p.138-9 # 1, 2
p.155-6 # 5 p.138, Exercise 1:

Solution. This is a straightforward generalization of exercise 3 in homework 5.

p.138, Exercise 2:

Solution. Here M is an m-dimensional manifold, W an $m+n$-dimensional manifold and N an n-dimensional submanifold of W. All three manifolds are assumed closed and oriented. We also have a map $f : M \to W$, which - after possibly replacing it by a homotopy - we can assume is a smooth map transversal to N.

We show vanishing of the intersection number $\#(f, N; W)$ in the following cases:

(i) The map $f : M \to W$ extends to an oriented compact manifold bounded by M.

(ii) N bounds a closed oriented submanifold of W.

(iii) f or N is null homotopic in W (and neither N nor M are 0-dimensional).

First we do case (i): Say f is the restriction of a map $g : K \to W$. Replacing g by a homotopic map, and f by the corresponding boundary map, which is homotopic to f, we can assume that g is transversal to N in W. Thus $g^{-1}(N)$ is a neat 1-submanifold of K, thus a union of circles and closed intervals. Moreover $f^{-1}(N)$ is the boundary of $g^{-1}(N)$ i.e. the collection of endpoints of those components which are intervals. We claim that for any interval I contained in $g^{-1}(N)$, the two endpoints count with different sign towards $\#(f, N; W)$ and thus their contribution cancels. To see this, choose a parametrization $\varphi : [0, 1] \to I$ and pick sections $s_1, \ldots, s_m : I \to T_K$ of the tangent bundle of K along I with the property that at every point $p \in I$, the vectors $t(p), s_1(p), \ldots, s_m(p)$ form a basis for the tangent space of K at p, where $t(p) = \varphi'(\varphi^{-1}(p))$ is the unit tangent vector to I corresponding to the chosen parametrization. In particular, $(s_i(p_k))_i$ is a basis for the tangent space of M at $p_k := \varphi(k)$ for $k = 0, 1$. For every $p \in I$ the induced map $T_g : T_p K \to T_{g(p)} W$ maps s_1, \ldots, s_m to a basis of $TW/TN|_{g(p)}$. This map is either orientation preserving for all p, or orientation reversing for all p, since I is connected. If we can show that the bases $(s_i(p_k))_i$ for $k = 0, 1$ induce different orientations on M, then we are done. This follows, since K is orientable, and the bases $(t(p_k), s_1(p_k), \ldots, s_m(p_k))$ induce compatible orientations for $k = 0, 1$. Since one of \{t(p_k)\}_k=0,1 is inward pointing and the other outward pointing we are done.

Case (ii) works similarly: Let L be a closed oriented submanifold of W bounded by N. We can choose f to be transverse to L. Then $f^{-1}(L)$ is a 1-submanifold of M, thus a disjoint union of circles and intervals. The endpoints of the intervals form exactly the set $f^{-1}(N)$. For any
interval $I \subset f^{-1}(L)$ the two endpoints are counted with opposite sign: Indeed choose a local frame t, s_1, \ldots, s_{m-1} along I as before, which we can choose to be compatible with the orientation of M. The images of s_1, \ldots, s_{m-1} under Tf give compatible choices of orientations of TW/TL along the image of I. However, t induces incompatible orientations of TL/TN at the images of the respective endpoints of I.

For case (iii), if f is null-homotopic, and $m \neq 0$, then $n < n + m$, so up to homotopy we can choose f to be a map to a point p such that $p \notin N$. Then f is transverse to N and $f^{-1}(N) = \emptyset$, so the intersection number is zero. Now assume instead that N is null-homotopic in W. We claim that the intersection number $\#(f, N; W)$ is equal to the intersection number $\pm \#(\Gamma_f, M \times N; M \times W)$, where Γ_f denotes the graph of f, which in our case is a closed oriented submanifold of $M \times W$. Assuming this, since N is null-homotopic in W, we find that

$$\#(\Gamma_f, M \times N; M \times W) = \pm \#(i_M \times N, \Gamma_f; W) = \pm \#(i_M \times c_q, \Gamma_f; W),$$

where $c_q : N \to W$ is the constant map to a point. Since we can choose q to not lie in the image of f, this map is zero.

Finally we show that

$$\#(f, N; W) = \pm \#(\Gamma_f, M \times N; M \times W).$$

Clearly the set $\Gamma_f \cap M \times N$ (regarded as a subset of M) agrees with $f^{-1}(N)$. One needs to verify that the orientation at each point behave in a consistent way: Either each point counts with the same sign towards both intersection numbers, or each point contributes with opposite signs. This is shown by the following computation.

For $p \in f^{-1}(N)$ and $q = f(p)$, let $W := (w_1, \ldots, w_m)$ be an oriented basis for $T_p M$, and $V := (v_1, \ldots, v_n)$ an oriented basis for $T_q N$. Then $(V, (Tf)W) = v_1, \ldots, v_n, Tf w_1, \ldots, Tf w_m$ is a basis of $T_q W$. Let $\sigma \in \{\pm 1\}$ be its orientation, so that the point p counts σ towards the intersection number $\#(f, N; W)$ (here we made a choice in which order to append the bases, the opposite choice would change the sign for every point, so this doesn’t matter for our purposes).

A basis for $T_{(p, q)} M \times N$ is given by

$$V' := (\pi_M W, \pi_W V) = (\pi_M^* w_1, \ldots, \pi_M^* w_m, \pi_W^* v_1, \ldots, \pi_W^* v_n),$$

and a basis of $T_{(p, q)} \Gamma_f$ by

$$W' := (w'_1, \ldots, w'_m) := (\pi_M^* w_1 + \pi_W^* Tf w_1, \ldots, \pi_M^* w_m + \pi_W^* Tf w_m).$$

Then the orientation of the basis (V', W') for $T_{(p, q)} M \times W$ determines the sign of the count towards $\#(\Gamma_f, M \times N; M \times W)$. The orientation of (V', W') is equal to the one of

$$(V', \pi_W (Tf W)) = (\pi_M^* W, \pi_W V, \pi_W (Tf W))$$

since the base change matrix is unipotent. By the standard choice of orientation on the product, this basis has orientation σ.

2
p.138, Exercise 2:

Solution. Let \(\pi : \mathbb{R}^2 \to S^1 \times S^1, (\alpha, \beta) \mapsto (\overline{\alpha}, \overline{\beta}) \mod 2\pi \) be the covering map of the torus. The map \(X \mapsto \tilde{X} := X \circ \pi \) gives a bijection between vector fields on \(T \) and \(2\pi \mathbb{Z}^2 \)-periodic vector fields on \(\mathbb{R}^2 \). If \(X \) is any vector field on \(T \), and \(\gamma : J \to \mathbb{R}^2 \) is the maximal trajectory of \(\tilde{X} \) starting at \(p \in \mathbb{R}^2 \), then \(\pi \circ \gamma \) is the maximal trajectory of \(X \) starting at \(\pi(p) \).

(a) The vector field \(X_{\alpha,\beta} \) lifts to the vector field \(\tilde{X}_{\alpha,\beta} : p \to (\alpha, \beta) \) on \(\mathbb{R}^2 \). Let \(p \in \mathbb{R}^2 \) be arbitrary. Then the trajectory of \(\tilde{X}_{\alpha,\beta} \) through \(p \) is \(\gamma : t \mapsto p + t(\alpha, \beta) \). By the assumption on the pair \((\alpha, \beta) \) there exists a smallest constant \(t_0 > 0 \), such that \(t_0(\alpha, \beta) \in 2\pi \mathbb{Z}^2 \). Thus the map \(\pi \circ \gamma : \mathbb{R} \to T \) is periodic with period \(t_0 \), and thus induces a map \(\gamma : S^1 \simeq \mathbb{R}/t_0\mathbb{Z} \to T \), which in fact parametrizes the trajectory of \(X_{\alpha,\beta} \) through \(\pi(p) \). Thus the trajectory is a circle. Since we can choose \(p \) freely, this holds for all trajectories of the vector field.

(b) In any case, the trajectory corresponding to \(X_{\alpha,\beta} \) through a point \(\pi(p) \) with \(p = (x_0, y_0) \) is \(\gamma : t \mapsto (x_0 + t\alpha, y_0 + t\beta) \mod 2\pi \). Suppose that \(\alpha \) and \(\beta \) are not linearly dependent over \(\mathbb{Q} \). We want to show that \(\gamma(\mathbb{R}) \) is dense in \(T \). By a suitable choice of coordinates on \(\mathbb{R}^2 \) and \(T \), we can assume that \(p = (0,0) \), in which case \(\gamma \) is a group homomorphism.

We claim that the vertical segment \(L := \{(\overline{x}, y) | y \in \mathbb{R}\} \) lies in the closure \(C := \overline{\gamma(\mathbb{R})} \). Since \(C \) is invariant under translations by elements of \(\gamma(\mathbb{R}) \), and since the elements of \(\gamma(\mathbb{R}) \) assume all possible \(x \)-coordinates, this shows that \(C \) is equal to \(T \). Consider the set of points \(P_k := \{\gamma(2\pi k/\alpha)\}_{k \in \mathbb{Z}} \). These all lie in \(L \) and since we assumed \(\alpha \) and \(\beta \) are \(\mathbb{Q} \)-linearly independent, are all distinct. They are also closed under addition, since \(\gamma \) is a group homomorphism. Let \(N > 0 \) be arbitrary. By the pigeonhole principle, there exists \(i \neq j \), such that \(P_i \) and \(P_j \) have distance at most \(2\pi/N \). Thus \(P_{i-j} \) lies on \(L \) and has positive distance at most \(2\pi/N \) from \((0,\overline{0})\). Thus every point on \(L \) has at distance at most \(2\pi/N \) from one of the points \(\{P_k(\overline{i-j})\}_{k \in \mathbb{Z}} \subset \gamma(\mathbb{R}) \). Since \(N \) was arbitrary, this proves that \(L \subset C \).