#1 (a) (identity) If e_i is the constant path at x_i, it has been shown in class that $e_i \cdot y \cdot e_j \sim y$ and $y \cdot e_j \sim e_j \cdot y$ $\forall y : (x_0, x_1, x_2) \to (x, x_1, x_2)$.

(associativity) It was also shown in class that by reparametrizing $[0, 1]$ we get homotopies $(Y \cdot \beta) \cdot \alpha \sim Y \cdot (\beta \cdot \alpha)$ rel endpoints, for all composable paths $Y : \beta, \alpha : [0, 1] \to X$. This implies associativity.

(inverses). It was also shown in class that given any path $Y : (x_0, 0, 1) \to (x, x_1, x_2)$, $Y \cdot Y_1 \sim e_i$ and $Y \cdot Y_2 \sim e_j$ rel endpoints. Hence inverses exist.

(b) The empty word is the identity and $\omega_{-1} ... \omega_{-k}$ is the inverse of any word $\omega_1 ... \omega_k$. To check associativity, first observe that every word class $\omega_1 ... \omega_k$ has a unique representative in which consecutive letters belong to different groupoids. Existence follows from a simple argument inducting on the length of the word. For uniqueness, suppose that $\omega_1 = \omega_2$ and $\omega_1, \omega_2, \omega_3$ are reduced representatives of the same word. Then $\omega_1, \omega_2, \omega_3$ must be in the same class as the empty word. Since ω_1, ω_2 and $\omega_1, \omega_2, \omega_3$ are in different groupoids, necessarily ω_1 and ω_3 must be in the same G_i, and moreover we must have $\omega_1 = \omega_3$. Hence we can again induct on the length of the word to establish uniqueness.

The operation $G_1 \times G_2 \times G_1 \times G_2 \to G_1 \times G_2$ can now be defined at the level of reduced words: $\alpha \cdot \beta$ is the unique reduced representative of reduced words α, β. Note that without this we would need to prove that the operation is well defined on equivalence classes (which we could have done). Associativity is now immediate since $(\alpha \cdot \beta) \cdot \gamma$ and $\alpha \cdot (\beta \cdot \gamma)$ are both equal to the unique reduced representative of the concatenation $\alpha \cdot \beta \cdot \gamma$.

(c) Let $\pi_1(U_1 \times \mathcal{A})^+ \cong \pi_1(U_2 \times \mathcal{A}) \to \pi_1(X \times \mathcal{A})$ be the map defined by concatenation of composable paths.

(1) f_* is surjective.

Given $[f] \in \pi_1(X \times \mathcal{A})$, we can find to $0 < t_1 < \ldots < t_N = 1$ such that $f([t_1, t_{n}])$ is contained in U_1 or U_2, by compactness of $[0, 1]$. Then we can write $[f]$ as the product $[f] = [f_{1}]_1 \cdot [f_{1} + f_{2} + \ldots + f_{N}]_2 = [g_1 \cdot f_1 + \ldots + f_N]_2$, where g_1 is a path in U_1 from x_1 or x_2 to $f(t_1)$.

(2) f_* is injective.

The argument given in the text verifies the injectivity argument, where the paths connecting the basepoint to each vertex of a rectangle R_k are now replaced with paths connecting either x_1 or x_2 to each vertex of R_k.

(d) $\pi_1(U_i, p) = \mathbb{Z}^3$, $\pi_1(U_i, q) = \mathbb{Z}^5$, $\pi_1(U_i, r) = \mathbb{Z}^5$, $\pi_1(U_i, s) = \mathbb{Z}^5$. Therefore $\pi_1(S_1, p) \cong (\pi_1(U_1, q) \times \mathbb{Z}^3) \times \mathbb{Z}$, $\pi_1(U_2, q) = \mathbb{Z}^5$, with $(ab)^n$ the empty word and $(ab)^m$. Hence we obtain $\pi_1(S_1, p) \cong \mathbb{Z}$ as desired.

#3. Let $p \in X^0$ be a point belonging to the closure of infinitely many 1-cells e_1, e_2, e_3, \ldots. Suppose that $X = X^0 \cup X^1$ is first countable, let $U_1 \cup U_2 \cup \cdots$ be a countable basis at p and choose $x_k \in e_k \cap U_k$, $k = 1, 2, 3, \ldots$. Since $\{x_k : k \in \mathbb{N}\}$ intersects each cell e_k in a closed subset $\{x_k : k \in \mathbb{N}\}$, the subset $\{x_k : k \in \mathbb{N}\} \subseteq X$ is closed. However, $x_k \to p$ and $p \notin \{x_k : k \in \mathbb{N}\}$. This is a contradiction, hence X is not first countable, hence is not metrizable. In the general case observe that any CW complex where a point lies in the closure of infinitely many cells can be subdivided into a finer CW complex where a point $p \in X^0$ is in the closure of infinitely many 1-cells. Since subspaces of metrizable spaces are metrizable, we are done.

#4. Let X be a CW complex and $\bar{X} = X \cup fD^n$, $f : S^{n-1} \to X$, where $n \geq 3$. Let $U = X \cup f \{ x \in D^n \mid 1/2 < r < 1/3 \}$, $V = X \setminus \{ x \in D^n \mid 1/3 < r < 2/3 \}$. Then we have, for $p \in U \cup V$, $\pi_1(U \cup V, p) \cong \pi_1(X, p)$ (since U deformation retracts onto X); $\pi_1(V, p) = 1$ (since V is contractible) and $\pi_1(U \cup V, p) = 1$ (since S^{n-1} is simply connected for $n-1 \geq 2$). Von Kampen's Theorem then yields $\pi_1(\bar{X}, p) \cong \pi_1(X, p)$.

#5. $U \cong (S' \vee S') \times S'$, and $\pi_1((S' \vee S') \times S') \cong \pi_1(S' \vee S') \times \pi_1(S') = (\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}$

#6. $T_f = \mathbb{D}_4$ obtained from $S' \vee S' \vee S'$ by attaching two disks D_4 and D_2 along the paths acf(a)^{-1}c^{-1}, bcf(b)^{-1}c^{-1}.$ Hence $\pi_1(T_f) \cong <a,b,c | acf(a)^{-1}c^{-1}, bcf(b)^{-1}c^{-1}>.$
For $S^1 \times S^1$ we have already a 2-disk in addition to two new ones $D_1 \& D_2$

$$T_f = \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\end{array} \xrightarrow{(x,y)} \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\end{array} \text{ so } \pi_1(T_f) \cong \langle a, b, c \mid aba^{-1}b^{-1}, abc(b^{-1}c)^{-1}, bcf(c^{-1})^{-1} \rangle$$

7 Since $X \cong S^2 \setminus S^1 \setminus S^1$ as seen before, $\pi_1(S^2) = 1, \pi_1(S^1) = \mathbb{Z}$, we have $\pi_1(X) \cong \mathbb{Z} * \mathbb{Z}$. Since Y is obtained from the usual Klein bottle by removing a disk from the 2-cell and gluing its boundary to b, we can give Y the following cell decomposition:

$$Y \cong \begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\end{array} \text{ whence } \pi_1(Y) \cong \langle a, b, c \mid aba^{-1}b^{-1}c b^{-1}c^{-1} a^{-1} \rangle$$

Finally, Y deformation retracts to $\mathbb{R}^3 \setminus \mathbb{Z}$, so the have the same π_1.

8 By Corollary 0.20, we only need to show that if (X, A) satisfies the homotopy extension property, then $(X \setminus X_0) \cup (A \setminus X_1)$ satisfies the homotopy extension property and $(X \setminus X_0) U (A \setminus X_1) \hookrightarrow X \setminus X_1$ is a homotopy equivalence.

For the first statement, we show that $X \setminus X_0 U (X \setminus X_0) U (A \setminus X_1)$ is a retract of $X \setminus X_1$, which is equivalent. But given a retract $\tilde{r} : X \setminus X \rightarrow (X \setminus X_0) U (A \setminus X_1)$, which exists since (X, A) satisfies HEP, it suffices to change our viewpoint on the product retract $\tilde{r} \times \text{id} : X \setminus X_1 \rightarrow (X \setminus X_0) U (A \setminus X_1) \times X_1$

$$\tilde{r} : X \setminus I \rightarrow (X \setminus X_0) U (A \setminus X_1)$$

$$X \setminus X_0 \cup X \setminus X_0 \cup X \setminus X_1$$

Where we have used the homeo $I^2 \rightarrow I^2$ given by the picture

To show that $(X \setminus X_0) U (A \setminus X_1) \hookrightarrow X \setminus X_1$ is a homotopy equivalence, it is sufficient to observe that $X \setminus X_0$ is a deformation retract of both spaces.
#9 Consider \(\tilde{X} = X \times I / f \times 1 = \frac{(x,t) \in X \times I}{(x,1) \sim (y,1) \text{ if } x,y \in A \text{ and } f(x) = f(y)} \).

Observe that \(X / f \subset \tilde{X} \) as the points \((x,1), x \in X \). Similarly, observe that \(X \cup Mf \subset \tilde{X} \) as the points \((x,0), x \in X \) and \((x,t), x \in A \).

The deformation retraction of \(X \times I \) onto \(X \times 0 \cup A \times I \) induces a deformation retraction of \(\tilde{X} \) onto \(X \cup Mf \). On the other hand, \(\tilde{X} \) also deformation retracts onto \(X \times I / f \times 1 \) \(\approx \) \(X / f \). Hence \(X / f \) is homotopy equivalent to \(X \cup Mf \). But \(f \) is a homotopy equivalence, hence \(A \) is a deformation retract of \(Mf \), hence \(\tilde{X} \) is a deformation retract of \(X \cup Mf \), hence \(X \cup Mf \) is homotopy equivalent to \(X \), as desired.