Solutiom

Sec‘ff:m 2.6

10. With P =1 — ysinx and Q = cos x, we see that
ar sinx—aQ

dy T oax’
so the equation is exact. We solve by setting

F(x,y) = f P(x, y)dx = j(l — ysinx)dx
=x+ ycosx + ¢(y).
To find ¢, we differentiate

3F ,
Qx,y) = o =cosx +¢'(y).

Thus ¢ = 0, s0 we can take ¢ = 0. Hence the
solution is F(x,y) =x + ycosx = C.

14 Not exacl .
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4. The right hand side of the cquation is f(s, @) =
wsinw + s, which is continuous in the whole plane.
df/8w = sinw + wcosw is also continuous in the
whole plane. Hence the hypotheses are satisfied and
the theorem guarantees a unique solution.

10. The y-derivative of the right hand side f{t.y) =
ty'/2 is ty~*/2/2 which is not continuous at y = 0.
Hence the hypotheses of Theorem 7.16 are not sat-
isfied.

[ —

26. The equation x' = f(1, x) satisfies the hypotheses
of the uniqueness theorem. Notice that x;(#/2) =
x2(nf2) = 0. If they were both solutions x' =
f@ . x)neart = x/2,ﬂvenbyt!neuniqmnesstt}eo-
rem they would have to be equal everywhere. Since
they are not, they cannot both be solutions of the
differential equation.
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16. (a) Theright hand side of the equationis f(¢, x) =
{(x — Dcost. Thus 3f/3x = cost, and
max |3f/8x| = max | cos#] = 1. Hence Theo-
rem 7.15 predicts that [x(¢) — y(1)] < |x(0) —
y(0)le¥.

(b) The equation is separable and linear, and the
solutiops are x(¢) = 1 — ™' and y(1) = 1 —
9¢™27 /10. Hence the separationis x(#)—y(t) =
e /10. Since sint < |¢], we see that

(D)~ y()] = € /10 < &"1/10 = |x(0)—y(0)e*'.

(c) Since sinr < |[z] except at ¢ = 0, we have
Ix(t) — y(@)] < £*1/10, except atz = 0.

SAQ,Cj Lrn 2 C?

8. Note that the graph of f(y) intercepts the y-axis at
¥ =0and y = 2. Consequenily, y =Oand y = 2
are equilibrium points (£(0) = O and f(2) = 0) and
»(#) = 0 and y(r) = 2 are equilibrium solutions,
shown in the following figure. The solution y = 0

is asymptotically stable and y = 2 is unstable.
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9. Since f{y)hdszerosaty = —1 and y = 1, these
are equilibrium points. Correspondingly, y(t) = —1
and y(¢) = 1 are equilibrium solutions, and are plot-
ted in the following figure. Both are unstable.
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20. (i) 1n this case, f(y) = (y + 1(y? — 9) factors as
f(¥) = o+ D{y—3)(y+3), whose graph is shown

in the next figure.

afO=0+1

(ii) The phase line is easily captured from the previ-
ous figure, and is shown in the next figure.
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(iif) The phase line in the second figure indicates
that sohmtions decrease if y < —3, increase for

-3 <y < —1,decrease if -1 < y < 3, and
increase for y > 3. This allows us to easily con-
struct the phase portrait shown in the ry plane in
the next figure. Note the unstable equilibriam so-
lution, y(f) = —3, the stable equilibrium solution,
y(t) = —1, and the unstable equilibrium solution,

y)y=3.
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28. Wehave the equation x’ = f(x) = x(x — 1}(x +2).
The equilibrium points are at x = 0, 1, and —2,
where f(x) = 0. We have f'(x) = 3x2 +2x — 2.
Since f'(0) = -2 < 0, x = 0 is asymptotically
stable. Because f'(1) = 3 > 0, x = 1 is unstable.
Finally, because f'(—2) =2 > 0, x = —2is also
unstable.
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2. The equation of the Malthusian model is P(1r) =
Ce’. Apply the cell counts to solve for r and
C. P(1) = 1000, so Ce’ = 1000, ie. r =
In(1000/C). Also, P(2) = 3000, so €e¥ = 3000,
ie. r = In(3000/C). Setting these equal and solv-
ing, one obtains C = 1000/3, Substituting C into
r = In(1000/C) gives that r = In3 ~ 1.0986. In
addition P(0) = C = 1000/3.

12. ‘The c‘:arrying capacity K = 20, 000, and the initial
condition P, = 1000, and it is given that P(10) =
2000. Using equation (1.13), one obtains

2000 — (20000)(1000) '
1000 + (19000)e—10r

Solving givesr = —(An(9/19))/10 = 0.0747. After

25 hours, the population is
_ (20000)(1000)
P29 = 1560+ (19000)ezswars ~ 084 -

Now, find ¢ so that P(t) = K/2 = 10000. This
gives
ety . 2000 — 1000
19000 °

That is, £ = 10(—1In(19))/(In(9/19)) =5 39.4055.

18. We will use days and 1000 individuals as our units.
We are given that the carrying capacity is K = 10,
P(0) =1, and with r, = 2.3/24,

KPR
Py + (K ~ P)e~rn’

Solving for r, we get r = 8.4619.

The harvesting rate during the last four hours of each
day is 1500/hr = 36,000/day. Hence the harvesting
rate is

2=P) =

R() = 0, inthe first 20 hours
~ 136, inthe last 4 hours
of each day. Using a square wave function to model

this in our solver we get the following graph of the
solution.
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The population at the end of each day is approxi-
mately 10,000.
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4. Divide both sides of ty” + (sint)y’ = 4y — cos 5t
by t, then rearrange to obtain
,  sinz
y + "T)' TS T
Compare this with
Y+ p()y + a0y = g(n),

and note that p(f) = (sin#)/t, g(t) = —4/t, and

—— g#) = —(cos5t)/t. Hence, the equation is linear

and inhomogeneous.

12. ‘The period of the driving force is 4 seconds. Thus,

the circular frequency is
27 2x 2w
w=—T— T -2—rad/s.

Because the amplitude is A = 0.25 m, and the spring
is initially displaced 0.25 m downward (remember,
upward is negative) by the driving force, the driving
force can be described with

t
F(t) = 025 cos "—2-

Now, m = 5kg, £ = 65.3N/m, and the damping
force is given by R(v) = —0.125v. This makes the
damping constant & = 0.125. Thus, the equation

my” + uy + ky = F(1)

becomes
wt

5y" 4+ 0.125y" 4+ 65.3y = 0.25cos —
2

From Exercise 10, the initial conditions are y(0) =
—0.36 and y'(0) = 0.45.

14. If y;(t) = cos 2t, then
¥ + 4y = (cos 2r)” + 4(cos 2r)
= —4cos2t +4cos2t
=0.
If y;(¢t) = sin2t¢, then
¥y + 4y = (sin 21)" + 4(sin 2r)
= —4sin2t 4 4sin2t
=0.
Finally, if y(¢) = C; cos 2t + Cz sin2t, then
y” + 4y = (C; cos 2t + Cy sin 21)"
+4(Cycos2t + C25in2s)
=—4C1¢082t—4€22‘
+4C)cos2t + 4C;8in 2t
=0.



