4. We have a(t) = -2t, so $u(t) = e^{t^2}$. Multiplying by u, the equation becomes

$$e^{t^2}y' + 2te^{t^2}y = 5te^{t^2}.$$

We verify that the left-hand side is the derivative of $e^{t^2}y$, so when we integrate we get

$$e^{t^2}y(t) = \frac{5}{2}e^{t^2} + C.$$

Solving for y we get the general solution

$$y(t) = \frac{5}{2} + Ce^{-t^2}.$$

6. If we write the equations as $x' = (4/t)x + t^3$, we see that a(t) = 4/t. Thus the integrating factor is

$$u(t) = e^{-\int (4/t) dt} = e^{-4 \ln t} = t^{-4}$$
.

Multiplying by u, the equation becomes

$$t^{-4}x' - 4t^{-5}x = t^{-1}.$$

After verifying that the left-hand side is the derivative of $t^{-4}x$, we can integrate and get

$$t^{-4}x(t) = \ln t + C.$$

Hence the general solution is

$$x(t) = t^4 \ln t + Ct^4.$$

18. Solve $xy' + 2y = \sin x$ for y'.

$$y' = -\frac{2}{x}y + \frac{\sin x}{x}$$

Compare this with y' = a(x)y + f(x) and note that a(x) = -2/x and $f(x) = (\sin x)/x$. It is important to note that neither a nor f is continuous at x = 0, a fact that will heavily influence our interval of existence.

An integrating factor is found with

$$u(x) = e^{\int -a(x) dx} = e^{\int 2/x dx} = e^{2\ln|x|} = |x|^2 - x^2$$

Multiply both sides of our equation by the integrating factor and note that the left-hand side of the resulting equation is the derivative of a product.

$$x^{2}y' + 2xy = x \sin x$$
$$(x^{2}y)' = x \sin x$$

Integration by parts yields

$$\int x \sin x \, dx = -x \cos x + \int \cos x \, dx$$
$$= -x \cos x + \sin x + C.$$

Consequently,

$$x^{2}y = -x\cos x + \sin x + C,$$

$$y = -\frac{1}{x}\cos x + \frac{1}{x^{2}}\sin x + \frac{C}{x^{2}}.$$

The initial condition provides

$$0 = y(\pi/2) = \frac{4}{\pi^2} + \frac{4C}{\pi^2}.$$

Consequently, C = -1 and $y = -(1/x)\cos x + (1/x^2)\sin x - 1/x^2$.

We cannot extend any interval to include x=0, as our solution is undefined there. The initial condition $y(\pi/2)=0$ forces the solution through a point with $x=\pi/2$, a fact which causes us to select $(0,+\infty)$ as the interval of existence. The solution curve is shown in the following figure. Note how it drops to

negative infinity as x approaches zero from the right.

Section 25

4. Let x(t) represent the amount of salt in the solution at time t. Let r represent the rate (gal/min) that water enters (and leaves) the tank. Consequently, the rate at which salt enters the tank is 0 gal/min, but the

rate out = r gal/min× $\frac{x(t)}{500}$ lb/gal = $\frac{r}{500}x(t)$ lb/min.

Thus,

$$\frac{dx}{dt} = \text{rate in} - \text{rate out},$$

$$\frac{dx}{dt} = -\frac{r}{500}x.$$

Sedien 7.2

4. Separate the variables and integrate.

$$\frac{dy}{dx} = (1 + y^2)e^x$$

$$\frac{1}{1 + y^2} dy = e^x dx$$

$$\tan^{-1} y = e^x + C$$

$$y(x) = \tan(e^x + C)$$

10.

$$x\frac{dy}{dx} = y(1 + 2x^{2})$$

$$\frac{dy}{y} = \frac{1 + 2x^{2}}{x} dx = \left[\frac{1}{x} + 2x\right] dx$$

$$\ln|y| = \ln|x| + x^{2} + C$$

$$|y(x)| = e^{\ln|x| + x^{2} + C} = e^{C}|x|e^{x^{2}}$$

$$y(x) = Axe^{x^{2}}$$

18.

$$\frac{dy}{dx} = \frac{x}{1+2y}$$

$$(1+2y) dy = x dx$$

$$y + y^2 = x^2/2 + C$$

Let c(t) represent the concentration at time t. Thus, c(t) = x(t)/500, or 500c(t) = x(t) and 500c'(t) = x'(t). Substitute these into the rate equation to produce

$$500c' = -\frac{r}{500}(500c),$$
$$c' = -\frac{r}{500}c.$$

This equation is separable, with solution $c = Ae^{-(r/500)t}$. Use the initial concentration, c(0) = .05 lb/gal, to produce

$$c = 0.05e^{-(r/500)t}.$$

The concentration must reach 1% in one hour (60 min), so c(60) = 0.01 and

$$0.01 = 0.05e^{-(r/500)(60)},$$

$$\frac{1}{5} = e^{-(3/25)r},$$

$$r = \frac{25}{3} \ln 5,$$

$$r \approx 13.4 \text{ gal/min}.$$

34. Let y(t) be the temperature of the beer at time t minutes after being placed into the room. From Newton's law of cooling, we obtain

$$y'(t) = k(70 - y(t))$$
 $y(0) = 40$

Note k is positive since 70 > y(t) and y'(t) > 0 (the beer is warming up). This equation separates as

$$\frac{dy}{70 - y} = k \, dt$$

which has solution $y = 70 - Ce^{-kt}$. From the initial condition, y(0) = 40, C = 30. Using y(10) = 48, we obtain $48 = 70 - 30e^{-10k}$ or $k = (-1/10) \ln(11/15)$ or k = .0310. When t = 25, we obtain $y(25) = 70 - 30e^{-.598} \approx 56.18^{\circ}$.

4. In the first 60s the rocket rises to an elevation of $(100-9.8)t^2/2 = 162$, 360m and achieves a velocity of v(60) = (100-9.8)*60 = 5412m/s. After that the velocity is 5412-9.8t. This is zero at the highest point, reached when $t_1 = 552.2$ s. The altitude at that point is $162, 360 + 5412t_1 - 9.8t_1^2/2 = 1.657 \times 10^6$ m. From there to the ground it takes t_2 s, where $4.9t_2^2 = 1.657 \times 10^6$, or $t_2 = 581.5$ s. The total trip takes 60 + 552.2 + 581.5 = 1193.7s.

6. Let P(t) represent the loan balance after t years. Let r represent the annual rate, w the annual payment, and P_0 the amount of the loan. Then

$$P' = rP - w \quad P(0) = P_0.$$

The equation is linear with integrating factor e^{-rt} . Consequently,

$$(e^{-rt}P)' = -we^{-rt},$$

$$e^{-rt}P = \frac{w}{r}e^{-rt} + C,$$

$$P = \frac{w}{r} + Ce^{rt}.$$

Use $P(0) = P_0$ to produce $C = P_0 - w/r$ and

$$P(t) = \frac{w}{r} + \left(P_0 - \frac{w}{r}\right)e^{rt}.$$

Now, the loan is exhausted at the end of four years. Consequently, P(4) = 0, so

$$0 = \frac{w}{r} + \left(P_0 - \frac{w}{r}\right)e^{r(4)},$$

$$\frac{w}{r}\left(e^{4r} - 1\right) = P_0e^{4r},$$

$$P_0 = \frac{w}{r}\left(1 - e^{-4r}\right)$$

$$P_0 = \frac{(225)(12)}{0.08}\left(1 - e^{-4(0.08)}\right),$$

$$P_0 \approx \$9, 242, 47$$

11. (a) Let P(n) represent the balance at the end of n compounding periods, I the annual interest rate, m the number of compounding periods per year, and P_0 the initial investment. Thus,

$$P(n+1) = \left(1 + \frac{I}{m}\right) P(n), \quad P(0) = P_0.$$

11. Without air resistance, $v_0 = \sqrt{2 \times 13.5g} = 16.2665$ m/s. With air resistance, v_0 is defined by

$$\int_{v_0}^0 \frac{v \, dv}{v + mg/r} = -\frac{r}{m} \int_{1.5}^{15} \, dy.$$

Hence,

$$-v_0 + (mg/r)\ln(v_0 + mg/r) - (mg/r)\ln(mg/r)$$

$$= -13.5 \frac{r}{m} \quad \text{or}$$

$$-v_0 + 49\ln(v_0 + 49) - 49\ln(49) = -2.7$$

This is an implicit equation for v_0 . Solving on a calculator or a computer yields $v_0 = 18.1142$ m/s.

7. Let P(t) represent the loan balance after t years. Let r represent the annual rate, w the annual payment, and P_0 the amount of the loan. Then

$$P' = rP - w \quad P(0) = P_0.$$

The equation is linear with integrating factor e^{-rt} . Consequently,

$$(e^{-rt}P)' = -we^{-rt},$$

$$e^{-rt}P = \frac{w}{r}e^{-rt} + C,$$

$$P = \frac{w}{r} + Ce^{rt}.$$

Use $P(0) = P_0$ to produce $C = P_0 - w/r$ and

$$P(t) = \frac{w}{r} + \left(P_0 - \frac{w}{r}\right)e^{rt}.$$

Now, the loan is exhausted at the end of 30 years. Consequently, P(30) = 0, so

$$0 = \frac{w}{r} + \left(P_0 - \frac{w}{r}\right) e^{r(30)},$$

$$\frac{w}{r} \left(e^{30r} - 1\right) = P_0 e^{30r},$$

$$w = \frac{r P_0}{1 - e^{-30r}},$$

$$w = \frac{0.08(100000)}{1 - e^{-30(0.08)}}$$

$$w \approx $8,798,15$$

(b) Compare

$$P(n+1) = \left(1 + \frac{I}{m}\right)P(n), \quad P(0) = P_0.$$

with

$$a(n+1) = ra(n), \quad a(0) = a_0,$$

and note that r = 1 + I/m and $a_0 = P_0$. Consequently,

$$a(n) = a_0 r^n$$

becomes

$$P(n) = P_0 \left(1 + \frac{I}{m} \right)^n.$$

12. (a) Let P(t) represent the balance at the end of t years. Let r represent the annual rate and P_0 the initial investment. Thus,

$$P'=rP, \quad P(0)=P_0.$$

Consequently,

$$P(t) = P_0 e^{rt},$$

$$P(10) = 2000 e^{0.06(10)},$$

$$P(10) \approx $3,644.24$$

(b) In semiannual case, m = 2. Furthermore, there are 20 compounding periods in 10 years, so

$$P(20) = 2000 \left(1 + \frac{0.06}{2}\right)^{20} \approx $3,612.22.$$

In the monthly case, m = 12. There are 120 compounding periods in 10 years, so

$$P(120) = 2000 \left(1 + \frac{0.06}{12}\right)^{120} \approx $3,638.79.$$

In the daily case, m = 365. There are 3650 compounding periods in 10 years, so

$$P(3650) = 2000 \left(1 + \frac{0.06}{365}\right)^{3650} \approx $3,644.06.$$

Section 3.4

14.
$$I(t) = (E + (RI_0 - E)e^{-Rt/L})/R$$