Hilbert space problems

July 13, 2011

Problem 1. If M is a closed subspace of Hilbert space H, prove that $(M^\perp)^\perp = M$. What if M is not closed?

Problem 2. Prove that Hilbert space H is separable if and only if it contains a maximal orthonormal set which is at most countable.

Problem 3. Let u_1, u_2, \ldots be an orthonormal set in Hilbert space H, and let δ_n be a sequence of positive numbers. Prove that the set

$$\left\{ \sum_n c_n u_n : |c_n| < \delta_n \right\}$$

is compact if and only if $\sum_n \delta_n^2 < \infty$.

Problem 4. Suppose $\{a_n\}$ is a sequence of positive numbers such that $\sum a_n b_n < \infty$ whenever b_n is a sequence of positive numbers with $\sum b_n^2 < \infty$. Prove that $\sum a_n^2 < \infty$.

Problem 5. If H_1 and H_2 are two Hilbert spaces, prove that one of them is isomorphic to a subspace of the other.

Problem 6. Find a closed subset $E \subset L^2(\mathbb{T})$ that contains no element of smallest norm.

Problem 7. Suppose f is a continuous function on \mathbb{R} with period 1. Prove that

$$\lim_N \frac{1}{N} \sum_{j=1}^N f(\alpha j) = \int_0^1 f(t) dt$$

for all irrational numbers α.

Problem 8. Let C be a closed convex set in a Hilbert space H. Prove that C contains a unique element of minimal norm.

Problem 9. Let v_1, \ldots, v_N be a finite sequence of unit vectors in a Hilbert space H. Suppose that there exists a number $a \in (0, 1)$ such that

$$\langle v_i, v_j \rangle \leq -a, \quad \forall \ i \neq j.$$

Find an upper bound for N in terms of a.
Problem 10. Let \(x_1, x_2, \ldots \) be a sequence of positive numbers and set \(s_n = \frac{1}{n} \sum_{j \leq n} x_j \). Prove that for some fixed constant \(C \) (independent of \(x \) and \(N \))

\[
\sum_{n \leq N} s_n^2 \leq C \sum_{n \leq N} x_n^2.
\]

Problem 11. Let \(f \in C^0([\alpha, \beta]) \), where \(0 < \alpha < \beta < a \). For each \(n = 1, 2, \ldots \), define

\[
P_n(x) = \frac{\int_{\alpha}^{\beta} f(u)[1 - (u - x)^2]^n \, du}{\int_{-1}^{1}(1-u^2)^n \, du}.
\]

Show that \(P_n(x) \) is a polynomial of degree at most \(2n \) and that for any closed subinterval \([a, b] \subset (\alpha, \beta)\), \(P_n \to f \) uniformly.

Problem 12. Let \(H \) be a separable Hilbert space with an orthonormal basis \(\{x_n\} \). Let \(\{y_n\} \) be a sequence in \(H \) and prove that the following two statements are equivalent.

1. \(\lim_{n \to \infty} (x, y_n) = 0 \) for all \(x \in H \).
2. \(\lim_{n \to \infty} (x_m, y_n) = 0 \) for each \(m = 1, 2, \ldots \), and \(\{\|y_n\|\} \) is bounded.

Problem 13. Let \(H \) be a separable infinite dimensional Hilbert space, and suppose that \(e_1, e_2, \ldots \) is an orthonormal system in \(H \). Let \(f_1, f_2, \ldots \) be another orthonormal system which is complete, i.e. such that the closure of the span of the \(f_j \) is all of \(H \).

a. Prove that if \(\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < 1 \), then \(\{e_n\} \) is also a complete orthonormal system.

b. Suppose only that \(\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < \infty \). Prove that it is still true that \(\{e_n\} \) is a complete orthonormal system. (Hint: choose \(N \) so that \(\sum_{n=N+1}^{\infty} \|e_n - f_n\|^2 < 1 \); consider the subspace \(S \) spanned by the vectors \(\tilde{f}_n = f_n - \sum_{k=n+1}^{\infty} (f_n, e_k)e_k \), for \(n \leq N \).)