#1
If \(\pi_1(X) \) is finite, \(f_*(\pi_1(X)) \leq \pi_1(S^1) \cong \mathbb{Z} \) is also finite, hence trivial. Therefore, \(f: X \to S^4 \) can be lifted to the universal cover \(p: \mathbb{R} \to S^4 \), in other words, we can factor \(f \) as \(X \xrightarrow{\phi} \mathbb{R}^2 \to S^4 \). Since \(\mathbb{R} \) is contractible, \(f \) is null homotopic.

#2
Consider the cover of \(S^4 \vee S^4 \) given by the 2-oriented graph \(X \) shown below:

Let \(\sigma: X \to X \) be the homeomorphism obtained by rotating \(X \) about the centre \(O \) by a \(\pi/2 \) clockwise angle.

Let \(\tau: X \to X \) be the homeomorphism obtained by composing the reflection about the line \(L \) with the reflection about the circle \(C \).

Both \(\sigma \) and \(\tau \) are deck transformations. Moreover, any vertex of \(X \) can be taken to any other vertex of \(X \) by repeatedly applying \(\sigma \) or \(\tau \) to \(X \). Hence \(p: X \to S^4 \vee S^4 \) is normal, hence \(N := p_*(\pi_1(X, x_0)) \leq \pi_1(S^4 \vee S^4, x) \) is a normal subgroup. Van Kampen's theorem shows that \(\pi_1(X, x_0) \) is free on the generators \(\{ a^2, ab^2a^{-1}, (ab)a^2(ab)^{-1}, (aba)b^2(ab)^{-1}, (ab)a^2(ab)^{-2}, (ababa)b^2(ababa)^{-1}, (ab)a^2(ab)^{-1}, (ab)^4 \} \) as shown below:

Therefore, \(a^2, b^2 \) and \((ab)^4 \) are in \(N \), so that \(N \) contains the normal subgroup of \(\pi_1(S^4 \vee S^4, x) \) generated by \(a^2, b^2 \) and \((ab)^4 \). On the other hand, conjugates of these three words have been shown to generate \(N \), so we also have the other inclusion. It follows that \(N = p_*(\pi_1(X, x_0)) \) is precisely the normal subgroup of \(\pi_1(S^4 \vee S^4, x) \cong \mathbb{F}_2 \) generated by \(a^2, b^2 \) and \((ab)^4 \), as desired.

#3
Observe that any word \(w \in \mathbb{F}_2 = \langle a, b \rangle / \langle a^2, b^2 \rangle \) is either \((ab)^n \), \((ba)^n \) for some \(n \in \mathbb{Z} \) or conjugate to either \(a \) or \(b \). It follows that up to conjugacy the only subgroups of \(\mathbb{F}_2 = \pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2) \) are:

\(\{ 1 \}, \langle a^2 \rangle, \langle b \rangle, \langle a, b(ab)^n \rangle, \langle b, a(ba)^n \rangle, \langle (ab)^n \rangle, \langle a/b \rangle. \)
where we have also used that \(b \cdot (ab)^n \cdot b^{-1} = (ba)^n \), so \(<(ab)^n> \cong <(ba)^n> \). Since unbased connected covers of \(\mathbb{RP}^2 \vee \mathbb{RP}^2 \) are in 1-1 correspondence with the conjugacy classes of subgroups of \(\pi_1(\mathbb{RP}^2 \vee \mathbb{RP}^2) \), it will suffice to produce connected covers \(p: X \to \mathbb{RP}^2 \vee \mathbb{RP}^2 \) with \(p_*(\pi_1(X)) \leq \pi_1(\mathbb{RP}^2 \vee \mathbb{RP}^2) \) equal to each of these groups. Consider the basic covers:

If we let \(\tilde{\iota}_1 \) and \(\tilde{\pi}_1 \) be the compositions of \(\iota \) and \(\pi \) with the inclusion of \(\mathbb{RP}^2 \) into the first copy of the wedge \(\mathbb{RP}^2 \vee \mathbb{RP}^2 \) and \(\tilde{\iota}_2 \) \(\tilde{\pi}_2 \) be the compositions of \(\iota \) and \(\pi \) with the inclusion of \(\mathbb{RP}^2 \) into the second copy, we have explicit covers given by:

\[
\langle a, b \rangle \leftrightarrow \tilde{\iota}_1 \vee \tilde{\iota}_2 \quad \text{(here and below wedge of maps will be used),}
\]

\[
\langle a \rangle \leftrightarrow \tilde{\pi}_1 \tilde{\iota}_2 \tilde{\pi}_1 \tilde{\iota}_2 \quad \text{weave of 2n spheres}
\]

\[
\langle ab \rangle \leftrightarrow \tilde{\pi}_1 \tilde{\iota}_2 \tilde{\pi}_1 \tilde{\iota}_2 \quad \text{weave of 2n spheres}
\]

\[
\langle a, b(ab) \rangle \leftrightarrow \tilde{\pi}_1 \tilde{\iota}_2 \tilde{\pi}_1 \tilde{\iota}_2 \quad \text{weave of 2n spheres}
\]

\[
\langle a, b(ab)^n \rangle \leftrightarrow \tilde{\pi}_1 \tilde{\iota}_2 \tilde{\pi}_1 \tilde{\iota}_2 \quad \text{weave of 2n spheres}
\]

Since \(\langle a, b(ab)^{2n} \rangle \) is conjugate to \(\langle b, a(ba)^{2n} \rangle \), we are done.

4 Let \(x \in X \) and choose a neighborhood \(U \) of \(x \) such that \(U \cap g(U) = \emptyset \) only for \(g = g_1 \ldots g_n \) \(g \in G \). Since \(G \) acts freely on \(X \), \(g_k x \neq x \) \(\forall k = 1 \ldots n \). Choose neighborhoods \(U_k \) and \(V_k \) of \(x \) and \(g_k x \) such that \(U_k \cap V_k = \emptyset \). Set \(W_k = U_k \cap g_k^{-1} V_k \) and \(W = \cap_{k=1}^n W_k \), a neighborhood of \(x \). Then \(W \cap g W = \emptyset \) for all \(g \in G \), so indeed \(G \times X \) is a covering space action.

5 For \((x, y) \in \mathbb{R}^2 \) such that \(x \neq 0 \), \(U = (3x/4, 3x/2) \times \mathbb{R} \) satisfies \(Nu \cap Nu = \emptyset \) \(\forall n \neq 0 \). Similarly, for \((x, y) \in \mathbb{R}^2 \) such that \(y \neq 0 \), \(U = \mathbb{R} \times (3y/4, 3y/2) \) satisfies \(Nu \cap Nu = \emptyset \) \(\forall n \neq 0 \). Observe that the orbits of \((1,0) \) and \((0,1) \) cannot be separated by open neighborhoods, so \(X/\mathbb{Z} \) is not Hausdorff.
Repeated application of Van Kampen shows that $\pi_3(X; \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}$.

Alternatively, we know that $\pi_3(X; \mathbb{Z})/p_\ast (\pi_1(X)) \cong G$, so $\pi_3(X; \mathbb{Z})/\mathbb{Z} \cong \mathbb{Z}$. If we also knew that $\pi_3(X; \mathbb{Z})$ is abelian, this implies that $\pi_3(X; \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}$. To see this, let $x_0 = (1, 0)$, take paths α, β, γ as shown, note $(p \circ \alpha)(x_0)$ or $(p \circ \alpha)(x_0)$ each generate $\pi_3(X; \mathbb{Z})$, and:

$\Rightarrow [\alpha] \cdot [\beta] \cdot [\gamma] = [\alpha \beta \gamma] \Rightarrow \pi_3(X; \mathbb{Z})$ abelian

6 Let $X = V^n S^1$, $(x_{0}) \sim (x_{0})$ cover with $p_\ast (\pi_1(X; \mathbb{Z})) = N < \pi_1(X; \mathbb{Z}) \cong \text{free}$ $\forall N$ a nontrivial normal subgroup. Suppose that N is finitely generated. Since p_\ast is injective, this implies that $\pi_1(\tilde{X}, \tilde{x}_0)$ is free on finitely many generators. Choose loops $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_m$ based at \tilde{x}_0 generating $\pi_1(\tilde{X}, \tilde{x}_0)$. Let $\gamma \in N$ be nontrivial and let k be its length. Then every lift $\tilde{\gamma}$ of γ has also length k. Choose a lift $\tilde{\gamma}$ whose starting point in $p^{-1}(\gamma_0)$ is so far away from \tilde{x}_0 that $\tilde{\gamma}$ is disjoint from the $\tilde{\gamma}_i$. This is possible since γ, \ldots, γ_m, \tilde{x} have finite length, \tilde{x} has degree n at each vertex and \tilde{x} has infinitely many vertices. Then we obtain a contradiction with the fact that $\gamma_1, \ldots, \gamma_m$ generate $\pi_1(\tilde{X}, \tilde{x}_0)$. Since $\gamma \neq \text{free}, [H \triangleleft G] \text{ index } = k \iff [H \triangleleft G] \text{ index } = k$, we are done.

7 \exists subgroups of G $\subseteq \exists$ connected k-sheeted $\subseteq \exists k$-sheeted covers $\subseteq \exists$ covers of X_G $\subseteq \exists$ of X_G $\triangleleft \text{Hom}(G, S_k)$

where X_G is the CW-complex naturally associated to G (with $\pi_1(X_G) \cong G$) and S_k is the symmetric group on k letters. If G is finitely generated, then $\text{Hom}(G, S_k)$ is finite, so we are done.

8 Let $H \triangleleft G$, X_G the CW-complex naturally associated to G and $p: (\tilde{x}_G, \tilde{x}_0) \sim (X_G, x_0)$ the cover corresponding to H. The subgroups of G conjugate to H are precisely the subgroups $p_\ast (\pi_1(\tilde{x}_G, \tilde{x}_k)) \leq \pi_1(X_G, x_0) \cong G$, where $\tilde{x}_k \in p^{-1}(x_0)$ as in Thm 1.3 of Hatcher's book. If H has finite index in G, $\# p^{-1}(x) = [H : G]$, so there are $\leq [H : G]$ subgroups conjugate to H. Let $g_1, Hg_1, \ldots, g_k, Hg_k$ be the complete list. $K = \cap g_3 H g_3^{-1}$ is normal and $G/K \to \overline{\pi}_1(\text{cosets of } g_3 H g_3^{-1})$ in G is injective, hence $[K : G] < \infty$ also.