22.) a. Suppose \(x, y \in H \cap K \). Then \(x, y \in H \) implies \(x^{-1}y \in H \) since \(H \) is a subgroup. Similarly \(x^{-1}y \in K \) so \(x^{-1}y \in H \cap K \) so that \(H \cap K \) is a subgroup by the subgroup criterion. Take \(g \in G \). Then \(H \cap K \subset H \) implies \(g(H \cap K)g^{-1} \subset H \) since \(H \) is normal. Similarly, \(g(H \cap K)g^{-1} \subset K \) so \(g(H \cap K)g^{-1} \subset H \cap K \) and thus \(H \cap K \) is normal.

33.) The subgroups \(\langle s, r^2 \rangle \), \(\langle r \rangle \) and \(\langle rs, r^2 \rangle \) are all normal by virtue of being index 2. Their quotient groups all have order 2, hence are isomorphic to \(\mathbb{Z}_2 \) (the cyclic group of order 2). The subgroups of order 2 in \(D_8 \) are normal if and only if their non-identity elements are in the center (since conjugating the non-identity element cannot move it to the identity, but must move it within the subgroup, hence maps it to itself). The only non-identity element in the center of \(D_8 \) is \(r^2 \). Thus \(\langle r^2 \rangle \) is the only normal subgroup of index 4. Its quotient group has order 4, hence is either \(\mathbb{Z}_4 \) or \(\mathbb{Z}_2 \times \mathbb{Z}_2 \). In passing to the quotient, we have \(\overline{r} = r^3 \) so \(| \overline{r} | = 2 \). All other elements of \(D_8 \) had order 1 or 2 and so their images in \(D_8/\langle r^2 \rangle \) have order 1 or 2. Hence \(D_8/\langle r^2 \rangle \) has no elements of order 4, hence must be isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

4.) As suggested in the hint, we’ll first check that if \(G/Z(G) \) is cyclic, then \(G \) is abelian. Suppose \(G/Z(G) \) is cyclic. Then for \(w, y \in G \) we may write \(w = x^a z_1, y = x^b z_2 \) with \(z_1, z_2 \in Z(G) \). Then \(wy = x^a z_1 x^b z_2 = x^{a+b} z_1 z_2 = x^{a+b} z_2 z_1 = x^b z_2 x^a z_1 = yw \), where we have used, repeatedly, that the elements \(z_1, z_2 \) commute with all elements in \(G \). Hence \(wy = yw \) and \(G \) is abelian.

Applying this to the problem at hand, we may not have \(|Z(G)| = p \) since this would force \(|G/Z(G)| = q \) so \(|G/Z(G)| \) cyclic implies \(|Z(G)| = pq \), contradiction. Similarly \(|Z(G)| \neq q \). Thus, as \(|Z(G)| \) divides \(|G| = pq \), \(|Z(G)| = pq \) or \(|Z(G)| = 1 \). In the first case, \(G = Z(G) \) and \(G \) is abelian. In the second, \(Z(G) = 1 \).

8.) Take \(x \in H \cap K \). Then \(|x| \) divides both \(|H| \) and \(|K| \) so \(|x| \) divides \((|H|, |K|)\) so \(|x| = 1 \) and \(x = 1 \). Thus \(H \cap K = 1 \).

11.) Let \(\{ x_i \}_{i \in I} \) be a list of coset representatives for \(K \) in \(G \) such that \(x_i K \cap x_j K = \emptyset \) if \(i \neq j \) and \(G = \bigcup_{i \in I} x_i K \). Let \(\{ y_j \}_{j \in J} \) be a corresponding list of coset representatives of \(H \) in \(K \). I claim that \(\{ x_i y_j \}_{i \in I, j \in J} \) is a list of coset representatives of \(H \) in \(G \). Indeed,

\[
G = \bigcup_{i \in I} x_i K = \bigcup_{i \in I} x_i \left(\bigcup_{j \in J} y_j H \right) = \bigcup_{i \in I} \bigcup_{j \in J} x_i y_j H.
\]

Here, moving \(x_i \) inside the union...
is justified because \(x_i \cup_{j \in J} y_j H = \{ x_i y_j H : j \in J \} = \bigcup_{j \in J} x_i y_j H \).

Now suppose \(z \in x_i y_j H \cap x_i' y_j' H \), \(z = x_i y_j h = x_i' y_j' h' \). Since \(y_j H, y_j' H \subset K \) and \(x_k K \cap x_k' K = \emptyset \) for \(k \neq k' \) we must have \(x_i = x_i' \). Thus \(x_i^{-1} z = y_j h = y_j h' \in y_j H \cap y_j' H \), and now the condition \(y_k H \neq y_k' H \) for \(k \neq k' \) implies \(j = j' \). Thus \(x_i y_j H \cap x_i' y_j' H \neq \emptyset \) implies \(x_i = x_i' \) and \(y_j = y_j' \), so indeed, the list \(\{ x_i y_j \}_{i \in I, j \in J} \) is a list of coset representatives of \(H \) in \(G \). This shows that \(|G : H| = |I \times J| = |I| \cdot |J| = |G : K| \cdot |K : H| \) where the equality is an equality of cardinality.

14.) If \(N \) is normal and \(x \in N \) then all conjugates of \(x \) also lie in \(N \). An order 8 normal subgroup of \(S_4 \) could contain only elements of order 1, 2, or 4 (since there are no permutations in \(S_4 \) of order 8). Order 4 elements are 4 cycles while order 2 elements are either 2-cycles, or products of disjoint 2-cycles. The only order 1 element is the identity. Now any two permutations of the same cycle type are conjugate in \(S_n \) (i.e. because \(\pi(1, \sigma(1), ..., \sigma^k(1))^{-1} = (\pi(1), \sigma(\pi(1)), ..., \sigma^k(\pi(1))) \)) so a normal subgroup of order eight would have to contain some combination of all six 4-cycles, all six 2-cycles, all three products of distinct 2-cycles, and the identity. There is no combination of 6, 6, 3, and 1 that adds to 8, so it is not possible to have a normal subgroup of order 8.

A normal subgroup of order three is also impossible, since it would contain an element of order 3, that is, a three cycle, hence would have to contain all eight 3-cycles.

p. 101

3.) Suppose \(K \) is not contained in \(H \). Since \(H \) is normal, \(HK \) is a subgroup of \(G \) properly containing \(H \). Thus \(p = |G : H| = |G : HK| \cdot |HK : H| \). Now \(|HK : H| > 1 \) implies \(|HK : H| = p \) since it divides \(p \), hence \(|G : HK| = 1 \) and \(HK = G \). By the second isomorphism theorem, \(HK/H \cong K/(K \cap H) \) and so \(|HK : H| = |K : K \cap H| \), that is \(p = |G : H| = |K : K \cap H| \).

Shuffling problem

i.) Two cards: \((1 2)\)
Four cards: \((1 2 4 3)\)
Six cards: \((1 2 4)(3 6 5)\)
Eight cards: \((1 2 4 8 7 5)(3 6)\)

ii.) Answer: \(n = 2^{k-1} - 1 \).
Proof: On shuffle \(s \), card \(j \) moves to position \(2^s j \mod 2n + 1 \). The condition that the deck returns to its original configuration after \(k \) perfect shuffles is equivalent to \(2^k \equiv 1 \mod 2n + 1 \).
mod $2n + 1$. Indeed, if this holds then j is mapped to $j2^k \equiv j \mod 2n + 1$, while if $2^k \not\equiv 1 \mod 2n + 1$ then 1 is mapped to $2^k \equiv r \mod 2n + 1$ with $r \not\equiv 1$ and hence 1 is not mapped to its original position.

Suppose $n = 2^{k-1} - 1$ so that $2n + 1 = 2^k - 1$. Certainly $2^k \equiv 1 \mod 2^{k-1}$ so $n = 2^{k-1} - 1$ is a choice for which the deck returns to its original position after k shuffles. (Incidently, for such choice of n, the deck does not return to its original configuration in fewer than k shuffles because $2^j \equiv 1 \mod 2^k - 1$ implies $2^k - 1$ divides $2^j - 1$ so $j \geq k$.) Now suppose we have a deck of $m > 2^{k-1} - 1$ cards. Then after k shuffles, if the first card is in its original position we must have $2^k \equiv 1 \mod 2m + 1$, that is, $2m + 1$ divides $2^k - 1$. But this is impossible, because $m > 2^{k-1} - 1$ implies $2m + 1 > 2^k - 1$. Thus the choice $n = 2^{k-1} - 1$ is maximal.