More Schwarz class problems

September 6, 2011

Problem 1. Prove that any separately continuous multilinear form on $F_1 \times \ldots \times F_n$, is jointly continuous if all the F_i are Fréchet spaces.

Problem 2. Let U_a be translation by a as an operator on $S'(\mathbb{R})$. Let d/dx be the derivative operation on S'. Prove that $(U_a - 1)a^{-1}$ converges pointwise in the $\sigma(S', S)$ topology to d/dx.

Problem 3. Let δ be the point mass at zero. Prove directly that the distributional derivative δ' satisfies $\delta' \in S'$. Prove that δ' does not come from a measure.

Problem 4.

a. Let $\phi \in S$ and let ϕ_y be the function in S defined by $\phi_y(x) = \phi(x - y)$. Prove that the map $y \mapsto \phi_y$ is a C^∞ function from \mathbb{R}^n to $S(\mathbb{R}^n)$ with $D^\alpha(\phi_y) = (-1)^\alpha(D^\alpha\phi)_y$. To say $y \mapsto \phi_y$ has derivative $\partial \phi_y / \partial y_j$ as a function with values in S means

$$\lim_{y \to y_0} \frac{|y - y_0|}{N} \left[\phi_y (\phi_y - \phi_{y_0}) + \sum_{j=1}^{N} \frac{\partial}{\partial y_j} (\phi_y) \cdot (y - y_0)_j \right] = 0$$

in the topology of S.

b. Let $T \in S'$. Let $\phi \in S$. Define T^ϕ to be the function, $T^\phi(y) = T(\phi_y)$. Prove that $T^\phi \in C^\infty$.

c. Let $\phi_n \in S$ with $\phi_n \to \delta$ in the weak topology on S'. Prove that $T^\phi_n \to T$ for all $T \in S'$ in the weak topology on S'.

d. Prove that S is dense in S'.

Problem 5. Prove that

$$\lim_{\epsilon \to 0} \frac{\epsilon}{(x - x_0)^2 + \epsilon^2} = \pi \delta(x - x_0)$$

in the sense of distributions.