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1. (a) (12 pts) For each of the following subsets of F3, determine whether it is a
subspace of F3:

i. {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0}
This is a subspace of F3. To handle this and part iv) at the same time,
let us consider the set

{(x1, x2, x3) ∈ F3 : ax1 + bx2 + cx3 = 0}

and let us check that it is a subspace for any scalars a, b, c. (0, 0, 0) is in
this set because a0 + 0b + 0c = 0. If (x1, x2, x3) and (y1, y2, y3) are two
vectors in this set, then

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = (ax1 + bx2 + cx3) + (ay1 + by2 + cy3)

= 0 + 0 = 0

shows that it is closed under addition. Finally, let α be a scalar. This
way,

a(αx1) + b(αx2) + c(αx3) = α(ax1 + bx2 + cx3) = α · 0 = 0

and it is also closed under scalar multiplication.

ii. {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 4}.
This is not a subspace, given that (0, 0, 0) is not an element of this set.

iii. {(x1, x2, x3) ∈ F3 : x1x2x3 = 0}
This is not a subspace, given that it is not closed under addition. (1, 1, 0)
and (0, 1, 1) both belong to this set, but their sum (1, 2, 1) does not.

iv. {(x1, x2, x3) ∈ F3 : x1 = 5x3}
This is a subspace according to the analysis on part i).

(b) (4 pts) Give an example of a nonempty subset U ⊆ R2 such that U is
closed under addition and under taking inverses (meaning −u ∈ U whenever
u ∈ U), but U is not a subspace of R2.

Solution: Let
U = {(a, b) ∈ R2 | a ∈ Z and b = 0}

that is, U is the set of elements of the form (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), . . .
This set is closed under addition and additive inverses (since these statements
hold for Z) but is not a subspace of R2. The reason being, that it is not
closed under scalar multiplication:

1

2
∈ F, (1, 0) ∈ U but

1

2
· (1, 0) = (1/2, 0) /∈ U.
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2. (15 pts) Let Pn(F) be the space of all polynomials over F of degree less than or
equal to n. Prove or disprove: there is a basis (p0, p1, p2, p3) of P3(F) such that
none of the polynomials p0, p1, p2, p3 has degree 2.

Solution: This is true. Recall that dim(P3(F)) = 4 with natural basis {1, z, z2, z3},
so if we can find a list of 4 linearly independent polynomials of degree at most 3,
this will give us a basis for P3(F). Notice that if v1, v2, v3, v4 are linearly indepen-
dent vectors in a vector space V , then so are v1, v1+v2, v1+v2+v3, v1+v2+v3+v4

(this is true not only for 4 but for any integer). To see this, suppose that there
are scalars a1, . . . , a4 ∈ F so that

0V = a1v1 + a2(v1 + v2) + a3(v1 + v2 + v3) + a4(v1 + v2 + v3 + v4)

This way

0V = a1v1 + a2(v1 + v2) + a3(v1 + v2 + v3) + a4(v1 + v2 + v3 + v4)

= (a1 + a2 + a3 + a4)v1 + (a2 + a3 + a4)v2 + (a3 + a4)v3 + a4v4

and since v1, . . . v4 are linearly independent, this yields the system of equations

0 = a1 + a2 + a3 + a4

0 = a2 + a3 + a4

0 = a3 + a4

0 = a4

which can be easily solved and implies that a1 = · · · = a4 = 0.
With this in mind, take v1 = z3, v2 = z2, v3 = z, v4 = 1. Given that {v1, . . . , v4}
is a basis for P3(F) then so is

{z3 , z3 + z2 , z3 + z2 + z , z3 + z2 + z + 1}

and the claim is proven since all of these polynomials have degree 3. �
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3. (15 pts) Let V and W be vector spaces over F, with V being finite dimensional.
Suppose that T ∈ L(V, W ). Prove that there exists a subspace U of V such that
U ∩Null(T ) = {0} and Range(T ) = {Tu : u ∈ U}.

Solution: Since Null(T ) is a subspace of the finite dimensional space V , then
there it has a linear complement U . That is, U is a subspace of V so that
Null(T )⊕U = V . This way, Null(T )∩U = {0} and every v ∈ V can be written
as v = n + u for n ∈ Null(T ) and u ∈ U . Thus

Range(T ) = {T (v) : v ∈ V }

= {T (u + n) : n ∈ Null(T ) and u ∈ U}

= {T (u) + T (n) : n ∈ Null(T ) and u ∈ U}

= {T (u) : n ∈ Null(T ) and u ∈ U}

= {T (u) : u ∈ U}
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4. (16 pts)

(a) Let U be a the subspace of F5 defined by

U = {(x1, x2, x3, x4, x5) ∈ F5 : x1 = x2 = x3, and x5 = 6x4}

Find a basis for U and compute its dimension.

Solution: Notice that (x1, . . . , x5) ∈ U if and only if

(x1, x2, x3, x4, x5) = (x1, x1, x1, x4, 6x4)

= x1(1, 1, 1, 0, 0) + x4(0, 0, 0, 1, 6))

and therefore
U = Span{(1, 1, 1, 0, 0), (0, 0, 0, 1, 6)}

For the set of vectors (1, 1, 1, 0, 0), (0, 0, 0, 1, 6) to be a basis for U , the only
thing we need to make sure is that they are linearly independent. Since
neither of them is a scalar multiple of the other, we get that they are a basis
for U and therefore dim(U) = 2. �

(b) Let U be as in part (a). Prove that there does not exist a linear map from
F5 to F2 whose Null space is U .

Solution: Let us proceed by contradiction assuming that there exists a
linear map T : F5 −→ F2, so that Null(T ) = U . If this were the case, by
the rank-Nullity theorem we would have that

dim(F5) = dim(Null(T )) + dim(Range(T ))

5 = 2 + dim(Range(T ))

and therefore
3 = dim(Range(T )) ≤ dim(F2) = 2

which is a contradiction. �
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5. (18 pts) Let V and W be vector spaces over F, with W being finite dimensional.
Suppose that T ∈ L(V, W ). Prove that T is injective if and only if there exists
S ∈ L(W, V ) such that the composition S ◦ T is the identity map on V .

Solution: For the first implication, let us assume that T ∈ L(V, W ) is an injec-
tive linear transformation. Our goal is to construct a linear map S ∈ L(W, V ) so
that S ◦ T is the identity on V . Since by definition

T : V −→ Range(T )

is surjective, then by hypothesis it is also injective, and therefore invertible (Notice
the change in the target space). Let L : Range(T ) −→ V be such inverse. Since
W is finite dimensional, then by a homework problem it is possible to extend L
to a linear transformation

S : W −→ V

so that S(w) = L(w) for all w ∈ Range(T ). Notice that on Range(T ), S operates
as the inverse of T and therefore

S ◦ T (v) = L ◦ T (v) = v

for all v ∈ V .

Let us now assume that there exists S ∈ L(W, V ) so that S ◦T is the identity on
V and let us show that T must be injective. Recall that injectivity is the same as
Null(T ) = {0}. If v ∈ Null(T ) then T (v) = 0W and therefore

v = S ◦ T (v) = S(Tv) = S(0W ) = 0V

which shows that T is injective. �
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