1. (a) (12 pts) For each of the following subsets of \mathbf{F}^{3}, determine whether it is a subspace of \mathbf{F}^{3} :
i. $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}^{3}: x_{1}+2 x_{2}+3 x_{3}=0\right\}$

This is a subspace of \mathbf{F}^{3}. To handle this and part iv) at the same time, let us consider the set

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}^{3}: a x_{1}+b x_{2}+c x_{3}=0\right\}
$$

and let us check that it is a subspace for any scalars $a, b, c .(0,0,0)$ is in this set because $a 0+0 b+0 c=0$. If $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are two vectors in this set, then

$$
\begin{aligned}
a\left(x_{1}+y_{1}\right)+b\left(x_{2}+y_{2}\right)+c\left(x_{3}+y_{3}\right) & =\left(a x_{1}+b x_{2}+c x_{3}\right)+\left(a y_{1}+b y_{2}+c y_{3}\right) \\
& =0+0=0
\end{aligned}
$$

shows that it is closed under addition. Finally, let α be a scalar. This way,

$$
a\left(\alpha x_{1}\right)+b\left(\alpha x_{2}\right)+c\left(\alpha x_{3}\right)=\alpha\left(a x_{1}+b x_{2}+c x_{3}\right)=\alpha \cdot 0=0
$$

and it is also closed under scalar multiplication.
ii. $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}^{3}: x_{1}+2 x_{2}+3 x_{3}=4\right\}$.

This is not a subspace, given that $(0,0,0)$ is not an element of this set.
iii. $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}^{3}: x_{1} x_{2} x_{3}=0\right\}$

This is not a subspace, given that it is not closed under addition. $(1,1,0)$ and $(0,1,1)$ both belong to this set, but their sum $(1,2,1)$ does not.
iv. $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}^{3}: x_{1}=5 x_{3}\right\}$

This is a subspace according to the analysis on part i).
(b) (4 pts) Give an example of a nonempty subset $U \subseteq \mathbf{R}^{2}$ such that U is closed under addition and under taking inverses (meaning $-u \in U$ whenever $u \in U)$, but U is not a subspace of \mathbf{R}^{2}.

Solution: Let

$$
U=\left\{(a, b) \in \mathbf{R}^{2} \mid a \in \mathbf{Z} \text { and } b=0\right\}
$$

that is, U is the set of elements of the form $(0,0),(1,0),(-1,0),(2,0),(-2,0), \ldots$ This set is closed under addition and additive inverses (since these statements hold for \mathbf{Z}) but is not a subspace of \mathbf{R}^{2}. The reason being, that it is not closed under scalar multiplication:

$$
\frac{1}{2} \in \mathbf{F}, \quad(1,0) \in U \quad \text { but } \frac{1}{2} \cdot(1,0)=(1 / 2,0) \notin U
$$

2. (15 pts) Let $\mathcal{P}_{n}(\mathbf{F})$ be the space of all polynomials over \mathbf{F} of degree less than or equal to n. Prove or disprove: there is a basis $\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$ of $\mathcal{P}_{3}(\mathbf{F})$ such that none of the polynomials $p_{0}, p_{1}, p_{2}, p_{3}$ has degree 2 .

Solution: This is true. Recall that $\operatorname{dim}\left(\mathcal{P}_{3}(\mathbf{F})\right)=4$ with natural basis $\left\{1, z, z^{2}, z^{3}\right\}$, so if we can find a list of 4 linearly independent polynomials of degree at most 3 , this will give us a basis for $\mathcal{P}_{3}(\mathbf{F})$. Notice that if $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent vectors in a vector space V, then so are $v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}, v_{1}+v_{2}+v_{3}+v_{4}$ (this is true not only for 4 but for any integer). To see this, suppose that there are scalars $a_{1}, \ldots, a_{4} \in \mathbf{F}$ so that

$$
0_{V}=a_{1} v_{1}+a_{2}\left(v_{1}+v_{2}\right)+a_{3}\left(v_{1}+v_{2}+v_{3}\right)+a_{4}\left(v_{1}+v_{2}+v_{3}+v_{4}\right)
$$

This way

$$
\begin{aligned}
0_{V} & =a_{1} v_{1}+a_{2}\left(v_{1}+v_{2}\right)+a_{3}\left(v_{1}+v_{2}+v_{3}\right)+a_{4}\left(v_{1}+v_{2}+v_{3}+v_{4}\right) \\
& =\left(a_{1}+a_{2}+a_{3}+a_{4}\right) v_{1}+\left(a_{2}+a_{3}+a_{4}\right) v_{2}+\left(a_{3}+a_{4}\right) v_{3}+a_{4} v_{4}
\end{aligned}
$$

and since $v_{1}, \ldots v_{4}$ are linearly independent, this yields the system of equations

$$
\begin{aligned}
& 0=a_{1}+a_{2}+a_{3}+a_{4} \\
& 0=a_{2}+a_{3}+a_{4} \\
& 0=a_{3}+a_{4} \\
& 0=a_{4}
\end{aligned}
$$

which can be easily solved and implies that $a_{1}=\cdots=a_{4}=0$.
With this in mind, take $v_{1}=z^{3}, v_{2}=z^{2}, v_{3}=z, v_{4}=1$. Given that $\left\{v_{1}, \ldots, v_{4}\right\}$ is a basis for $\mathcal{P}_{3}(\mathbf{F})$ then so is

$$
\left\{z^{3}, z^{3}+z^{2}, z^{3}+z^{2}+z, z^{3}+z^{2}+z+1\right\}
$$

and the claim is proven since all of these polynomials have degree 3 .
3. (15 pts) Let V and W be vector spaces over \mathbf{F}, with V being finite dimensional. Suppose that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \operatorname{Null}(T)=\{0\}$ and $\operatorname{Range}(T)=\{T u: u \in U\}$.

Solution: Since $\operatorname{Null}(T)$ is a subspace of the finite dimensional space V, then there it has a linear complement U. That is, U is a subspace of V so that $\operatorname{Null}(T) \oplus U=V$. This way, $\operatorname{Null}(T) \cap U=\{0\}$ and every $v \in V$ can be written as $v=n+u$ for $n \in \operatorname{Null}(T)$ and $u \in U$. Thus

$$
\begin{aligned}
\operatorname{Range}(T) & =\{T(v): v \in V\} \\
& =\{T(u+n): n \in \operatorname{Null}(T) \text { and } u \in U\} \\
& =\{T(u)+T(n): n \in \operatorname{Null}(T) \text { and } u \in U\} \\
& =\{T(u): n \in \operatorname{Null}(T) \text { and } u \in U\} \\
& =\{T(u): u \in U\}
\end{aligned}
$$

4. (16 pts)
(a) Let U be a the subspace of \mathbf{F}^{5} defined by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{F}^{5}: x_{1}=x_{2}=x_{3}, \text { and } x_{5}=6 x_{4}\right\}
$$

Find a basis for U and compute its dimension.
Solution: Notice that $\left(x_{1}, \ldots, x_{5}\right) \in U$ if and only if

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\left(x_{1}, x_{1}, x_{1}, x_{4}, 6 x_{4}\right) \\
& \left.=x_{1}(1,1,1,0,0)+x_{4}(0,0,0,1,6)\right)
\end{aligned}
$$

and therefore

$$
U=\operatorname{Span}\{(1,1,1,0,0),(0,0,0,1,6)\}
$$

For the set of vectors $(1,1,1,0,0),(0,0,0,1,6)$ to be a basis for U, the only thing we need to make sure is that they are linearly independent. Since neither of them is a scalar multiple of the other, we get that they are a basis for U and therefore $\operatorname{dim}(U)=2$.
(b) Let U be as in part (a). Prove that there does not exist a linear map from \mathbf{F}^{5} to \mathbf{F}^{2} whose Null space is U.

Solution: Let us proceed by contradiction assuming that there exists a linear map $T: \mathbf{F}^{5} \longrightarrow \mathbf{F}^{2}$, so that $\operatorname{Null}(T)=U$. If this were the case, by the rank-Nullity theorem we would have that

$$
\begin{aligned}
\operatorname{dim}\left(\mathbf{F}^{5}\right) & =\operatorname{dim}(N u l l(T))+\operatorname{dim}(\operatorname{Range}(T)) \\
5 & =2+\operatorname{dim}(\operatorname{Range}(T))
\end{aligned}
$$

and therefore

$$
3=\operatorname{dim}(\operatorname{Range}(T)) \leq \operatorname{dim}\left(\mathbf{F}^{2}\right)=2
$$

which is a contradiction.
5. (18 pts) Let V and W be vector spaces over \mathbf{F}, with W being finite dimensional. Suppose that $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that the composition $S \circ T$ is the identity map on V.

Solution: For the first implication, let us assume that $T \in \mathcal{L}(V, W)$ is an injective linear transformation. Our goal is to construct a linear map $S \in \mathcal{L}(W, V)$ so that $S \circ T$ is the identity on V. Since by definition

$$
T: V \longrightarrow \operatorname{Range}(T)
$$

is surjective, then by hypothesis it is also injective, and therefore invertible (Notice the change in the target space). Let $L: \operatorname{Range}(T) \longrightarrow V$ be such inverse. Since W is finite dimensional, then by a homework problem it is possible to extend L to a linear transformation

$$
S: W \longrightarrow V
$$

so that $S(w)=L(w)$ for all $w \in \operatorname{Range}(T)$. Notice that on $\operatorname{Range}(T), S$ operates as the inverse of T and therefore

$$
S \circ T(v)=L \circ T(v)=v
$$

for all $v \in V$.

Let us now assume that there exists $S \in \mathcal{L}(W, V)$ so that $S \circ T$ is the identity on V and let us show that T must be injective. Recall that injectivity is the same as $\operatorname{Null}(T)=\{0\}$. If $v \in \operatorname{Null}(T)$ then $T(v)=0_{W}$ and therefore

$$
v=S \circ T(v)=S(T v)=S\left(0_{W}\right)=0_{V}
$$

which shows that T is injective.

