Rφ(u1 −

t− r
ε2 , u2 −

t− r
ε2 )Rψ(x1 − x2 + ∆B1

s1,u1 −∆B2
s2,u2)du1du2.

(2.22)
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As φ is supported on [0, 1], the integration domain in si is is [ t−r
ε2 −1, t−r

ε2 ], because of the corresponding
factor in the expression for I in (2.222.22). A change of variable si 7→ (t− r)/ε2 − si turns the domain
of integration in si into [0, 1], as in (2.172.17). It also turns I in (2.222.22) into expression (2.152.15) for Iε.
For the integral in ui in the expression for J in (2.222.22), to have Rφ 6= 0, we need ui ≥ t−r

ε2 − 1,
so the integration domain for ui is [ t−r

ε2 − 1, t
ε2 ]. The change of variable ui 7→ t−r

ε2 + ui turns this
into [−1, r/ε2], and J into Jε(r/ε2, r/ε2). This completes the proof of (2.172.17). �

Remark 2.3. The assumption t2 ≤ t− ε2 in the statement of Lemma 2.22.2 is only made to simplify the
presentation of the result. For any t2 ≤ t, a similar result holds – we only need to modify the integration
domain for u1, u2 in (2.162.16) to [−(t− r)/ε2, r/ε2]2 and that of s1, s2 in (2.172.17) to [0, (t− r)/ε2]2 – this
only makes a difference when t− r ≤ ε2.

3 Proof of Theorem 1.11.1
We first explain how the renormalization constants c1 and c2 are determined.

Lemma 3.1. There exist c1, c2 such that

ζt := logEB
[
e

1
2λ

2
∫

[0,t]2 R(s−u,Bs−Bu)dsdu] = c1t+ c2 + o(1), as t→∞. (3.1)

Lemma 3.13.1, which explains the choice of c1 and c2, is proved in Appendix AA. As a consequence of
the lemma, it is sufficient to prove Theorem 1.11.1 with the term c1t/ε

2 + c2 in the exponent replaced
by ζt/ε2 .

Convergence of the fluctuations: the outline

We first prove the central limit theorem for the centered random fluctuation in (1.51.5), and then
the leading order homogenization result in (1.41.4). Fix a test function g(x) ∈ C∞c (Rd), and go back
to (2.112.11)-(2.132.13). Our goal will be to show that the integrand Zεt (r, y) depends mainly on Ẇ (s, ·)
with s close to r, so that the stochastic integral is an approximate linear combination of strongly
mixing processes, which should satisfy a central limit theorem. To make the “local dependence” more
precise, we decompose the interval [−1, t/ε2] of integration in (2.112.11) into alternating subintervals of
size ε−α and ε−β with 0 < α < β < 2:

[−1, t
ε2 ] = [−1, ε−α] ∪ [ε−α, ε−β + ε−α] ∪ [ε−β + ε−α, ε−β + 2ε−α] ∪ . . . ∪ [tε,

t

ε2 ],

with tε chosen so that |t/ε2 − tε| = O(ε−β).
Denote the “short” intervals of length ε−α by {Iα,j} and the “long” ones of length ε−β by {Iβ,j},

and set
Iα =

⋃
j

Iα,j , Iβ =
⋃
j

Iβ,j .

The last piece [tε, t/ε2] is assigned to Iα. We will define a modification Z̃εt (r, y) of Zεt (r, y) for r ∈ Iβ ,
so that Z̃εt (r, y) only depends on Ẇ (s, ·) with s ∈ (r − ε−α, r], and thus the random variables

X εj := 1
εd/2−1

∫
Iβ,j

∫
Rd
Z̃εt (r, y)dW (r, y) (3.2)
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are independent. To prove the central limit theorem statement (1.51.5) in Theorem 1.11.1, it suffices to
show that
(1) The error induced by the modification on the “long” intervals is small (Lemma 3.33.3):

1
εd−2

∫
Iβ

∫
Rd

E[|Zεt (r, y)− Z̃εt (r, y)|2]dydr → 0 as ε→ 0. (3.3)

(2) The contribution from the “short intervals” Iα is small (Lemma 3.43.4):

1
εd−2

∫
Iα

∫
Rd

E[|Zεt (r, y)|2]dydr → 0 as ε→ 0. (3.4)

(3) The sum
∑
j X εj satisfies a central limit theorem, with variance given by (1.71.7) (Lemma 3.53.5).

The modification

We first explain how the modification is done. Recall that

Zεt (r, y) =
∫
Rd
g(x)ÊB,t/ε2

[
u0(x+ εBt/ε2)Φε

t,x,B(r, y) exp
{
λM ε

t,x,B(r)− 1
2λ

2〈M ε
t,x,B〉r

}]
dx

depends on W only through the martingale in the exponent

M ε
t,x,B(r) =

∫ r

−∞

∫
Rd

(∫ t/ε2

0
φ( t
ε2 − s

′ − s)ψ(x
ε

+Bs′ − y)ds′
)
dW (s, y). (3.5)

Since φ is supported on [0, 1], the integration in s′ in (3.53.5) is only over s′ < t/ε2 − s (in fact, over the
interval (t/ε2 − s− 1, t/ε2 − s)), so that

M ε
t,x,B(r) =

∫ r

−∞

∫
Rd

(∫ t/ε2−s

0
φ( t
ε2 − s

′ − s)ψ(x
ε

+Bs′ − y)ds′
)
dW (s, y). (3.6)

We expect that, because we deal with dimensions d ≥ 3, and therefore the transience of Brownian
motion yields mixing, most of the contributions to M ε

t,x,B(r) come from s “macroscopically near” r,
so that 0 < r − s < ε−α, with some α ∈ (0, 2). Thus, we set

rε := t

ε2 − r + 1
2εα , (3.7)

and define the modification of M ε
t,x,B(r) on Iβ as

M̃ ε
t,x,B(r) :=

∫ r

−∞

∫
Rd

(∫ rε

0
φ( t
ε2 − s

′ − s)ψ(x
ε

+Bs′ − y)ds′
)
dW (s, y), r ∈ Iβ. (3.8)

Note that for r ∈ Iβ , we have r ≥ ε−α, hence rε < t/ε2. Due to the dependence of rε on r, M̃ ε
t,x,B is

not a martingale. Still, with some abuse of notation, we write

〈M̃ ε
t,x,B〉r :=

∫ r

−∞

∫
Rd

(∫ rε

0
φ( t
ε2 − s

′ − s)ψ(x
ε

+Bs′ − y)ds′
)2
dyds.

Note that if s ≤ r − ε−α, then

t

ε2 − s
′ − s ≥ t

ε2 − rε − r + ε−α = 1
2εα > 1,
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so the integrand in (3.83.8) vanishes. Thus, M̃ ε
t,x,B(r) only depends on dW (s, ·) for s ∈ (r− ε−α, r]. The

corresponding modification of Zεt (r, y) is

Z̃εt (r, y) :=
∫
Rd
g(x)ÊB,t/ε2

[
u0(x+ εBt/ε2)Φε

t,x,B(r, y) exp
{
λM̃ ε

t,x,B(r)− 1
2λ

2〈M̃ ε
t,x,B〉r

}]
dx,

which also depends only on dW (s, ·) for s ∈ (r − ε−α, r], and the integrals {X εj } defined in (3.23.2) are
independent random variables.

Proof of the central limit theorem (1.51.5)

Recall (2.172.17), written as

1
εd−2E

[∫ t2/ε2

t1/ε2

∫
Rd
|Zεt (r, y)|2dydr

]
=
∫ t2

t1

∫
Rd

Fε(r, y,
r

ε2 ,
r

ε2 )dydr. (3.9)

Here, for r ∈ [0, t], y ∈ Rd and M1,M2 ≤ r/ε2, we have set

Fε(r, y,M1,M2) :=
∫
R2d

∫
[0,1]2

ÊB,t/ε2
[
IεeJε(M1,M2)

] 2∏
i=1

φ(si)ψ(xi)ds1ds1dx1dx2, (3.10)

with Iε and Jε defined in (2.152.15) and (2.162.16), respectively.
We state the following proposition and postpone its proof to Section 55. The function ḡ(t, x) in

the proposition is the solution of the effective diffusion equation

∂tḡ = 1
2∇ · aeff∇ḡ, ḡ(0, x) = g(x), (3.11)

where aeff is as in (4.284.28) below.

Proposition 3.2. For any r ∈ (0, t), y ∈ Rd, as ε→ 0 and M1,M2 →∞,

Fε(r, y,M1,M2)→ ν2
eff |ḡ(t− r, y)ū(r, y)|2, (3.12)

where ū, ḡ solve (1.61.6) and (3.113.11), and νeff is defined in (5.65.6). In addition, for any k > 0,

|Fε(r, y,M1,M2)| ≤ C(1 ∧ |y|−k) (3.13)

for some constant C > 0 independent of ε, r,M1,M2.

Proposition 3.23.2 is instrumental in completing the proof of Lemmas 3.33.3, 3.43.4 and 3.53.5, which in turn
finish the proof of (1.51.5). First, we show that (3.33.3) holds: the total error induced by the modification
on the “long” intervals is small.

Lemma 3.3. We have

1
εd−2

∫
Iβ

∫
Rd

E
[
|Zεt (r, y)− Z̃εt (r, y)|2

]
dydr → 0 as ε→ 0. (3.14)

Proof. By Lemma 2.22.2, we have

1
εd−2

∫
Iβ

∫
Rd

E[|Zεt (r, y)|2]dydr =
∫ t

0

∫
Rd

1{r/ε2∈Iβ}Fε(r, y,
r

ε2 ,
r

ε2 )dydr.
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The same calculation as in the proof of that lemma gives

1
εd−2

∫
Iβ

∫
Rd

E[|Z̃εt (r, y)|2]dydr =
∫ t

0

∫
Rd

1{r/ε2∈Iβ}Fε(r, y,
1

2εα ,
1

2εα )dydr, (3.15)

and
1

εd−2

∫
Iβ

∫
Rd

E[Zεt (r, y)Z̃εt (r, y)]dydr =
∫ t

0

∫
Rd

1{r/ε2∈Iβ}Fε(r, y,
r

ε2 ,
1

2εα )dydr. (3.16)

Indeed, the only required modification in replacing M ε by M̃ ε is to replace the upper limit t/ε2 of
integration in s in (2.182.18) by rε. This leads to the same change of the upper limit of integration in u
in (2.202.20), and in the expression for J in (2.222.22). The changes of variables described below (2.222.22) then
bring about (3.153.15) and (3.163.16). By Proposition 3.23.2, the proof is complete, as (3.133.13) allows us to apply
the Lebesgue dominated convergence theorem. �

The next step is to establish (3.43.4): the contribution of the “short” intervals is small.

Lemma 3.4. We have
1

εd−2

∫
Iα

∫
Rd

E[|Zεt (r, y)|2]dydr → 0 as ε→ 0. (3.17)

Proof. By Lemma 2.22.2, we have

1
εd−2

∫
Iα

∫
Rd

E[|Zεt (r, y)|2]dydr =
∫ t

0

∫
Rd

1{r/ε2∈Iα}Fε(r, y,
r

ε2 ,
r

ε2 )dydr.

Note that when t−r ≤ ε2, the expressions for Iε,Jε, as well as Fε are slightly different, see Remark 2.32.3.
In this case, it is easy to check that Proposition 3.23.2 still holds. The uniform bound (3.133.13), as well as
the fact that

|{r ∈ [0, t] : r/ε2 ∈ Iα}| → 0 as ε→ 0,

complete the proof. �

The last step in the proof of (1.51.5) is to establish the central limit theorem for the sums over the
variables X εj defined by (3.23.2).

Lemma 3.5. We have

λ
∑
j

X εj ⇒
∫
Rd

U (t, x)g(x)dx in distribution as ε→ 0.

Here, U (t, x) is the solution of (1.71.7).

Proof. First, it is easy to check that the solution of (1.71.7) satisfies

Var
[ ∫

Rd
U (t, x)g(x)dx

]
= λ2ν2

eff

∫ t

0

∫
Rd
|ḡ(t− s, x)ū(s, x)|2dxds. (3.18)

Let
s2
n,ε = λ2∑

j

Var[X εj ],

then, by the same calculation as in the proofs of Lemma 2.22.2 and 3.33.3, we have

s2
n,ε = λ2∑

j

∫ t

0

∫
Rd

1{r/ε2∈Iβ,j}Fε(r, y,
1

2εα ,
1

2εα )dydr → Var
[ ∫

Rd
U (t, x)g(x)dx

]
.
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The last step comes from Proposition 3.23.2 and (3.183.18).
Since X εj are independent random variables, it remains to check the Lindeberg condition which

reduces in our case to: for any δ > 0, ∑
j

E[|X εj |21{|X εj |>δ]→ 0 (3.19)

as ε→ 0. By the Cauchy-Schwarz and Chebyshev inequality, we have
∑
j

E[|X εj |21{|X εj |>δ] ≤
∑
j

√
E[|X εj |4]

√
E[|X εj |2]/δ2 ≤ 1

δ

(∑
j

√
E[|X εj |4]

)(
sup
j

√
E[|X εj |2]

)
.

Proposition 3.23.2 implies that for all j we have

E[|X εj |2] =
∫ t

0

∫
Rd

1{r/ε2∈Iβ,j}Fε(r, y,
1

2εα ,
1

2εα )dydr . ε2−β.

Lemma A.3A.3 proved in Appendix AA shows that∑
j

√
E[|X εj |4] . 1,

and (3.193.19) follows. �

Proof of the homogenization limit (1.41.4)

The proof of (1.41.4) is now straightforward. We write∫
Rd
uε(t, x)e−ζt/ε2g(x)dx =

∫
Rd

(uε(t, x)− E[uε(t, x)])e−ζt/ε2g(x)dx+
∫
Rd

E[uε(t, x)]e−ζt/ε2g(x)dx.

The first term goes to zero in probability by (1.51.5). For the second term, by Lemma 4.24.2 below, we
have

E[uε(t, x)]e−ζt/ε2 = ÊB,t/ε2 [u0(x+ εBt/ε2)]→ ū(t, x),

finishing the proof. �
The rest of the paper is devoted to the proof of Proposition 3.23.2, as well as the other auxiliary

statements used in this section, such as the technical lemmas in Appendix AA.

4 The tilted Brownian motion
The previous section relies on analyzing the expectations under the tilted measure

ÊB,t/ε2 [f(B)] = EB
[
f(B) exp

{1
2λ

2
∫

[0,t/ε2]
R(s− u,Bs −Bu)dsdu

}]
e
−ζt/ε2 .

The goal of this section is to construct a Markov chain taking values in C([0, 1]) so that the tilted
Brownian path on C([0, t/ε2]) can be represented by the chain, and satisfies an invariance principle.
We also analyze the intersection of two independent paths and show that the total “intersection time”
has exponential tails.
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4.1 Construction of the Markov chain on C([0, 1])
For any T > 0, let

ΩT = {ω : ω ∈ C([0, T ]), ω(0) = 0}

be the configuration space. Denoting the tilted measure by P̂T , and the Wiener measure by PT , we
have

dP̂T
dPT

(ω) = exp
{1

2λ
2
∫

[0,T ]2
R(s− u, ω(s)− ω(u))dsdu− ζT

}
. (4.1)

Define the probability space (Ω,A, π) with Ω = Ω1, A the sigma-algebra on Ω1, π = P̂1, and denote
the expectation by Eπ. We will decompose the path of length T into increments of length 1 which
take values in Ω. In order to consider the distribution of the path on [t, t + 1] for any t > 0,
we introduce a parameter τ ∈ (0, 1], set N = [T − τ ], and divide the interval [0, T ] into N + 2
subintervals (τk, τk+1), k = 0, . . . , N + 1, with τ0 = 0, τ1 = τ , τk+1 = τk + 1 for k = 1, . . . , N ,
and τN+2 = T . The increments of the path on (τk, τk+1) are denoted by {xk}, with x0 ∈ Ωτ , xk ⊂ Ω
for k = 1, . . . , N + 1, and xN+1 ∈ ΩT−τ−N . Given xk, we define ωs, 0 ≤ s ≤ T , as

ωs =


x0(s) s ∈ [0, τ ],
ωτ+k−1 + xk(s− τ − k + 1) s ∈ [τ + k − 1, τ + k], k = 1, . . . , N,
ωτ+N + xN+1(s− τ −N) s ∈ [τ +N,T ],

(4.2)

and write
{ωs} = (x0, . . . , xN+1).

For t > 0 and t /∈ Z≥1, we only need to choose τ = t− [t] so that {ωs : s ∈ [t, t+ 1]} = xk for some k.
Write∫

[0,T ]2
R(s− u, ω(s)− ω(u))dsdu =

N+1∑
k,m=0

Qkm, Qkm =
∫ τk+1

τk

∫ τm+1

τm
R(s− u, ω(s)− ω(u))dsdu.

(4.3)
Since R(s, ·) = 0 when |s| ≥ 1, we only have nearest-neighbor interactions of (x0, . . . , xN+1)
in (4.34.3): Qkm = 0 unless |m− k| ≤ 1, and

∫
[0,T ]2

R(s− u, ω(s)− ω(u))dsdu =
N+1∑
k=0

Qkk + 2
N∑
k=0

Qk,k+1. (4.4)

For k = 1, . . . , N and 0 ≤ s ≤ 1, we can write

ω(τk + s) = ω(τk) + xk(s), ω(τk + 1 + s) = ω(τk) + xk(1) + xk+1(s),

so that
Qk,k+1 =

∫ τk+1

τk

∫ τk+2

τk+1
R(s− u, ω(s)− ω(u))dsdu

=
∫ 1

0

∫ 1

0
R(s+ 1− u, ω(τk + 1 + s)− ω(τk + u))dsdu

=
∫ 1

0

∫ 1

0
R(s+ 1− u, xk(1) + xk+1(s)− xk(u))dsdu.

(4.5)

Thus, for x, y ∈ Ω, we define the interaction term

I(x, y) = λ2
∫ 1

0

∫ 1

0
R(s+ 1− u, y(s) + x(1)− x(u))dsdu. (4.6)

15



The interactions between x0, x1 and that of xN , xN+1 are defined slightly differently as

I0,1(x0, x1) = λ2
∫ τ

0
du

∫ 1

0
ds R(s+ τ − u, x1(s) + x0(τ)− x0(u)),

IN,N+1(xN , xN+1) = λ2
∫ 1

0
du

∫ T−τ−N

0
ds R(s+ 1− u, xN+1(s) + xN (1)− xN (u)).

It is now straightforward to check that

P̂T (dω) ∝ P̂τ (dx0)eI0,1(x0,x1)
N−1∏
k=1

π(dxk)eI(xk,xk+1)π(dxN )eIN,N+1(xN ,xN+1)P̂T−τ−N (dxN+1). (4.7)

The Krein-Rutman and Doob-Krein-Rutman theorems (see Appendix to Chapter VIII of [99])
imply that there exist ρ > 0 and Ψ(y) solving the eigenvalue problem∫

Ω
eI(x,y)Ψ(y)π(dy) = ρΨ(x), (4.8)

such that ρ is the largest possible eigenvalue,

0 < c1 ≤ Ψ(y) ≤ c2 < +∞ for all y ∈ Ω, (4.9)

and Ψ is the unique eigenvector associated with ρ, normalized so that∫
Ω

Ψ(y)π(dy) = 1. (4.10)

Such an argument was also used in [2121]. The bounds on ρ and Ψ only depend on ‖I‖L∞ . Indeed, (4.104.10)
implies that

ρ =
∫

Ω×Ω
eI(x,y)Ψ(y)π(dx)π(dy),

so we have
e−‖I‖∞ ≤ ρ ≤ e‖I‖∞ . (4.11)

Since
Ψ(x) = 1

ρ

∫
Ω
eI(x,y)Ψ(y)π(dy),

we also have
e−2‖I‖∞ ≤ Ψ(x) ≤ e2‖I‖∞ . (4.12)

Now we can re-write (4.74.7) as

P̂T (dω) ∝ P̂τ (dx0)eI0,1(x0,x1)Ψ(x1)π(dx1)
N−1∏
k=1

π̂(xk, dxk+1)e
IN,N+1(xN ,xN+1)

Ψ(xN ) P̂T−τ−N (dxN+1),

(4.13)
with the transition probability density

π̂(x, dy) = eI(x,y)Ψ(y)π(dy)
ρΨ(x) . (4.14)

Setting

f0,1(x0) =
∫

Ω
eI0,1(x0,x1)Ψ(x1)π(dx1), fN,N+1(xN ) =

∫
ΩT−τ−N

eIN,N+1(xN ,xN+1)P̂T−τ−N (dxN+1),

16



and

π̂0,1(x0, dx1) = eI0,1(x0,x1)Ψ(x1)π(dx1)
f0,1(x0) , π̂N,N+1(xN , dxN+1) = eIN,N+1(xN ,xN+1)P̂T−τ−N (dxN+1)

fN,N+1(xN ) ,

we obtain

P̂T (dω) ∝ f0,1(x0)P̂τ (dx0)
(
π̂0,1(x0, dx1)

N−1∏
k=1

π̂(xk, dxk+1)π̂N,N+1(xN , dxN+1)
)
fN,N+1(xN )

Ψ(xN ) .

(4.15)
Now, we construct the Markov chain Xk, with X0 ∈ Ωτ , {Xk}Nk=1 ⊂ Ω, and XN+1 ∈ ΩT−τ−N , as

follows:
(1) X0 is sampled from the (normalized) distribution f0,1(x0)P̂τ (dx0),
(2) (X1, . . . , XN+1) are sampled according to

π̂0,1(X0, dx1)
(
N−1∏
k=1

π̂(xk, dxk+1)
)
π̂N,N+1(xN , dxN+1).

We construct the path B by stitching together all increments as in (4.24.2):

B = {Bs : s ∈ [0, T ]} = (X0, . . . , XN+1). (4.16)

We use Eπ to denote the expectation with respect to this Markov chain. In light of (4.154.15), for
any F : ΩT → R, we have the relation

ÊB,T [F (B)] :=
∫

ΩT
F (ω)P̂T (dω) = Eπ

[
F (B)cτ,T

fN,N+1(XN )
Ψ(XN )

]
. (4.17)

Here, cτ,T is the normalization constant:

1
cτ,T

:= Eπ
[
fN,N+1(XN )

Ψ(XN )

]
.

Using (4.114.11) and (4.124.12), we see that the Doeblin condition is satisfied:

sup
x∈Ω,A⊂Ω

π̂(x,A) ≥ γπ(A) (4.18)

for some γ ∈ (0, 1) that depends only on ‖I‖L∞ . Therefore, there exists a unique invariant measure
for π̂, and

dTV(Xk, X̃) . (1− γ)k, (4.19)

where X̃ is sampled from the invariant measure.

The two-component chain

To consider the interaction between two independent paths B1, B2, we construct a two component
Markov chain Zk = (Xk, Yk) ∈ Ω2 by sampling Xk, Yk independently. By the same discussion we
have

B1 = {B1
s : s ∈ [0, t/ε2]} = (X0, . . . , XNε+1),

B2 = {B2
s : s ∈ [0, t/ε2]} = (Y0, . . . , YNε+1),
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where T = t/ε2 and Nε = [t/ε2 − τ ]. For any F : Ωt/ε2 × Ωt/ε2 → R, we have

ÊB,t/ε2 [F (B1, B2)] = Eπ[F (B1, B2)Gε(XNε)Gε(YNε)]. (4.20)

For k = 2, . . . , Nε, Zk is sampled from π̂(Zk−1, dzk) with

π̂(z1, dz2) := π̂(x1, dx2)π̂(y1, dy2), zi = (xi, yi). (4.21)

As for the single-component chain, the Doeblin condition is satisfied for Zk as well:

sup
z∈Ω2,B⊂Ω2

π̂(z,B) ≥ γ(π × π)(B). (4.22)

After possibly decreasing the parameter γ, we can ensure that (4.184.18) and (4.224.22) hold with the
same γ ∈ (0, 1).

Writing
π̂(z1, dz2) = γ(π × π)(dz2) + (1− γ) π̂(z1, dz2)− γ(π × π)(dz2)

1− γ , (4.23)

we couple the two-component chain with a sequence of i.i.d. Bernoulli random variables ηk, k ∈ N,
with the parameter γ: for k = 2, . . . , Nε, if ηk = 1, we sample Zk from (π × π)(dz), and if ηk = 0, we
sample Zk from

π̂(Zk−1, dz)− γ(π × π)(dz)
1− γ ,

which is possible because of the Doeblin condition (4.224.22). The same coupling works for the one-
component chain, of course, with the help of (4.184.18). We enlarge the probability space so that ηk are
also defined on (Ω,A, π).

4.2 The invariance principle for the tilted Brownian path

We will use here the re-scaled version of (4.174.17): set T = t/ε2, Nε = [t/ε2−τ ], and for any F : Ωt/ε2 → R
write

ÊB,t/ε2 [F (B)] = Eπ [F (B)Gε(XNε)] , (4.24)
with

Gε(XNε) := cτ,t/ε2
fNε,Nε+1(XNε)

Ψ(XNε)
. (4.25)

To simplify the notation, we kept the dependence on τ implicit in (4.244.24). Since both fNε,Nε+1 and Ψ
are bounded from above and below, and Eπ[Gε(XNε)] = 1, we know that Gε is uniformly bounded in
ε.

We fix τ = 1 in this section, so that Nε = [t/ε2]− 1,

B = {Bs : s ∈ [0, t/ε2]} = (X0, . . . , XNε+1). (4.26)

Here, Xk is the increment of B on [k, k + 1] for k = 0, . . . , Nε, and XNε+1 is the increment on the
last interval [[T ], T ]. In this case, X0 is sampled from Ψ(x0)π(x0), Xk is sampled from π̂(Xk−1, dxk)
for k = 1, . . . , Nε, and XNε+1 is sampled from π̂Nε,Nε+1(XNε , dxNε+1).

For k = 1, . . . , Nε, we take independent Bernoulli random variables ηk with parameter γ ∈ (0, 1)
as in the Doeblin condition, and consider the regeneration times

T0 = 0, Ti = inf{j > Ti−1 : ηj = 1}, i ≥ 1. (4.27)

We define the path increment in each regeneration block as

Xj :=
Tj+1−1∑
k=Tj

Xk(1), j = 0, 1, . . .
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Proposition 4.1. For any t > 0,
εBs/ε2 ⇒Ws

in C([0, t]) in (Ω,A, π), where Ws is a Brownian motion with the covariance matrix aeff :

aeff := γEπ[X1Xt
1]. (4.28)

It is a straightforward computation to check that aeff in (4.284.28) does not depend on γ. In fact,
the right side of (4.284.28) can be written as

aeff = lim
n→+∞

1
n
Eπ
[
(X1(1) + · · ·+Xn(1))(X1(1) + · · ·+Xn(1))t

]
. (4.29)

Proof. We show in Lemma A.1A.1 that X1 has zero mean and exponential tails, and further that the
random variables

Zi = max
s∈[Ti,Ti+1]

|Bs −BTi |, i ≥ 0,

have exponential tails, and for i ≥ 1 they are i.i.d. From the first fact, one obtains by Donsker’s
invariance principle that

Yn(t) := n−1/2
[nt]∑
j=1

Xi

converges weakly to a Brownian motion with diffusivity Eπ[X1Xt
1]. On the other hand, Tn/n converges

a.s. to 1/γ, on account of the independence of the increments Ti − Ti−1 and the fact that they have
mean 1/γ and are geometrically distributed. Setting

N ε
t = max{i : Ti < t/ε2} − 1,

we deduce from [55, Theorem 14.4] that the process

ε

Nε
t∑

i=1
Xi

converges in distribution to a Brownian motion with the diffusivity aeff given by (4.284.28). On the other
hand, we have

max
s≤t
|εBs/ε2 − ε

Nε
s∑

i=1
Xi| . ε

Nε
t +1

max
i=1
|Zi| →ε→0 0 , a.s.,

because of the exponential tails of the Zi. This completes the proof. �
With the invariance principle, we can show the convergence of the average of the solution.

Lemma 4.2. We have E[uε(t, x)]e−ζt/ε2 → ū(t, x) as ε→ 0.

Proof. We first show that
Eπ[|εBt2/ε2 − εBt1/ε2 |

2] ≤ C(t2 − t1) (4.30)

with a constant C > 0 independent of 0 ≤ t1 < t2 ≤ t and ε > 0. Define

K1,ε = min{i : t1
ε2 < Ti <

t2
ε2 }, K2,ε = max{i : t1

ε2 < Ti <
t2
ε2 },

and if there is no regeneration time in (t1/ε2, t2/ε
2), we define TK1,ε = t1/ε

2 and TK2,ε = t2/ε
2. We

decompose

εBt2/ε2 − εBt1/ε2 = (εBTK1,ε
− εBt1/ε2) + (εBTK2,ε

− εBTK1,ε
) + (εBt2/ε2 − εBTK2,ε

) := I1 + I2 + I3.
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For I2, we write

I2 = ε

K2,ε−1∑
j=K1,ε

Xj ,

and, conditioning on all the regeneration times, denoted by {Ti}, we obtain

Eπ[|I2|2 | {Ti}] = ε2
K2,ε−1∑
j=K1,ε

Eπ[X2
j |{Ti}].

Here, we used the fact that Xj are independent with zero mean conditioning on {Ti}. By Lemma A.1A.1,
we have

Eπ[X2
j |{Ti}] . (Tj+1 − Tj)2.

As K2,ε −K1,ε ≤ t2−t1
ε2 , it follows that

Eπ[|I2|2] . ε2Eπ
K2,ε−1∑
j=K1,ε

(Tj+1 − Tj)2 ≤ Cε2 t2 − t1
ε2 = C(t2 − t1).

Estimating the terms I1 and I3 is also straightforward using Lemma A.1A.1, finishing the proof of (4.304.30).
Next, note that by (4.244.24), we have

E[uε(t, x)]e−ζt/ε2 =ÊB,t/ε2 [u0(x+ εBt/ε2)] = Eπ[u0(x+ εBt/ε2)Gε(XNε)]
=Eπ[u0((x+ εBt/ε2−1/ε) + ε(Bt/ε2 −Bt/ε2−1/ε))Gε(XNε)].

Using (4.304.30), it suffices to consider

Eπ[u0(x+ εBt/ε2−1/ε)Gε(XNε)].

We apply Lemma A.2A.2 and Proposition 4.14.1 to see that

Eπ[u0(x+ εBt/ε2−1/ε)Gε(XNε)]− Eπ[u0(x+ εBt/ε2−1/ε)]→ 0,

and
Eπ[u0(x+ εBt/ε2−1/ε)]→ ū(t, x),

which completes the proof. �

4.3 Intersection of independent paths

The previous section shows that the tilted Brownian path behaves like a Brownian motion with an
effective diffusivity, and this has been used to prove the convergence of∫

Rd
E[uε(t, x)]e−ζt/ε2g(x)dx.

To control the variance of ∫
Rd
uε(t, x)e−ζt/ε2g(x)dx,

it is necessary to consider two independent tilted Brownian paths. We will show that the two paths
can not intersect too much – this is the goal of this section and is only true in dimensions d ≥ 3.
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For the sake of simplicity of presentation, we consider here only a homogeneous chain, assuming
that t/ε2 is an integer, to avoid dealing with the last step of the chain that has a different law.
A modification for a general t is straightforward. Given any Z0 = (X0, Y0) ∈ Ω2, we generate the
chain Zk = (Xk, Yk) according to the transition kernel π̂ defined in (4.214.21). The two components Xk

and Yk generate two paths, that we denote by ωX0 , ωY0 ∈ C([0,∞)), via (4.24.2). We recall that the
regeneration times are defined as

T0 = 0, Ti = inf{j > Ti−1 : ηj = 1}, i ≥ 1, (4.31)

where ηj are i.i.d Bernoulli random variables with parameter γ ∈ (0, 1).
Throughout the section, X0, Y0 are fixed, so we simply write π[·|X0, Y0] = π[·]. Define

`(x, y,X0, Y0) =
∫ ∞

0
1{|x+ωX0 (s)−y−ωY0 (s)|≤1}ds

as the total “nearby time” of ωX0 and ωY0 . We have the following result.

Proposition 4.3. In d ≥ 3, there exist constants C1, C2 > 0 such that

sup
x,y∈Rd

sup
X0,Y0∈Ω

π[`(x, y,X0, Y0) > t] ≤ C1e
−C2t. (4.32)

As a consequence, if λ < C2, then

sup
x,y∈Rd

sup
X0,Y0∈Ω

Eπ[eλ`(x,y,X0,Y0)] <∞.

Proof. The proof is divided into two steps.
Step 1. We show that there exists K > 0 such that

π[`(x, y,X0, Y0) > K] < 1
2 (4.33)

for all x, y,X0, Y0. Since

π[`(x, y,X0, Y0) > K] ≤ π[`(x, y,X0, Y0) > TN ] + π[TN > K],

with TN the N−th regeneration time, we only need to show

π[`(x, y,X0, Y0) > TN ] < 1
4 (4.34)

for some N independent of x, y,X0, Y0, and choose K so large that π[TN > K] < 1/4. To this end, it
suffices to show that

π[EN ] < 1
4 , where EN =

{
min
s≥TN

|x+ ωX0(s)− y − ωY0(s)| ≤ 1
}
. (4.35)

Recall that

ωX0(Tk)− ωY0(Tk) =
k−1∑
j=0

(Xj −Yj), Xj −Yj =
Tj+1−1∑
i=Tj

[Xi(1)− Yi(1)], k ≥ 1.

By the regeneration structure, Xj−Yj are i.i.d. random variables and are also independent of X0−Y0.
For any α > 0, define

Ak = {|x+ ωX0(Tk)− y − ωY0(Tk)| ≤ kα}, A(N) =
⋃
k≥N

Ak,
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and write
π[EN ] ≤π[A(N)] + π[EN ∩A(N)c] ≤

∞∑
k=N

π[Ak] + π[EN ∩A(N)c].

By the local limit theorem in [2424, Theorem on p. 1], we have

π[Ak] ≤ C
kαd

kd/2
= C

k( 1
2−α)d

(4.36)

for some constant C independent of x, y,X0, Y0. Thus, we can choose α < 1/2 − 1/d (in d ≥ 3)
and N so large that

∞∑
k=N

π[Ak] <
1
8 .

On the other hand, we have
π[EN ∩A(N)c] ≤

∑
k≥N

π[Bk],

with
Bk := Ack ∩ { min

s∈[Tk,Tk+1]
|x+ ωX0(s)− y − ωY0(s)| ≤ 1},

and Bk ⊂ Bk,X ∪Bk,Y with

Bk,X =


Tk+1−1∑
i=Tk

max
s∈[0,1]

|Xi(s)| >
kα

3

 , Bk,Y =


Tk+1−1∑
i=Tk

max
s∈[0,1]

|Yi(s)| >
kα

3

 .
By Lemma A.1A.1, the random variable

Tk+1−1∑
i=Tk

max
s∈[0,1]

|Xi(s)|

has an exponential tail, which implies that

π[EN ∩A(N)c] ≤
∑
k≥N

e−Ck
α
<

1
8

when N is large. The proof of (4.344.34) is complete.
Step 2. We define a sequence of stopping times as follows: τ0 = 0 and

τk = min
{
n > τk−1 :

∫ n+1

τk−1
1{|x+ωX0 (s)−y−ωY0 (s)|≤1}ds > K

}
, k ≥ 1,

with K chosen as in step 1. Let n = [t/K], and apply (4.334.33) to obtain

π[`(x, y,X0, Y0) > t] ≤ π[τn <∞] = π[τn <∞|τ1 <∞]π[τ1 <∞] ≤ 1
2π[τn <∞|τ1 <∞].

We consider

π[τ2 <∞|Xτ1 , Yτ1 ] = π
[ ∫ ∞

τ1
1{|x+ωX0 (s)−y−ωY0 (s)|≤1}ds > K|Xτ1 , Yτ1

]
,

and write for s ≥ τ1:

x+ ωX0(s)− y − ωY0(s) = x+ ωX0(τ1) + [ωX0(s)− ωX0(τ1)]− y − ωY0(τ1)− [ωY0(s)− ωY0(τ1)].
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Conditioning on Xτ1 , Yτ1 gives

(ωX0(τ1 + ·)− ωX0(τ1), ωY0(τ1 + ·)− ωY0(τ1)) law= (ω̃Xτ1 (·), ω̃Yτ1 (·)),

where ω̃ is independent of ω. Hence, we may apply (4.334.33) again to get

π
[ ∫ ∞

τ1
1{|x+ωX0 (s)−y−ωY0 (s)|≤1}ds > K|Xτ1 , Yτ1

]
= π

[ ∫ ∞
0

1{x+ωX0 (τ1)+ω̃Xτ1 (s)−y−ωY0 (τ1)−ω̃Yτ1 (s)}ds > K|Xτ1 , Yτ1

]
<

1
2

uniformly in x, y,Xτ1 , Yτ1 . Iterating the same argument gives

π[`(x, y,X0, Y0) > t] ≤
(1

2

)2
π[τn <∞|τ2 <∞] ≤ . . . ≤

(1
2

)n
,

which completes the proof. �

Corollary 4.4. In d ≥ 3, there exists λ0 only depending on φ, ψ such that for λ < λ0, we have

sup
x,y∈Rd

sup
(X0,Y0)∈Ω2

Eπ
[

exp
{
λ

∫ ∞
0

∫ ∞
0

Rφ(u1, u2)Rψ(x− y + ωX0(u1)− ωY0(u2))du1du2
}]

<∞.

Proof. As Rφ(u1, u2) = 0 if |u1 − u2| > 1 and Rψ is supported on {x : |x| ≤ 1}, we have∫ ∞
0

∫ ∞
0

Rφ(u1, u2)Rψ(x− y + ωX0(u1)− ωY0(u2))du1du2

.
∫ ∞

0

∫ ∞
0

1{|u1−u2|≤1}1{|x−y+ωX0 (u1)−ωY0 (u2)|≤1}du1du2.

Consider the region u2 > u1. After a change of variable and an application of Jensen’s inequality, we
have

exp
{∫ 1

0

( ∫ ∞
0

1{|x−y+ωX0 (u1)−ωY0 (u1+u2)|≤1}du1
)
du2

}
≤
∫ 1

0

(
exp

{∫ ∞
0

1{|x−y+ωX0 (u1)−ωY0 (u1+u2)|≤1}du1
})

du2.

It suffices to show that there exists λ0 > 0 so that for λ ∈ (0, λ0) we have

Eπ[eλ`(u2,x,y,X0,Y0)] is bounded uniformly in u2 ∈ [0, 1], x, y ∈ Rd, X0, Y0 ∈ Ω, (4.37)

where
`(u2, x, y,X0, Y0) =

∫ ∞
0

1{|x−y+ωX0 (u1)−ωY0 (u1+u2)|≤1}du1

is the total “nearby” time of ωX0 and the “shifted” ωY0 . We can repeat the proof of (4.324.32) verbatim
to establish an identical estimate for `(u2, x, y,X0, Y0), from which (4.374.37) follows immediately, for
0 < λ < C2. This completes the proof. �
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5 Proof of Proposition 3.23.2
Before proving Proposition 3.23.2, we discuss some heuristics of the convergence of Fε(r, y,M1,M2)
as ε→ 0 and M1,M2 →∞. Recall that

Fε(r, y,M1,M2) =
∫
R2d

∫
[0,1]2

ÊB,t/ε2
[
IεeJε(M1,M2)

] 2∏
i=1

φ(si)ψ(xi)ds1ds2dx1dx2, (5.1)

with

Iε = Iε(x1, x2, y, s1, s2, r) =
2∏
i=1

g(εxi + y− εBi
(t−r)/ε2−si)u0(εxi + y+ εBi

t/ε2 − εB
i
(t−r)/ε2−si). (5.2)

As shown in Proposition 4.14.1, the diffusively rescaled Brownian path εBi
s/ε2 behaves like W i

s , so we
expect that

Iε ⇒
2∏
i=1

g(y −W i
t−r)u0(y +W i

t −W i
t−r). (5.3)

in distribution. The exponential factor in (5.15.1) is

Jε(M1,M2) = Jε(M1,M2, x1, x2, s1, s2, r)

= λ2
∫ M1

−1

∫ M2

−1
Rφ(u1, u2)Rψ(x1 − x2 +B1

t−r
ε2

+u1
−B1

t−r
ε2
−s1 −B

2
t−r
ε2

+u2
+B2

t−r
ε2
−s2)du1du2,

(5.4)

and measures the “nearby” time of two independent paths. Since Rψ is compactly supported, most
of the contribution in (5.45.4) comes from u1, u2 ∈ [−1,M ], with some large M fixed, as indicated
by Corollary 4.44.4. Thus, Jε depends only on the microscopic increments of B1,2 around (t− r)/ε2

that are asymptotically decorrelated from both W 1,2
t−r and W 1,2

t . Thus, Jε should be asymptotically
independent from Iε, and the limit of Jε determines the effective variance ν2

eff in (3.123.12).
The goal of this section is to make the above heuristics precise. The proof is in two steps. We first

show the convergence of Fε for a fixed r ∈ (0, t), y ∈ Rd. Then, we prove a uniform bound on Fε.
The expression (5.45.4) shows that Jε depends on the trajectories of B1, B2 starting from (t− r)/ε2−

1, and for a fixed r ∈ (0, t), ε > 0, we choose

τ = t− r
ε2 −

[ t− r
ε2

]
.

Recall that T = t/ε2, Nε = [t/ε2 − τ ], and

B1 = {B1
s : s ∈ [0, t/ε2]} = (X0, . . . , XNε+1),

B2 = {B2
s : s ∈ [0, t/ε2]} = (Y0, . . . , YNε+1).

It is clear that Jε is determined by the increments of B1 and B2 for times larger than (t− r)/ε2 − 2,
that is, for n > Nε,r, with

Nε,r =
[ t− r
ε2

]
− 1.

To simplify the notation, we define

X̃ε = XNε,r , Ỹε = YNε,r .

We also note that by (4.204.20), we have

ÊB,t/ε2 [IεeJε ] = Eπ[IεeJεGε(XNε)Gε(YNε)].
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5.1 Pointwise convergence

We first explain how the effective variance νeff is defined. For any “starting pieces” X0, Y0 ∈ Ω, and
starting points x1, x2 ∈ Rd, as well as M1,M2 > 0, and s1, s2 ∈ [0, 1], we define

HM1,M2(X0, Y0, x1, x2, s1, s2) = Eπ
[

exp
{
λ2
∫ M1

−1

∫ M2

−1
Rφ(u1, u2)

×Rψ(x1 − x2 + ωX0(2 + u1)− ωX0(2− s1)− ωY0(2 + u2) + ωY0(2− s2))du1du2
}
| X0, Y0

]
.

(5.5)

The effective variance is then

ν2
eff =

∫
R2d

∫
[0,1]2

Eπ[H∞,∞(X̃, Ỹ, x1, x2, s1, s2)]
2∏
i=1

φ(si)ψ(xi)ds1ds2dx1dx2, (5.6)

with X̃ and Ỹ sampled, independently, from the invariant measure of π̂.
In the following, we fix x1, x2 ∈ Rd and s1, s2 ∈ [0, 1], and simply write HM1,M2(X0, Y0). The

next two lemmas show the convergence

Fε(r, y,M1,M2)→ ν2
eff |ḡ(t− r, y)ū(r, y)|2, as ε→ 0 and M1,M2 →∞, (5.7)

for fixed r ∈ (0, t), y ∈ Rd.

Lemma 5.1. There exists C > 0 independent of ε,M1,M2, x1, x2, s1, s2 such that

ÊB,t/ε2 [IεeJε(M1,M2)] ≤ C. (5.8)

Lemma 5.2. As ε→ 0 and M1,M2 →∞, we have

ÊB,t/ε2 [IεeJε(M1,M2)]→ Eπ[H∞,∞(X̃, Ỹ )]|ḡ(t− r, y)ū(r, y)|2.

Proof of Lemma 5.15.1. Since Iε and Gε are both bounded, we have

ÊB,t/ε2 [IεeJε ] . Eπ[eJε ].

We first condition on X̃ε, Ỹε and assume that

t− r
ε2 +Mi ≤ τ +Nε.

In this case, Jε is not related to XNε+1, YNε+1 (which are sampled differently), and we can re-
place B1, B2 with ωX̃ε , ωỸε , that is, the homogeneous chains started from X̃ε, Ỹε, respectively, with
the transition kernel π̂. It is easy to check that in this case

Eπ[eJε(M1,M2)|X̃ε, Ỹε] = HM1,M2(X̃ε, Ỹε). (5.9)

In the case when Jε involves the last increment XNε+1, YNε+1, it is clear that we still have (5.95.9),
with equality replaced by ..

By Corollary 4.44.4, we have
HM1,M2(X̃ε, Ỹε) . 1,

uniformly in x1, x2 ∈ Rd, s1, s2 ∈ [0, 1],M1,M2 > 0 and X̃ε, Ỹε ∈ Ω, and (5.85.8) follows. �

Proof of Lemma 5.25.2. We divide the proof into three steps.
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Step 1. We claim that for any δ > 0, there exists a universalM > 0 such that if min(M1,M2) > M ,
we have

ÊB,t/ε2
[
|eJε(M1,M2) − eJε(M,M)|

]
< δ. (5.10)

First, since Rφ, Rψ ≥ 0, Gε is bounded and Rφ(u1, u2) is supported on |u1 − u2| ≤ 1, we have

ÊB,t/ε2
[
|eJε(M1,M2) − eJε(M,M)|

]
. Eπ

[
eJε(M1,M2)1{E1(M)>0}

]
, (5.11)

with

E1(M) = sup
M1,M2>M

∫ M1

M−1

∫ M2

M−1
Rφ(u1, u2)Rψ(x1−x2+B1

t−r
ε2

+u1
−B1

t−r
ε2
−s1−B

2
t−r
ε2

+u2
+B2

t−r
ε2
−s2)du1du2.

After applying the Cauchy-Schwarz inequality to the r.h.s. of (5.115.11) and using Lemma 5.15.1, we only
need to consider π[E1(M) > 0], which is essentially the same as the probability of the “nearby time”
of B1, B2 being greater thanM . By the same argument as in the proof of Lemma 5.15.1, Proposition 4.34.3
and Corollary 4.44.4, we have π[E1]→ 0 as M →∞, which proves (5.105.10).

Step 2. We show that

ÊB,t/ε2 [(Iε − Ĩε)eJε(M,M)]→ 0, as ε→ 0, (5.12)

where

Ĩε =
2∏
i=1

g(y − εBi
(t−r)/ε2−ε−α)u0(y + εBi

t/ε2−ε−α − εB
i
T εM

),

with
T εM = min{Ti : t− r

ε2 + ε−α ≤ Ti ≤
t

ε2 − ε
−α},

and the convention that T εM = t/ε2 − ε−α if there is no regeneration time in the interval [(t− r)/ε2 +
ε−α, t/ε2 − ε−α]. As Gε and Jε(M,M) are bounded, we have

ÊB,t/ε2 [|Iε − Ĩε|eJε(M,M)] . Eπ[|Iε − Ĩε|]. (5.13)

By Proposition 4.14.1, we have the convergence in distribution of

(εBi
t−r
ε2
−ε−α , εB

i
t−r
ε2
−si
, εBi

T εM
, εBi

t
ε2
−ε−α , εB

i
t
ε2

)⇒ (W i
t−r,W

i
t−r,W

i
t−r,W

i
t ,W

i
t ), (5.14)

which implies that the r.h.s. of (5.135.13) goes to zero as ε→ 0.
Step 3. We prove the convergence of

ÊB,t/ε2 [ĨεeJε(M,M)]→ Eπ[HM,M (X̃, Ỹ )]|ḡ(t− r, y)ū(r, y)|2, (5.15)

where X̃, Ỹ are sampled independently from the invariant measure of π̂. First, we have

ÊB,t/ε2 [ĨεeJε(M,M)] = Eπ[ĨεeJε(M,M)Gε(XNε)Gε(YNε)].

Note that, for ε sufficiently small (depending onM and r), both Ĩε and Jε(M,M) depend only on {Bi
s :

s ≤ t/ε2−ε−α}. Lemma A.2A.2 implies that it suffices to prove the convergence of Eπ[Ĩε exp{Jε(M,M)}].
We write

Eπ[ĨεeJε(M,M)] = Eπ
[ 2∏
i=1

g(y − εBi
(t−r)/ε2−ε−α)HM,M (X̃ε, Ỹε)

]
Eπ
[ 2∏
i=1

u0(y + εBi
t/ε2−ε−α − εB

i
T εM

)
]
.

(5.16)
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Here, we used the independence of the increments after the regeneration time T εM to split off the
second factor, and the separation between the time (t− r)/ε2 − ε−α and the times appearing in the
integration in Jε(M,M) in the first factor. By the weak convergence in (5.145.14), we have

Eπ
[ 2∏
i=1

u0(y + εBi
t/ε2−ε−α − εB

i
T εM

)
]
→ |ū(r, y)|2.

It remains to consider the first factor in the right side of (5.165.16). We claim that as ε→ 0

Eπ
[ 2∏
i=1

g(y− εBi
t−r
ε2
−ε−α)HM,M (X̃ε, Ỹε)

]
−Eπ

[ 2∏
i=1

g(y− εBi
t−r
ε2
−ε−α)

]
Eπ
[
HM,M (X̃, Ỹ )

]
→ 0. (5.17)

The proof of (5.175.17) is the same as the proof of Lemma A.2A.2, as HM,M is bounded and X̃ε, Ỹε
are the increments of B1, B2 on the interval [(t − r)/ε2 − 2, (t− r)/ε2 − 1]. We apply the weak
convergence (5.145.14) again to get

Eπ
[ 2∏
i=1

g(y − εBi
(t−r)/ε2−ε−α)

]
→ |ḡ(t− r, y)|2

and complete the proof of (5.155.15).
Combining steps 1-3 and sending δ → 0, completes the proof. �

5.2 Proof of the uniform bound (3.133.13)

We now prove the uniform bound (3.133.13) in Proposition 3.23.2. By Lemma 5.15.1, we have

ÊB,t/ε2 [|eJε(M1,M2)|2] . 1,

so by the Cauchy-Schwarz inequality,

|Fε(r, y,M1,M2)| .
∫
Rd

∫
[0,1]

ÊB,t/ε2 [|g(εx+ y − εB(t−r)/ε2−s)|]φ(s)ψ(x)dsdx.

Lemma 5.3. For any k ∈ Z≥1, there exists Ck such that

ÊB,t/ε2 [1{|εB(t−r)/ε2−s|>M}] ≤
Ck
M2k (5.18)

for all M > 0.

By the above lemma and the fact that g ∈ C∞c (Rd), |x| ≤ 1, we have

ÊB,t/ε2 [|g(εx+ y − εB(t−r)/ε2−s)|] . 1 ∧ 1
|y|k

,

which implies (3.133.13) and finishes the proof of Proposition 3.23.2.
Proof of Lemma 5.35.3. Since Gε is bounded, it suffices to prove the same estimate for

π[|εB(t−r)/ε2−s| > M ].
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We will assume r = 0, s = 0 to simplify the notation and the proof of the general case is the same.
First, we write Bt/ε2 as a sum of independent zero-mean random variables using the regeneration
structure. Let τ = 1 and Nε = [t/ε2]− 1 and set

Bt/ε2 =
Nε∑
k=0

Xk(1) +Bt/ε2 −B[t/ε2].

We also write

Bt/ε2 =
Kε∑
j=0

Xj ,

where

Xj =
{ ∑Tj+1−1

k=Tj Xk(1), j = 0, . . . ,Kε − 1,
Bt/ε2 −BTKε , j = Kε,

and Kε = max{j : Tj ≤ Nε}. Since Xj are independent random variables with zero mean conditioning
on {Tj}Kεj=0, the sum

Mk =
k∑
j=0

Xj , k = 0, . . . ,Kε,

is a martingale. By the Chebyshev and martingale inequalities, we have

π
[
|εMKε | > M | {Tj}Kεj=0

]
≤ 1
M2kEπ

[
|εMKε |2k | {Tj}Kεj=0

]
.

1
M2kEπ

[∣∣∣ε2
Kε∑
j=0

X2
j

∣∣∣k | {Tj}Kεj=0

]
.

Since Kε ≤ Nε, we only need to show that

ε2kEπ
[∣∣∣ Nε∑
j=0

X2
j

∣∣∣k] . 1. (5.19)

If we expand |
∑Nε
j=0 X2

j |k, the number of terms is smaller than (t/ε2)k, and each term is of the form∏k
l=1 X2

jl
for some jl = 0, . . . , Nε, whose expectation is uniformly bounded, in light of Lemma A.1A.1.

Thus, (5.195.19) holds and the proof is complete. �

A Some technical lemmas

A.1 Proof of Lemma 3.13.1

Proof. Recall that we need to prove that

ζT = c1T + c2 + o(1), as T → +∞. (A.1)

We employ the setup of Section 44. The proof is divided into three steps, in which we prove that (A.1A.1)
holds for T ∈ N,Q,R.

Step 1, T ∈ N. In the construction of the chain, set τ = 1. As in Section 4.14.1, we have

P̂T (dω) = Ψ(x0)π(dx0)
(
T−2∏
k=0

π̂(xk, xk+1)
)

Ψ−1(xT−1)ρT−1eTζ1−ζT .
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Using the normalization (4.104.10) gives,

Eπ[Ψ−1(XT−1)] = eζT−Tζ1ρ1−T .

By (4.194.19), we have
eζT−Tζ1ρ1−T = eζT−Tζ1−(T−1) log ρ → Eπ[Ψ−1(X̃)]

exponentially fast as T →∞, where X̃ is sampled from the invariant measure of π̂. This proves (A.1A.1)
for integer T with

c1 = ζ1 + log ρ, c2 = log ρ−1 + logEπ[Ψ−1(X̃)]. (A.2)

We note that the convergence rate of the remainder o(1) → 0 as T → ∞ only depends on the
estimates on Ψ and γ which are determined by ‖I‖L∞ .

Step 2, T ∈ Q. In the construction of the chain, the choice of the length-one increment is arbitrary
– we can take any length that is greater than one and follow the same construction. Take the increment
of length r ∈ Q such that r ∈ (1, 2) (then the corresponding I(x, y) is uniformly bounded), so there
exist m1,m2 ∈ N such that rm1 = m2. For any k ∈ N, the same proof as in Step 1 shows that

ζrm1k = c1,rm1k + c2,r + o(1)

for some c1,r, c2,r. Since
ζm2k = c1m2k + c2 + o(1)

from step 1, we conclude that c1,r = c1r and c2,r = c2 by sending k →∞. Thus, for any r ∈ Q, we
have

ζrk = c1rk + c2 + o(1),

with o(1) → 0 as k → ∞, uniformly in r ∈ (1, 2). Choosing r = T/[T ], we see that (A.1A.1) holds
for T ∈ Q.

Step 3, T ∈ R. As ζT is continuous in T , we simply take Tn ∈ Q so that Tn → T and ζTn → ζT .
Since

ζTn = c1Tn + c2 + o(1)

with o(1)→ 0 as Tn →∞, the proof is complete. �

Lemma A.1. Assuming X0 ∼ π(dx0), Xk+1 ∼ (1−γ)−1(π̂(Xk, dxk+1)−γπ(dxk+1)) for k ≥ 0, and θ
is an independent geometric random variable with parameter γ. Then, for all k ≥ 0, Eπ[Xk(1)] = 0
and there exists c > 0 such that

π
[

max
s∈[0,1]

|Xk(s)| ≥ t
]
. e−ct

2
, (A.3)

π
[ θ∑
k=0

max
s∈[0,1]

|Xk(s)| > t
]
. e−ct. (A.4)

Proof. For any measure ν0 on Ω that is symmetric, so that ν0(A) = ν0(−A) with −A := {f : −f ∈ A},
set

ν1(A) =
∫

Ω
ν0(dx)π̂(x,A).

Recall that ∫
Ω
eI(x,y)Ψ(y)π(dy) = ρΨ(x).
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Since I(x, y) = I(−x,−y), π is symmetric, and Ψ is the unique eigenvector corresponding to ρ
satisfying (4.104.10), we have that Ψ(−x) = Ψ(x), hence π̂(x,A) = π̂(−x,−A) and ν1 is symmetric.
Thus, the distribution of Xk is symmetric, and

Eπ[Xk(1)] = −Eπ[Xk(1)] = 0.

For the Gaussian tail in (A.3A.3), we note that

sup
x∈Ω

π̂(x, dy)− γπ(dy)
1− γ . sup

x∈Ω
π̂(x, dy) . π(dy). (A.5)

As π is the Wiener measure on C([0, 1]) tilted by the bounded factor

exp
{1

2λ
2
∫

[0,1]2
R(s− u, ω(s)− ω(u))dsdu− ζ1

}
,

there exists c > 0 such that

π[ max
s∈[0,1]

|Xk+1(s)| ≥ t | Xk] . π[ max
s∈[0,1]

|X0(s)| ≥ t] . e−ct2 (A.6)

uniformly in Xk. After averaging with respect to Xk, we obtain (A.3A.3).
To prove (A.4A.4), we note that

π[θ > [αt]] . (1− γ)αt

for any α > 0. By the Chebyshev inequality, we have

π
[ [αt]∑
k=0

max
s∈[0,1]

|Xk(s)| > t
]
≤ e−C1tEπ

[
exp

{
C1

[αt]∑
k=0

max
s∈[0,1]

|Xk(s)|
}]

for any C1 > 0. Using (A.5A.5) again, we have

e−C1tE
[

exp
{
C1

[αt]∑
k=0

max
s∈[0,1]

|Xk(s)|
}]
. e−C1tC

[αt]
2

for some constant C2 > 0 independent of α. Taking α < C1/logC2 finishes the proof. �

Lemma A.2. If F : Ωt/ε2 → R is bounded and only depends on X0, . . . , XMε, with Nε −Mε →∞,
then

|Eπ[F (B)Gε(XNε)]− Eπ[F (B)]| → 0 (A.7)
as ε→ 0.

Proof. First, we have

|Eπ[F (B)Gε(XNε)]− Eπ[F (B)]| = |Eπ[F (B)Eπ[Gε(XNε)− 1|XMε ]]| . Eπ[|Eπ[Gε(XNε)|XMε ]− 1|].

Since Gε is bounded, by (4.194.19), we have

|Eπ[Gε(XNε)|XMε ]− Eπ[Gε(X̃)]| → 0 as ε→ 0,

uniformly in XMε . Here, X̃ is sampled from the invariant measure of π̂. Since Eπ[Gε(XNε)] = 1, we
know that Eπ[Gε(X̃)]→ 1 as ε→ 0. Hence,

Eπ[Gε(XNε)|XMε ]− 1→ 0, as ε→ 0,

which completes the proof. �
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Lemma A.3. There exists C > 0 independent of ε such that
∑
j

√
E[|X εj |4] ≤ C.

Proof. Recall that
X εj = 1

εd/2−1

∫
Iβ,j

∫
Rd
Z̃εt (r, y)dW (r, y),

and by the martingale inequality, we have

E[|X εj |4] . 1
ε2d−4

∫
I2
β,j

∫
R2d

E[|Z̃εt (r, y)Z̃εt (r′, y′)|2]dydy′drdr′.

For E[|Z̃εt (r, y)Z̃εt (r′, y′)|2], we repeat the calculation in the proof of Lemma 2.22.2. To simplify the
notation, we let r = r1 = r2, r

′ = r3 = r4 and y = y1 = y2, y
′ = y3 = y4 and consider

E
[ 4∏
i=1

Z̃εt (ri, yi)
]

=
∫
R4d

EÊB,t/ε2
[ 4∏
i=1

g(xi)u0(xi+εBi
t/ε2)Φε

t,xi,Bi
(ri, yi)e

λM̃ε
t,xi,B

i (ri)−
1
2λ

2〈M̃ε
t,xi,B

i 〉ri
]
dx.

As in the proof of Lemma 2.22.2, we obtain

1
ε2d−4

∫
I2
β,j

∫
R2d

E[|Z̃εt (r, y)Z̃εt (r′, y′)|2]dydy′drdr′

≤
∫

[0,t]2

∫
R6d

∫
[0,1]4

1{r/ε2∈Iβ,j}1{r′/ε2∈Iβ,j}ÊB,t/ε2 [IeJ ]
4∏
i=1

φ(si)ψ(xi)dsdxdydy′drdr′,

where

I =
4∏
i=1
|g(εxi + yi − εBi

(t−ri)/ε2−si)u0(εxi + yi + εBi
t/ε2 − εB

i
(t−ri)/ε2−si)|,

J =λ2 ∑
1≤i<l≤4

∫ 1/2εα

−1

∫ 1/2εα

−1
Rφ(ui, ul)

×Rψ(xi − xl + yi − yl
ε

+Bi
t−ri∧rl
ε2

+ui
−Bi

t−ri
ε2
−si
−Bl

t−ri∧rl
ε2

+ul
+Bl

t−rl
ε2
−sl

)duidul.

By the same proof as that of (3.133.13), we have

1
ε2d−4

∫
I2
β,j

∫
R2d

E[|Z̃εt (r, y)Z̃εt (r′, y′)|2]dydy′drdr′ .
(∫ t

0
1{r/ε2∈Iβ,j}dr

)2
.

The proof is complete. �
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