Relatively open and closed sets

Let \(U \subset \mathbb{R}^n \) be any set and let \(V \subset U \). Recall that \(V \) is relatively open in \(U \) if for each \(v \in V \) there exists \(\epsilon > 0 \) such that \(B_\epsilon(v) \cap U \subset V \). We say that \(V \) is relatively closed in \(U \) if for any sequence \(\{v_n\} \subset V \) with \(\lim v_n = u \in U \) we have \(u \in V \).

1.) Let \(U = [0, 1) \subset \mathbb{R} \). Prove that \(V = [0, \frac{1}{2}) \) is relatively open in \(U \) and \(V' = [\frac{1}{2}, 1) \) is relatively closed in \(U \).

2.) Let \(V \subset U \). Prove that \(V \) is relatively open in \(U \) if and only if \(U \setminus V \) is relatively closed in \(U \). The set \(U \setminus V \) is the relative complement of \(V \) in \(U \).

Suppose \(f : U \rightarrow V \) with \(U \subset \mathbb{R}^n \) and \(V \subset \mathbb{R}^m \). If \(W \subset V \) we define the pre-image of \(W \) in \(U \) to be the set\(^1\)

\[f^{-1}(W) = \{ u \in U : f(u) \in W \} \]

3.) Let \(f : U \rightarrow V \) be a continuous map and let \(W \subset V \). Prove that if \(W \) is relatively open (respectively, rel. closed) in \(V \) then \(f^{-1}(W) \) is relatively open (closed) in \(U \).

Recognizing sub-manifolds

4.) Which of the following is a \(C^1 \) sub-manifold:

i. The point \(x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n \)?

 ii. The closed ball \(\overline{B}_1(0) = \{ x \in \mathbb{R}^n : \|x\| \leq 1 \} \)?

 iii. The set \(S \subset \mathbb{R}^2 \), \(S = \{ (x, y) : y > x^2 \} \)?

 iv. The figure 8 curve \(C \subset \mathbb{R}^2 \) defined by \(C = \{ (\sin t, \sin 2t) : t \in [0, 2\pi) \} \)?

\(^1\)Note that this definition of the pre-image \(f^{-1}(W) \) is defined even if \(f \) does not have an inverse function \(f^{-1} : W \rightarrow U \), i.e. \(f \) need not be 1-to-1 for this to make sense.
Max-min problem

5.) Find the global maximum and minimum of \(P(x) = x_1^3 + x_2x_3 \) on the ball \(\|x\| \leq 1 \).

Real analysis odds and ends

6.) The intermediate value theorem states: Let \(f : [a, b] \to \mathbb{R} \) continuous with \(f(a) < f(b) \). Then for each \(y \in (f(a), f(b)) \) there exists \(c \in (a, b) \) with \(f(c) = y \). Prove this by the method of bisection.

7.) Let \(a < b \) and suppose \(f : [a, b] \to \mathbb{R} \) is continuous and 1-to-1. Prove that \(f \) is either strictly increasing or strictly decreasing.

8.) Prove that the function

\[
 f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}
\]

is differentiable at each point \(x \in \mathbb{R} \), but that \(f(x) \) is not \(C^1 \) on \(\mathbb{R} \).

Power series

9.) Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be a power series with radius of convergence \(\rho > 0 \) about 0. Prove the term-by-term integration formula:

\[
 F(x) := \int_0^x f(t)dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}, \quad |x| < \rho.
\]

Show that this power series for \(F \) also has radius of convergence \(\rho \).

10.) (Bonus) A well-known formula states that \(\pi \approx 4 = 1 - \frac{1}{3} + \frac{1}{5} - \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \), but this is a relatively slow way of computing \(\pi \). Prove that\(^2\)

\[
 \left| \frac{\sqrt{3}\pi}{6} - \sum_{n=0}^{N-1} \frac{(-1/3)^n}{2n+1} \right| \leq \frac{1}{3N(2N+1)}.
\]

How would you estimate \(\sqrt{3} \) rapidly?

11.) (Double bonus) Prove convergence of the improper integral \(\int_{-\infty}^{\infty} \sin(x) \sin(x^2)dx \).

\(^2\)Hint: you may assume \(\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \).