1%

masm———

2. (@ I xi(1) = (sin2¢,2c0s26)7, then x{(f) =
(2cos2t, —4sin2:)T and

0 1\ .. (0 1\ sin
(—4 o) i) = (—4 0) (2 cos 2:)
_ [ 2cos2t
=\ ~4sin2¢ )"

s0 X| is a solution of

. {0 1
xi={_4 o)*

Similarly, if x,(f) = (cos2¢, —2sin 2¢)7, then
X5(t) = (—2sin2t, —4 cos 2t)T and

0 1 _(0 1 cos 2t
(—4 0) *2() = (—4 0) (—2 sin 2:)
_ [ —2sin2t
T \—4cos2t )’

S0 X; is also a solution of

(0 1
“\-4 o)%

18. Ify"” 4 2y" — 5y’ — 6y = 0, then the characteristic
equation is p(A) = A3 4242 — 51 — 6. Note that —1
is aroot of p, so

PR =R+ DR +1-6)
=@A+DA+3)R-2).

Thus, the characteristic polynomial has roots —1,
—3, and 2, leading to the general solution

y(t) = Cre™" + Cre™ + Cse®.

12. If y; = cos 3¢, then
yi = —3sin 3z,

Thus,

To show independence, we need only show that
the functions are independent at one value of .

However,

1

are clearly independent (x2(0) is not a multiple
of %1(0)).
(b) Because

x(f) = Cixi (1) + Co%2 ()
sin 2¢ cos 2t
=G (2 cos 2t) +C (—2 sin Zt) ’

The first component of x(f) 1s y(t)
Cy sin2t +Cyco82t. “Thus,

y' =2C; cos 2t —2C;sin2t, and
y" = —4Cy sin2t —4C; cos 21,

and
y' +4y = (—4Cy sin 2t — 4C;, cos 2t)
+ 4(C; sin2t + C, cos2t)
=0.

6. Ifyi(t) = €', y2(t) = tef, and y3(t) = 12¢’, suppose
that there exists constants Cy, C», and C3 such that
Cie' + Cote’ + Cst?e =0

forallz. If t = 1, then
Cie+Cre+Cie=0
(C1+C+C3e=0
Ci+Cy+C3=0.
Ift = —1, then
Cle_l — Cp_e_l -+ ‘C3e——1 =0
(C—C+Ce! =0
Ci1—-C+C3=0
Finally, if 1 = 0, then C; = 0 and the last two equa-
tions become
Co+C3=0
—Cr+C3=0.

Because the coefficient matrix

I 1y /C)_ (0

-1 1J\G) ™ (O)
has determinant D = 2, the coefficient matrix is
nonsingular and this last system has unique solution
C; = C3 = 0. Hence, C; = Cp = C3 = 0 and the
solutions y;(f) = €'4, y,(t) = té', and y3(t) = t%¢’
are linearly independent.

"

y{ =—9cos3t, y; =27sin3t, and y® = 81 cos3r.

7P +13y7 + 36,81 cos 3¢ + 13(—9 cos 3¢) + 36 cos 3t = 0

and y, is a solution of y® 4 13y” + 36y = 0. In a similar manner, y, = sin 3¢, y; = cos2¢, and y; = sin2s are

also solutions. Finally, the Wronskian is

oy ¥ s

/ /
W) =det| s 2 % Y4
( ) i yél yél y//
Vi " i 1"

Yo Y3 Y4

= det

cos 3¢ sin 3¢ cos 2t sin 2¢
—3sin 3¢ 3cos3t ~2sin2t 2cos2t
—9¢os3t —9sin3r —4cos3t —4sin2t
27sin3t —27cos3r 8sin2t —8cos2t

Using a computer, W(¢) = 150, so the solutions y;, y2, y3, and y, are linearly independent.
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3. In matrix form,

(-G 9)0).

the coefficient matrix

—6 =15
=39

has characteristic polynomial
Py =32 +9,

producing eigenvalues A = =3;. Therefore, the
equilibrium point at the origin is a stable center.

5 Lt S SN S S VL S N N N N N
LT S T R L N S N e SN N N
LT R e e N N NG N N N N N
LR R N N S S S R N N
. e e e e L Rl R R S R R

B T T B e R . B A e
TERTETRTRTE TS TS TR N S R S e e e
S S e T e S T S 2 T T S S 3
e e e e S T S e e e
IR S o S RN

-5 ¢ 5
"X

9. Consider the system

-3 —4 2 _
y=|-2 -7 4]y.
-3 -8 4

Using a computer, matrix

—3 —4 2
A=|-2 -7 4
-3 -8 4

has characteristic polynomial

p(W) =213+ 632 + 111 +6,

and eigenvalues A; = —3, A2 = —2, and A3 = —1.
Because the real parts of all eigenvalues are nega-
tive, the equilibrium point at the origin is asymptot-
cally stable. One such solution, with initial condition
(1,1, )7, is shown in the following figure.

4. In matrix form,

=5 )

is lower triangular, so the eigenvalues lie on the di-
agonal, A; = 2 and A, = —1. Because there is at
least one positive eigenvalue, the equilibrium point
at the origin is unstable. Indeed, with one positive
and one negative eigenvalue, the origin is a saddle.

51 g VLUV VY VY
N VY VLV WV
NIy YV ML VYV
NN VMMV Y Y
R VY MY VYV
NN A :zz\'gg\'
NN RS B\ ¥ N
S LT N AN R
RRAKNK K 4 NN
NI 25 NS
AR I NN
NNSRAxxx+ 4 22 N
NRNRXA AR o O,
S AL W N S . S S AN
TN
-5 0 5
X
A
zZ
x




(-3 6 3
A= (_2 4) and f= (4) ,
then the characteristic polynomial is

pA) =M —TA+D=A-1=r(A—1),

generating eigenvalues-A; = O and X, = 1. The
associated eigenvectors are

-3 6 '
A-0= (_2 4) = vy= (%) , and
o, _ [ 6 3
A-I= (_2 3) = V= (2) .

Thus, the homogeneous solution is y, = Ciy1 +

Cay2, where
y1(0) = vy = (f) and

3 !
V() = vy = (2::::) .

The fundamental matrix is
2 3¢
Y(t) = [YI(t)7 yZ(t)] = (1 221) .

The inverse of ¥ () is calculated

1 [2¢8 =3¢ 2 -3
-1 . —
Y= o (—1 2 ) - (——e_‘ 2e*’)'

Hence,
oo = (- ) (3)
(-6
T \5e )’
and
f Y- Of() dt = f (S“e‘ﬂ) dt
_ [ —6t |
T\ -5¢1)"

Thus,
’ ¥, =Y() f YTH() dt

_ (2 3\ ([ -0t
~\1 2 )\ -5
_(—12t-15

T\ -6 —10 )

Finally, the general solution is

2 3¢\, [(—12 15
yo =6 (1) +C (2(;) + ( - 10) '




B A= (7))

= (-3-2YE-3) +350
-7 8}

- /\2’~/§>s+'{3 = (X’B)(k’a§
>‘¢5: A-2T = :g E; A ~2 f) vji(g}
N=27 ATZT = (3 )~ (o & L= (F) 62(: H &
-le
3t 72 \ st T -gtF
1= (z:% 2 (T)= ¢ Pore lat e
-3t

(6 3 ’j
et _set

o t 27 )
[ -l085-2e T -loEe”
T\ 2gtgdtet ~ skt
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11.

(a) N(?t(? tha't a plot of the error versus the step size signifies a linear relationship. Indeed, a line through the
origin with the appropriate slope should pass through or close to each data point.

0.5

0.4

0.3

error

0.2

0 .
0 0.02 0.04 0.06 0.08
step size

(b) We can estimate the proportionality constant by picking two points from the figure and calculating the slope

of the line through the chosen points. Let’s use the first and last points.

00072076631 — 0.4303893417
~0.0009765625 — 0.0625000000

7 6.8784
We can use E = Ak to calculate the step size.
E =M
E
h=—
A
_ 0.001
"~ 6.8784

h=1454 x107*
Since h = (b — a)/N,

b—a
N =
h
2-0
1.454 x 104
N = 13757.

Ii will take about 13,757 iterations to achieve the required accuracy.

(c) We ran our Euler routine on a 300 MHz PC using the step size from part (b). The run took approximately

56 seconds and reported an error from the true value of 0.00107417614304.




