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Abstract

The interface between the study of the topology of differentiable manifolds and algebraic

topology has been one of the richest areas of work in topology since the 1950’s. In these notes I

will focus on one aspect of that interface: the problem of studying embeddings and immersions

of manifolds using homotopy theoretic techniques. I will discuss the history of this problem,

going back to the pioneering work of Whitney, Thom, Pontrjagin, Wu, Smale, Hirsch, and

others. I will discuss the historical applications of this homotopy theoretic perspective, going

back to Smale’s eversion of the 2-sphere in 3-space. I will then focus on the problems of finding

the smallest dimension Euclidean space into which every n-manifold embeds or immerses. The

embedding question is still very much unsolved, and the immersion question was solved in the

1980’s. I will discuss the homotopy theoretic techniques involved in the solution of this problem,

and contributions in the 60’s, 70’s and 80’s of Massey, Brown, Peterson, and myself. I will also

discuss questions regarding the best embedding and immersion dimensions of specific manifolds,

such has projective spaces. Finally, I will end by discussing more modern approaches to studying

spaces of embeddings due to Goodwillie, Weiss, and others.
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Introduction

In these notes we will discuss topics at the interface between the study of differentiable manifolds

and of algebraic topology. This interface has been one of the richest areas of study in topology since

the 1950’s, with the pioneering work of R. Thom, L. Pontrjagin, J. Milnor, S. Smale, S. Novikov,

M. Atiyah, R. Bott, F. Hirzebruch, as well as many others.

At one time the fields of Differential Topology and Algebraic Topology were separate and some-

what disjunct. Now there is no clear boundary between these fields. The study of manifolds has

progressed remarkably with the use of homotopy theoretic techniques, and conversely, the study of

manifolds has inspired algebraic topologists to develop and use techniques, including recent ones,

that have found applications not only to differential topology, but to differential geometry, algebraic

geometry, number theory, and even statistics and data analysis.

The focus of these notes will be on the following types of questions: Given two C∞ manifolds M

and N , does M embed in N? How can one tell when two embeddings are isotopic? More generally,

what can one say about the topology of the space of embeddings, Emb(M,N)? These questions are

quite hard, and in the more than 75 years since Whitney’s pioneering work on embeddings, progress

has been quite limited. There are also analogous questions about immersions, and there has been

much more success in their study, primarily because, due to powerful results of Smale and Hirsch

[38] [39] [25], these questions can be translated into questions in homotopy theory, and doing so

brings powerful tools to bear.

These notes are organized as follows. We begin in Section 1 by discussing how vector bundle

theory can be used to find obstructions to the existence of embeddings and immersions. More

specifically, notice that if an embedding or an immersion of one manifold into another exists, then

there will be an associated normal bundle. This is a vector bundle of fiber-dimension equal to the

codimension of the embedding or immersion, and it satisfies some very specific properties. Therefore
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if one can show that no vector bundle of the right fiber-dimension satisfying these properties exists,

then one would have an obstruction to the existence of the embedding or immersion. We then

describe the remarkable result of Smale and Hirsch which essentially says that for immersions, the

normal bundle obstruction is a complete obstruction to the existence of the immersion. As an

application we discuss the first, and probably still the most startling of the applications of this

result, Smale’s eversion of S2 in R3. That is to say, Smale’s theorem says that one can turn the

sphere in R3 “inside out” through a one-parameter family of immersions.

In Section 2 we begin our focus of studying embeddings and immersions of closed manifolds into

Euclidean space. We recall Whitney’s famous embedding and immersion theorems, and describe

how, using Smale-Hirsch theory for immersions and the study of classifying spaces, questions about

immersions of manifolds can be translated into homotopy theoretic questions. In Section 3 we begin

our focus on the question of finding the smallest number φ(n) with the property every closed, smooth,

n-dimensional manifold immerses in Rn+φ(n). We describe Massey’s theorem, in which he uses a

characteristic class argument to show that φ(n) ≥ n−α(n), where α(n) is the number of ones in the

binary expansion of n. We in particular show that this result is best possible by explicitly describing

n-dimensional manifolds that immerse in R2n−α(n) but do not immerse in R2n−α(n)−1. This led

Massey to conjecture that φ(n) = n− α(n), which is to say that every closed n-manifold immerses

in R2n−α(n). This became known as the “Immersion Conjecture”, and we outline its solution in the

remainder of Section 3 and Section 4. We begin by recalling Thom’s cobordism theorem, and show

how it can be used to prove a theorem of R. Brown stating that the immersion conjecture is true “up

to cobordism”. That is, every closed n-manifold is cobordant to one that immerses in R2n−α(n). We

then describe the Brown - Peterson program for the solution of the immersion conjecture and their

remarkable contributions, which ultimately reduced the conjecture to the study of the homotopy type

of particular spaces called “BO/In” which in some sense encode all the normal bundle obstructions

to the immersion conjecture being true. We then describe the proof of the immersion conjecture

given by the author in the early 1980’s which studies the homotopy types of the Brown-Peterson

space BO/In in great detail.

We begin Section 5 by describing characteristic class obstructions that have been computed

for manifolds with structure e.g orientation, almost complex structures, and spin structures. This

includes old work of Massey-Peterson, Papastavridis, and Koonce, as well as some quite recent

work of Davis and Wilson. The author is grateful to Donald Davis for bringing some of this work

to his attention. We then turn to immersion questions about specific manifolds, most notably

projective spaces, and describe a strong nonimmersion theorem due to Davis. We finish with a

short a description of a relatively new kind of homotopy theoretical application to the study of

embeddings: the “Goodwillie-Weiss embedding calculus”. After giving a brief description of the

theory, we discuss a variety of results obtained over the last 20 years using this theory.

The author is grateful to Professor S.T Yau for his invitation to give a lecture on this subject

in the Harvard Center of Mathematical Sciences and Applications Math-Science Literature Lecture
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Series, and his encouragement to write these notes.

These notes are dedicated to Professor E. H. Brown Jr. in recognition of his many contributions

to both algebraic and differential topology, and for putting up with the author as his PhD advisee

in the mid-1970’s.

1 Vector bundle obstructions to embeddings and immersions

Let Mn and Nn+k be smooth (C∞) manifolds of dimensions n and n + k respectively. We will

assume k ≥ 1. Recall that a smooth embedding of Mn into Nn+k is a C∞-differentiable map which

we denote by

e : Mn ↪→ Nn+k

that maps Mn diffeomorphically onto its image. Associated to such an embedding is a k-dimensional

normal bundle νke →Mn. A conceptually easy way to think of this normal bundle is by first endowing

the ambient manifold Nn+k with a Riemannian metric, and then defining the normal space νe(x)

for x ∈Mn, to be the orthogonal complement of the image of the the n-dimensional tangent space,

De(TxM
n) in Te(x)N

n+k. We write

νe(x) = De(TxM
n)⊥ ⊂ Te(x)N

n+k.

Notice that a Riemannian metric is not crucial in the definition of this bundle, since there is an

isomorphism from the orthogonal complement to the quotient space,

De(TxM
n)⊥ ∼= Te(x)N

n+k/De(TxM
n).

Therefore the normal bundle could be defined as the quotient bundle e∗(TNn+k)/TMn , where

e∗(TNn+k) is the pull-back of the tangent bundle of Nn+k to Mn via the embedding e. Notice

that the definition of this quotient bundle does not require the use of a metric. This in particular

implies that the more conceptual definition, using a choice of metric, has an isomorphism type that

is independent of that choice.

Since the normal bundle of an embedding e : Mn ↪→ Nn+k can be viewed as the orthogonal

complement bundle to the image of the tangent bundle TMn inside TNn+k, it satisfies the following

equation of vector bundles over Mn:

TMn ⊕ νke ∼= e∗(TNn+k).

Since the isomorphism type of a pull-back vector bundle only depends on the homotopy type of the

map being pulled back, we can conclude the following:

Proposition 1. If a map f : Mn → Nn+k is homotopic to an embedding, then there exists a

k-dimensional vector bundle ν →Mn satisfying the equation

TMn ⊕ ν ∼= f∗(TNn+k).
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If a vector bundle ν with this property exists we call it a “virtual normal bundle”.

Thus the nonexistence of a virtual normal bundle is an “obstruction” to the map f : Mn → Nn+k

being homotopic to an embedding.

Recall that an immersion j : Mn # Nn+k is a differentiable map whose derivative is a bundle

monomorphism. That is, at every x ∈Mn,

Djx : TxM
n → Tj(x)N

n+k

is a linear monomorphism. Recall that as a consequence of the implicit function theorem, an immer-

sion is a local embedding. This means that around every x ∈ Mn, there is an open neighborhood

Ux ⊂Mn so that the restriction of j to Ux is an embedding j : Ux ↪→Mn. In particular this means

that immersions have normal bundles as well. Again, we can define it as the quotient bundle

νkj = j∗(TNn+k)/TMn,

which again is isomorphic to the orthogonal complement bundle defined just as it is for embeddings.

Thus the nonexistence of a virtual normal bundle is an obstruction to the existence of an immersion,

just as it is to the existence of an embedding. That is, we can strengthen Proposition 1 to include

immersions as well as embeddings. But a theorem of Hirsch and Smale, which we examine more

closely in the next section, says that in the case of immersions, the virtual normal bundle obstruction

is a complete obstruction to the existence of an immersion. In particular the following theorem holds:

Theorem 2. (Hirsch and Smale, 1959 [25][38]) If Mn is a closed, smooth n-manifold, with n ≥ 2,

and Nn+k is any smooth (n + k)-dimensional manifold with k ≥ 1, then a map f : Mn → Nn+k

is homotopic to an immersion if and only if there exists a k-dimensional vector bundle ν → Mn

satisfying the equation

TMn ⊕ ν ∼= f∗(TNn+k).

In other words, for every virtual normal ν there is an immersion f̃ : Mn # Nn+k which is homotopic

to f , whose normal bundle νf̃ is isomorphic to ν. Furthermore, two immersions j0 : Mn # Nn+k

and j1 : Mn # Nn+k are isotopic (i.e there is a continuous, one parameter family of immersions

ht : Mn # Nn+k, t ∈ [0, 1], so that h0 = j0, h1 = j1) if and only if their normal bundles are

isomorphic νj0
∼= νj1 .

As we will see in the next section, Hirsch and Smale actually proved a generalization of this

theorem that is extremely powerful in its applications. But an important special case of the above

theorem occurs when the target (ambient) manifold is Rn+k. Since all maps f : Mn → Rn+k are

homotopic to a constant map, and the tangent bundle of Euclidean space is trivial, we have the

following corollary of Theorem 2.
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Corollary 3. A closed smooth n-dimensional manifold Mn admits an immersion into Rn+k if and

only if there is a k-dimensional vector bundle νk over Mn with the property that

TMn ⊕ νk ∼= εn+k.

Here εn+k is the trivial (n+ k)-dimensional bundle, εn+k = Mn ×Rn+k. We refer to such a bundle

νk as a “k-dimensional inverse” of the tangent bundle.

Furthermore, isotopy classes of immersions Mn # Rn+k are in bijective correspondence with

isomorphism classes of k-dimensional inverse bundles of TMn.

Comments. Using standard vector bundle theory and in particular the theory of classifying spaces

that we will describe in the next section, one can show that any finite dimensional vector bundle

ζ → X(n) over an n-dimensional finite CW -complex X(n) has a k-dimensional inverse νk → X(n)

for k ≥ n. Moreover any two such k-dimensional inverses are isomorphic if k ≥ n + 1. Now by

Morse theory one knows that any closed n-dimensional manifold is homotopy equivalent to an n-

dimensional, finite CW -complex. Thus Corollary 3 implies that every closed n-manifold immerses

in R2n, and any two immersions in Rn+k for k > n are isotopic.

2 Foundational work of Whitney, Smale, and Hirsch.

2.1 Smale-Hirsch theory, and “turning a sphere inside out”

As mentioned in the last section, an amazing fact due to Smale and Hirsch (late 1950’s) is that the

normal bundle is a complete invariant of an immersion.

We will now describe a more general theorem that they proved. To do so, throughout this

section, Mn will denote a smooth (C∞) closed, n-dimensional manifold with n ≥ 2, and Nn+k will

be any smooth manifold of dimension n + k with k ≥ 1. Consider the space of all immersions,

Imm(Mn, Nn+k). This space is topologized as a subspace of the space of continuous maps from

Mn to Nn+k, which in turn is endowed with the compact-open topology.

As we recalled earlier, the derivative of an immersion j : Mn # Nn+k. is a bundle monomorphism

between their tangent bundles

Dj : TMn → TNn+k.

So we now consider the space of all bundle monomorphisms, Mono(TMn, TNn+k). Recall that a

bundle monomorphism between any two bundles ζ → X and ξ → Y is a pair of maps f : X → Y

and φ : ζ → ξ that make the following diagram commute

ζ
φ−−−−→ ξy y

X −−−−→
f

Y
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and where φ is a linear monomorphism on each fiber, φx : ζx ↪→ ξx. We therefore topologize the space

of bundle monomorphisms Mono(ζ, ξ) to be a subspace of the product of the space of continuous

maps from X to Y , and the space of continuous maps from ζ to ξ, both of which are endowed with

the compact-open topology.

With these topologies, one may think of the derivative as a continuous map

D : Imm(Mn, Nn+k)→Mono(TMn, TNn+k).

The following amazing theorem was proved by Smale [38] in the case when Mn is a sphere, and

then generalized by Hirsch [25].

Theorem 4. (Hirsch and Smale, [38][25] (1959)). The deriviative map

D : Imm(Mn, Nn+k)→Mono(TMn, TNn+k)

f → Df : TMn ↪→ TNn+k

is a (weak) homotopy equivalence.

Here are a couple simple consequences of this result:

Consequences:

1. The space Imm(Mn, Nn+k) is nonempty if and only if the space Mono(TMn, TNn+k) is

nonempty. In particular if one can, using vector bundle theory, find a bundle monomorphism between

their tangent bundles, then one knows their exists an immersion of Mn into Nn+k.

2. The fact that the path components of Imm(Mn, Nn+k) and of Mono(TMn, TNn+k) are in

bijective correspondence means that two immersions j1 : Mn # Nn+k and j2 : Mn # Nn+k are

isotopic (which is equivalent to them living in the same path component of Imm(Mn, Nn+k)), if

and only if their derivatives are in the same path component of Mono(TMn, TNn+k). Furthermore

this is true if and only if the pull-back bundles over Mn, j∗1 (TNn+k) and j∗2 (TNn+k) are isomorphic.

Now consider the special case when the target manifold is Euclidean space, Imm(Mn,Rn+k). In

this case, the derivative of an immersion j : Mn # Rn+k assigns to every point x ∈ Mn a linear

monomorphism, TxM
n ↪→ Rn+k. We can think of this construction in terms of a fiber bundle

Vn,n+k → V(TMn)
p−→Mn

Here V(TMn) is the space of pairs (x, u), where x ∈ Mn and u : TxM
n → Rn+k is a linear

monomorphism. The map p : V(TMn)→Mn is defined by p(x, u) = x. Notice that the fibers of this

fiber bundle are all homeomorphic to the Stiefel manifold Vn,n+k of all linear monomorphisms Rn ↪→
Rn+k. In this case, since Rn+k is contractible, the space of bundle monomorphismsMono(Mn,Rn+k)

is homotopy equivalent to the space of sections of this fiber bundle, which we denote by Γ(V(TMn)).

This allows one to compute the homotopy type of the space of bundle monomorphisms, and thus by
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Theorem 4 the space of immersions of Mn into Rn+k in terms of the homotopy type of the Stiefel

manifold.

In particular Smale proved the important special case of Theorem 4 when Mn = Sn and Nn+k =

Rn+k, and a consequence of which became one of the most celebrated works of the 20th century. He

proved the following:

Theorem 5. (Smale [38] (1958)) The set of isotopy classes of immersions of Sn into Rn+k is in

bijective correspondence with the set of path components, π0(Imm(Sn,Rn+k)), and for k > 1,

π0(Imm(Sn,Rn+k)) ∼= πn(Vn,n+k).

For k = 1, there is a surjection

πn(Vn,n+1)→ π0(Imm(Sn,Rn+1)).

Moreover Vn,n+1 ' SO(n+ 1), the special orthogonal group.

Smale then observed that since SO(3) is homeomorphic to the projective space, RP3, and since

its universal covering space is the sphere S3, one knows that the second homotopy group is trivial

π2(V2,3) = π2(SO(3)) ∼= π2(RP3) ∼= π2(S3) = 0.

From this theorem one can conclude that the space Imm(S2,R3) is path connected. This means

that any two immersions of S2 in R3 are isotopic! In particular one can isotop the identity immersion

of S2 as the unit sphere to its opposite (t1, t2, t3) → (−t1,−t2,−t3). Such an isotopy (or regular

homotopy) is called an “eversion” of S2. So one can “turn a sphere inside out!”.

Remarks:

1. The Hirsch-Smale theorem was an early example of a type of theorem that is now known as

an “h- principle”. Over the years these have been studied and greatly generalized by Gromov,

Eliashberg, Mishachev, Vassiliev, and many others.

2. This homotopy theoretic argument for the existence of an eversion of S2 in R3 is, of course,

nonconstructive. In fact in Smale’s paper he remarked that he did not know how such an

eversion might be constructed. However explicit constructions of eversions were eventually

discovered by Shapiro, Phillips, Morin, Thurston, and others.

2.2 Whitney’s embedding and immersion theorems, and translating im-

mersion questions into homotopy theory

Recall Whitney’s famous embedding and immersion theorem:
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Theorem 6. (H. Whitney [47], [48] (1944)).

• Let Mn be a closed n-dimensional manifold, n ≥ 2. Then there is an embedding e : Mn ↪→ R2n.

• Any two embeddings of Mn into R2n+k for k ≥ 1 are isotopic.

• There is an immersion j : Mn # R2n−1.

• Any two immersions of Mn into R2n+k for k > 0 are isotopic.

Let e(n) be the smallest integer so that every closed n-manifold embeds in Rn+e(n). By Whitney’s

theorem one knows that e(n) ≤ n. Notice that for n = 1 or 2, e(n) = n as the circle embedded

in R2 and the Klein bottle embedded in R4 demonstrate. More generally, Whitney also knew that

RP2k

does not embed in R2k+1−1 by a characteristic class argument. (This was, perhaps, the earliest

characteristic class argument regarding embeddings.) So Whitney’s theorem is the best possible in

dimensions equal to a power of 2.

Whitney’s result can be improved to e(n) ≤ n − 1 unless n is a power of 2. This is a result of

Haefliger and Hirsch [26], [24] (for n > 4) and C. T. C. Wall [43] (for n = 3). In general, though,

unless n is a power of 2, a closed formula for e(n) is still not known, and it is a difficult and deep

question.

Consider the corresponding question about immersions. Let φ(n) be the smallest integer so that

every closed n-manifold immerses in Rn+φ(n).

By the Hirsch-Smale Theorem 4, this can be translated to a question about vector bundle theory.

Namely, we have the following corollary:

Corollary 7. (Hirsch-Smale) φ(n) is equal to the smallest integer so that Mono(TMn, TRn+φ(n))

is nonempty for every closed n-manifold Mn.

Given a bundle monomorphism j : TMn → TRn+k and a point x ∈ Mn, consider the linear

embedding jx : TxM
n ↪→ Rn+k. Let νx ⊂ Rn+k be the orthogonal complement of the image of

jx. Then the collection {νx : x ∈ Mn} defines a k -dimensional vector bundle ν → Mn with the

property that

TMn ⊕ ν ∼= εn+k

where εn+k is the trivial bundle of dimension n+ k. In other words, ν is a k-dimensional inverse of

TMn.

Hirsch-Smale theory says that this “virtual normal bundle” ν →Mn is isomorphic to an honest

normal bundle νf →Mn of an immersion

f : Mn # Rn+k.

Corollary 8. (Hirsch-Smale)
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• Mn immerses in Rn+k if and only if Mn has a “virtual normal bundle” of dimension k.

• φ(n) is equal to the smallest integer for which every closed n-manifold Mn admits a φ(n)-

dimensional virtual normal bundle (i.e a φ(n) dimensional inverse to TMn).

Hirsch-Smale theory (Theorem 4) thus reduces the problem of finding the best Euclidean space

immersion dimension for any n-manifold (φ(n)) to a question in vector bundle theory.

We now want to reduce the bundle theory question to a question of homotopy theory, via the use

of classifying spaces. A quick introduction to the theory of classifying spaces can be found in [17].

A basic result in this theory states that for any topological group G, there is a “universal principal

G-bundle” G→ EG
p−→ BG. The term “universal” comes from the following property.

Given a map f : X → BG, consider the pullback bundle G→ f∗(EG)→ X, where

f∗(EG) = {(x, u) ∈ X × EG : f(x) = p(u)}

This pullback construction induces a set map

ρEG : [X,BG]→ PrinG(X).

Here [X,BG] means homotopy classes of maps from X to BG, and PrinG(X) is the set of isomor-

phism classes of principal G-bundles over X. The statement that p : EG→ BG is universal means

that ρEG is a bijection for every space X of the homotopy type of a CW -complex.

Universal bundles always exist, and are unique up to fiberwise homotopy equivalence. BG is

called a “classifying space” of the group G.

For G = O(n) there is a bijection between isomorphism classes of principal O(n) bundles and

isomorphism classes of n-dimensional vector bundles,

PrinO(n)(X)
∼=−→ V ectn(X).

(E → X)→ (E ×O(n) Rn → X)

This implies that there is a bijection,

[X,BO(n)] ∼= V ectn(X).

So bundle theory can be studied via homotopy theory. We now apply this fact to immersion

theory.

A corollary to Whitney’s Immersion Theorem 6 states that any two immersions of a closed n-

manifold Mn into RL are isotopic (“regularly homotopic”) if L > 2n. So by combining Hirsch-Smale
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theory with Whitney’s theorem, we can conclude that for L large, every manifold Mn is equipped

with a map, which is well defined up to homotopy,

νLM : Mn → BO(L)

that classifies a normal bundle of an immersion into codimension L Euclidean space. By taking the

limit over L, we call the resulting space BO, and we call the map,

νM : Mn → BO

the “stable normal bundle” map for Mn. Again, it is well-defined up to homotopy.

We then get the following interpretation of the Hirsch-Smale Theorem 4 when applied to this

setting. Notice that it describes the immersion problem entirely in terms of homotopy theory:

Corollary 9. A closed n-manifold Mn admits an immersion into Rn+k if an only if there is a map

νk : Mn → BO(k) making the following diagram homotopy commute:

Mn νk

−−−−→ BO(k)

=

y y
Mn −−−−→

νM
BO

Thus the Euclidean space immersion problem has been entirely translated to a question of “ho-

motopy lifting” the stable normal bundle map.

3 The Immersion Conjecture I: Work of W. Massey, R. Brown,

and the program of E.H Brown Jr and F.P Peterson

3.1 Cohomology and cobordism

In order to get an idea for what is the smallest integer φ(n) for which the stable normal bundle

map νMn : Mn → BO of any closed n-manifold Mn lifts to BO(φ(n)), we look for cohomological

obstructions.

We begin by recalling the following cohomology calculations. All coefficients will be Z/2, and

the ring structures of the cohomologies come from the standard cup products.

H∗(BO;Z2) ∼= Z2[w1, · · · , wi, · · · ]

H∗(BO(k);Z2) ∼= Z2[w1, · · · , wk]

11



where wi ∈ Hi(BO;Z/2) is known as the ith Stiefel-Whitney characteristic class. The inclusion map

BO(k) ↪→ BO induces a ring homomorphism in cohomology which sends wj to 0 for j > k,

We write w̄k(M) = ν∗Mn(wk) ∈ Hk(Mn;Z/2). This is known as the kth normal Stiefel-Whitney

class of Mn. Since the homotopy type of the stable normal bundle map νMn : Mn → BO is a well

defined invariant of the manifold Mn, the normal Stiefel-Whitney classes are also cohomological

invariants of Mn. We therefore have the following corollary of these cohomological calculations:

Corollary 10. If w̄k(Mn) 6= 0 then Mn does not immerse in Rn+k−1.

Example. It is a well-known, standard calculation that w̄2k−1(RP2k

) 6= 0 in H2k−1(RP2k

;Z2).

A good reference is the text by Milnor and Stasheff [33]. This calculation was first done by Whitney

in [47]. By his immersion theorem, RP2k

# R2k+1−1, but since w̄2k−1(RP2k

) 6= 0, then RP2k

does

not immerse in R2k+1−2.

Notice that as a consequence of Whitney’s immersion theorem, which can be interpreted as saying

that that φ(n) ≤ n− 1, and this example, which implies that φ(2k) ≥ 2k − 1, we may conclude that

φ(2k) = 2k. This implies that Whitney’s theorem is best possible for n = 2k.

Continuing to look for cohomological obstructions to immersing manifolds, we note that in 1960

W. Massey [31] made the following important calculation, which involved inputting Poincaré duality

into Stiefel-Whitney class calculations. The following is his result.

Theorem 11. (Massey [31] (1960)) For Mn a closed n-manifold, w̄i(M
n) = 0 for i > n − α(n),

where

α(n) = the number of ones in the binary expansion of n.

Furthermore, this result is the best possible as the following example demonstrates:

Write n as a sum of distinct powers of 2:

n = 2i1 + 2i2 + · · ·+ 2ir .

So in this case r = α(n).

Let Mn = RP2i1 × · · · × RP2ir
. We observe that there is a Stiefel-Whitney class obstruction to

Mn immersing in R2n−α(n)−1. To see this one uses a product formula for Stiefel-Whitney classes

(the “Cartan formula”), to conclude that

w̄n−α(n)(M
n) = w̄(2i1−1)+(2i2−1)+···+(2ir−1)(RP2i1 × · · · × RP2ir

)

= w̄(2i1−1)(RP2i1
)× w̄(2i2−1)(RP2i2

)× · · · × w̄(2ir−1)(RP2ir
)

6= 0.
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Using Corollary 10 we conclude that this n-dimensional manifold Mn = RP2i1 × · · · × RP2ir

does not immerse in R2n−α(n)−1. In other words, this example, together with Whitney’s Immersion

Theorem 6 demonstrates hat the best immersion dimension n+φ(n) for all n-manifolds Mn, satisfies

n− α(n) ≤ φ(n) ≤ n− 1. (1)

Equivalently, using the calculations of H∗(BO(k);Z/2) given above, Massey’s theorem can be

interpreted as saying that the following cohomological theorem is true.

Theorem 12. (Massey [31]). For every n-manifold there exists a homomorphism of graded rings,

θMn : H∗(BO(n− α(n));Z2)→ H∗(Mn;Z2)

making the following diagram commute:

H∗(BO;Z2).
ν∗Mn−−−−→ H∗(Mn;Z2)y y=

H∗(BO(n− α(n));Z2).
θMn−−−−→ H∗(Mn;Z2)

Notice that if the homomorphism θMn can be realized by a map ν̃Mn : Mn → BO(n − α(n))

that lifts the stable normal bundle map νMn : Mn → BO, then by Hirsch-Smale theory, ν̃Mn

would classify the normal bundle of an immersion j : Mn # R2n−α(n). This leads to the following

conjecture, originally due to Massey.

Immersion Conjecture (Massey) φ(n) = n − α(n). That is, every closed n-manifold Mn #

R2n−α(n).

By the above example, (Mn = RP2i1 × · · · × RP2ir
), this conjecture is as strong as possible.

3.2 Cobordisms, spectra, and the Steenrod algebra

We now begin the description of a program that eventually led to a solution of this conjecture.

As one does with many questions in differential topology, we will start with R. Thom’s work on

cobordism theory. Thom’s work was one of the real breakthroughs in manifold theory, and in

particular showed how the disciplines of differential topology and algebraic topology are inseparable.

In particular Thom’s results spurred on the development of stable homotopy theory, an area that is

still extremely active, and an area that is under constant development.

We begin with the notion of the Thom space of a vector bundle ζ → X, which we will denote by

Xζ . We will assume the bundle has been given a Euclidean metric, and one defines Xζ by

Xζ = D(ζ)/S(ζ)
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where D(ζ) is the unit disk bundle, D(ζ) = {v ∈ ζ : |v| ≤ 1}, and S(ζ) is the unit sphere

bundle S(ζ) = {v ∈ ζ : |v| = 1}. Notice that if the base space X is compact, the Thom space

Xζ is homeomorphic to the one-point compactification, ζ ∪∞. The following is the classical Thom

isomorphism theorem (with Z/2-coefficients).

Theorem 13. Let ζk be a k-dimensional vector bundle over a connected space X. The Thom space

Xζk satisfies the following properties.

1.

Hk(Xζk ;Z/2) ∼= Z/2

generated by a class uk ∈ Hk(Xζk ;Z/2) called the Thom class.

2. For every n ≥ 0, there is an isomorphism of Hn(X;Z/2) with Hn+k(Xζk ;Z/2) given by the

cup product with uk:

∪uk : Hn(X;Z/2) ∼= Hn(D(ζk);Z/2)
∼=−→ Hn+k(D(ζk), S(ζk);Z/2) ∼= H̃n+k(Xζk ;Z/2).

Let γn → BO(n) be the universal vector bundle

γn = EO(n)×O(n) Rn → BO(n).

This has a concrete description as follows. A good model for the universal principal bundle

EO(n)→ BO(n)

is to let EO(n) be the infinite dimensional Stiefel manifold of linear monomorphisms Rn ↪→ R∞, and

BO(n) can be taken to be the resulting infinite dimensional Grassmannian manifold of n-dimensional

linear subspaces of R∞. The map EO(n) → BO(n) is defined by taking the image subspace of a

linear monomorphism. With these models, the universal vector bundle EO(n)×O(n) Rn is the space

of pairs (V, v) where V ⊂ R∞ is an n-dimensional subspace, and v ∈ V is a vector. Then, of

course the map EO(n) ×O(n) Rn → BO(n) simply maps (V, v) to V , viewed as an element of the

Grassmannian.

Using Thom’s original notation, we let MO(n) be the Thom space MO(n) = BO(n)γn .

Consider the inclusion map

ι : BO(k)→ BO(k + 1).

Observe that the pull-back of γk+1 over BO(k) via the map ι, ι∗(γk+1) is simply the (k + 1)-

dimensional bundle γk ⊕ ε1. The Thom space of this bundle is the suspension ΣMO(k). Therefore

on the Thom space level the inclusion map ι induces a map

ιk : ΣMO(k)→MO(k + 1). (2)

These maps give the collection of space {MO(k); k ≥ 0} the structure of a spectrum. For our

purposes we use the following definition of a spectrum.
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Definition 1. A spectrum E is a sequence of spaces {En} together with maps en : ΣEn → En+1.

These maps are called the structure maps of the spectrum E.

The above is the classical definition of spectrum, going back to Lima [29] and Whitehead [46].

In the current literature the above structure is often referred to as a “prespectrum”. Studying

categories of spectra satisfying appropriate properties is of great importance in modern homotopy

theory, but we will not be concerned with the strict definitions of these categories in this expository

paper.

Spectra have homotopy and homology groups. They are defined by

πqE = lim−→
k→∞

πq+kEk

HqE = lim−→
k→∞

H̃q+kEk (3)

where the limits are defined using the structure maps en and the suspension homomorphisms.

The following are perhaps the most important examples of spectra:

Examples.

1. For a space X with a basepoint x0 ∈ X, we define its suspension spectrum by

Σ∞X = {ΣnX, id}.

Notice that by the suspension isomorphism, H∗(Σ
∞X) = H̃∗(X) and π∗(Σ

∞X) are the stable

homotopy groups of X. When X = S0, the zero dimensional sphere (i.e the two-point space), then

Σ∞(S0) is called the sphere spectrum, which we denote by S. The nth-space of the sphere spectrum

is the n-dimensional sphere, Sn.

2. Let G be an abelian group, and let K(G,n) be an Eilenberg-MacLane space of type (G,n) for

n > 0. This means that K(G,n) is a space with

πq(K(G,n)) =

G, if q = n

0 otherwise.

It is a well known property of Eilenberg-MacLane spaces that if X is any space of the homotopy

type of a CW -complex with basepoint, then the set of homotopy classes of basepoint preserving

maps [X,K(G,n)] is isomorphic to the cohomology group, Hn(X;G). This leads to the fact that

Hn(K(G,n);G) ∼= Hom(G,G)

and there is a fundamental class ιn ∈ Hn(K(G,n);G) corresponding to the identity homomorphism.

Since, by the suspension isomorphism,

Hn+1(ΣK(G,n);G) ∼= Hn(K(G,n);G) ∼= Hom(G,G)
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there is a map, well defined up to homotopy

ιn : ΣK(G,n)→ K(G,n+ 1)

corresponding to the fundamental class. The collection {K(G,n), ιn} defines a spectrum called the

“Eilenberg-MacLane spectrum”, which we denote by HG.

3. Let MO = {MO(n), ιn} be the Thom spectrum defined by (2).

As described in [1], given a spectrum E, one can suspend or desuspend E, and study homotopy

classes of maps of any degree from spaces to E. (A map of degree one from X to E is a map from X

to ΣE.) In particular E defines a generalized homology and cohomology theories a follows. Given a

space X of the homotopy type of a CW -complex define

Eq(X) = [X+,E]q = lim−→
k

[Σk(X+), Ek+q],

Eq(X) = πq(E ∧X+) = lim−→
k

πq+k(Ek ∧X+),

where X+ denotes X with a disjoint basepoint. (Note. Given a based space Y and a spectrum

E one can define the smash product spectrum E ∧ Y to be the sequence of spaces {En ∧ Y } and

structure maps en ∧ 1 : Σ(En ∧ Y ) = ΣEn ∧ Y → En+1 ∧ Y .)

When E = HG, a classical result of Whitehead [46] states that the generalized (co)homology this

spectrum represents is simply ordinary (co)homology with coefficients in G. When E = MO, the

associated (co)homology theory is called the (co)bordism groups of a space X.

The following theorem, and its proof, have had a huge impact on algebraic and differential

topology.

Theorem 14. (Thom, [41] (1954)) There is an isomorphism between the homotopy groups of the

Thom spectrum,

πn(MO) = lim
k→∞

πn+k(MO(k))

and the set of cobordism classes of closed n-manifolds, ηn. This is defined to be the set of equivalence

classes of n-dimensional closed manifolds, defined by saying Mn
1 is cobordant to Mn

2 if there is an

(n+ 1) dimensional manifold with boundary, Wn+1, with

∂Wn+1 = Mn
1 tMn

2 .

The abelian group structure on ηn corresponding to the group structure on stable homotopy

groups is simply induced by disjoint union. The identity element in this group is the empty set ∅
(by convention ∅ can be viewed as a manifold of any dimension). Notice that this group consists

entirely of elements of order 2, which one sees because for any closed n-manifold Mn, the disjoint

union Mn tMn is cobordant to the empty set ∅ because it is the boundary of Wn+1 = Mn × [0, 1].
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Furthermore, the graded abelian groups η∗ ∼= πs∗(MO) actually form a graded ring, with the product

given by cartesian product of manifolds.

Thom also did a complete calculation of these graded rings.

Theorem 15. [41]

η∗ ∼= Z2[b2, b4, b5, · · · , br, · · · : r 6= 2k − 1].

In other words, η∗ is a polynomial algebra over the field Z/2 with one generator br of dimension

r > 0 so long as r is not of the form 2k − 1 for any integer k > 0.

In fact Thom gave a complete description of the homotopy type of the spectrum MO.

Theorem 16. [41] The spectrum MO has the homotopy type of a wedge of Eilenberg-MacLane

spectra,

MO '
∨
ω∈I

Σ|ω|HZ/2

where the indexing set I consists of all monomials in Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1]. The

notation |ω| refers to the dimension of the monomial bω ∈ Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1].

In order to understand more about the immersion conjecture and how it was proved, it is impor-

tant to recall a bit about how Thom proved this theorem. His main tool was the Steenrod algebra,

which we now discuss.

Recall that the Steenrod squaring operations, Sqi, i ≥ 0, satisfy the following axioms:

Axioms.

1. Sqi is a natural tranformation of abelian group valued functors

Sqi : Hn(−;Z/2)→ Hn+i(−;Z/2)

for every n,

2. Sq0 = 1 the identity transformation

3. Sqi(x) = 0 if the dimension of x is less than i

4. Sqi(x) = x2 if the dimension of x equals i

5. The Steenrod satisfy the product formula known as the “Cartan formula”:

Sqi(xy) =
∑
j

(Sqjx)(Sqi−jy).

17



6. Sq1 is the Bockstein homomorphism of the coefficient sequence

0→ Z/2→ Z/4→ Z/2→ 0.

7. The Steenrod squares satisfy the “Adem relations”:

For a < 2b,

SqaSqb =
∑
j

(
b− j − 1

a− 2j

)
Sqa+b−jSqj

where the binomial coefficients are taken mod 2.

Axioms (6) and (7) can be shown to be consequences of axioms (1)-(5). The Steenrod operations

act on the cohomology of spectra as well as spaces. One of their important features is how they are

related to the Stiefel-Whitney characteristic classes. Recall from Theorem 13 that if one is given

a k-dimensional vector bundle ζk → X then the Thom class uk ∈ Hk(Xζk ;Z/2) defines the Thom

isomorphism,

∪uk : Hq(X;Z/2)
∼=−→ H̃q+k(Xζk ;Z/2)

Then the Steenrod squaring operations, when applied to the Thom class are related to the Stiefel-

Whitney classes of the bundle ζk by the formula:

wi(ζ
k) ∪ uk = Sqi(uk) ∈ Hk+i(Xζk ;Z/2). (4)

The mod 2 Steenrod algebra A is the algebra generated operations Sqi subject to the Adem

relations. From the axioms it is not difficult to construct an additive basis for A. Namely, if

I = (i1, · · · , iq) is a finite sequence of positive integers, let SqI be the product

SqI = Sqi1Sqi2 · · ·Sqiq .

We say that the sequence I is admissible if is ≥ 2is+1 for every s = 1, . . . , q − 1.

For any space (or spectrum) X, H∗(X;Z/2) has the structure of an A-module by axiom (1)

above. By using the axioms to study this module structure on the cohomology of products of

infinite dimensional projective spaces, RP∞× · · · ×RP∞, one can prove the following without much

difficulty.

Proposition 17. 1. {SqI : I admissible } is a basis for A as a graded vector space over Z/2.

2. {Sq2r

r ≥ 0} generates A as a graded algebra over Z/2.

A has more structure as well. It is a “Hopf algebra”, meaning that it is both an algebra and a

coalgebra, and the coproduct is a map of algebras. The coproduct map

∆ : A → A⊗A
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is defined to be the map of algebras induced by the Cartan formula,

Sqi →
∑
j

Sqj ⊗ Sqi−j .

One can check directly that this does give a well-defined map of algebras by seeing that it respects

the Adem relations.

A calculation of the cohomology of Eilenberg-MacLane spaces by H. Cartan and J.P Serre showed

that the Steenrod algebra A is indeed the algebra of all cohomology operations, which is to say all

natural transformations from cohomology with Z/2-coefficients to itself, viewed as a functor from

the category of spaces of the homotopy type of CW -complexes to the category of graded abelian

groups. The representing spectrum of cohomology with Z/2-coefficients is the Eilenberg-MacLane

spectrum HZ/2, so Cartan’s calculation can be interpreted as saying that the Steenrod algebra A
is the cohomology of HZ/2,

A ∼= H∗(HZ/2;Z/2).

Thom proved Theorem 14 by a general construction, now known as the “Pontrjagin-Thom con-

struction”. This establishes that any cobordism theory, i.e where one might insist that the manifolds

have certain structures such as an orientation, or an almost complex structure, can be described in

terms of the homotopy groups of a certain Thom spectrum. The primary work in Thom’s proof of

Theorems 15 and 16, was to show that that the mod 2 cohomology of the Thom spectrum MO is a

free module over the Steenrod algebra, with one generator corresponding to every monomial basis

element in the polynomial algebra Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1].

H∗(MO; Z/2) ∼=
⊕
ω∈I

Σ|ω|A (5)

where, as above, the indexing set I consists of all monomials in Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1].

The notation Σ|ω|A means that the grading of the Steenrod algebra A is shifted by the dimension

of the monomial bI ∈ Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1].

From this it is a rather formal argument to show that the spectrum MO is homotopy equivalent

to a wedge of Ellenberg-MacLane spectra (proving Theorem 16), thus determining its homotopy

groups (and proving Theorem 15).

Furthermore, from Thom’s calculations one can describe examples of manifolds Br representing

generators br of the cobordism ring.

We define B2i to be RP2i

. For general n, suppose recursively that Bk has been defined for k < n.

Write n as a sum of distinct powers of 2,

n = 2i1 + 2i2 + · · ·+ 2ir with i1 < i2 < · · · < ir.

Notice again that r = α(n).
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We can then write n = 2i1 + 2m, where m = 2i2−1 + · · ·+ 2ir−1. We then define

Bn = S2i1 ×Z2 Bm ×Bm.

Using the fact that these manifolds are iterated Z/2-equivariant products of spheres and projec-

tive spaces, it is possible to directly show inductively, using Whitney’s immersion RP2j

# R2j+1−1,

that these generators admit immersions

Bm # R2m−α(m).

Furthermore, by taking disjoint unions and products of these manifolds and immersions, one can

prove the following theorem due to R, Brown [10]. This argument was carried out in [16].

Theorem 18. ( R. Brown [10]) Every closed n-manifold is cobordant to one that immerses in

R2n−α(n).

Notice that this gives more evidence for the truth of the immersion conjecture.

3.3 The Brown-Peterson approach to the Immersion Conjecture

This brings us to the program of E.H. Brown Jr. and F.P. Peterson that eventually led to a proof

of the immersion conjecture.

Consider the stable normal bundle map

νM : Mn → BO.

Consider the exact sequence in cohomology:

0→ IMn → H∗(BO;Z/2)
ν∗M−−→ H∗(Mn;Z/2)

Here IMn is the kernel of ν∗M , and is an ideal in H∗(BO;Z/2) ∼= Z2[w1, · · ·wi, · · · ].
Define

In =
⋂
Mn

IMn .

One may view this as the ideal of all relations among the normal Stiefel-Whitney classes of all

n-manifolds. Massey’s Theorem 11 above can be interpreted to say that wi ∈ In for i > n− α(n).

In 1963 Brown and Peterson calculated the ideal In ⊂ H∗(BO;Z/2) explicitly. It is easier to

state their result in terms of the Thom isomorphic image of the ideal,

φ(In) ⊂ H∗(MO;Z/2)

where φ = ∪un : H∗(BO;Z/2)
∼=−→ H∗(MO;Z/2) is the Thom isomorphism.
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In fact we will describe the quotient module, H∗(MO;Z/2)/φ(In). Now recall Thom’s cohomology

calculation (5) of H∗(MO;Z/2). In particular it is a free module over the Steenrod algebra A, with

a very explicit basis. The quotient module H∗(MO;Z/2)/φ(In) was shown by Brown and Peterson

to split as a sum of cyclic modules over the Steenrod algebra, indexed by the same basis. In order

to describe these cyclic modules over A, we begin by recalling that being a connective Hopf algebra,

A admits a canonical antiautomorphism. More explicitly, given the connectivity of A, we can write

the coproduct of an element a ∈ A in the form

∆(a) = a⊗ 1 + 1⊗ a+
∑
i

ai ⊗ bi ∈ A⊗A

where where the gradings of ai and bi are both positive for all i in this sum. Then the canonical

antiautomorphism χ : A → A is defined recursively (using the grading) by the rules χ(1) = 1 and

χ(a) + a+
∑
i

aiχ(bi) = 0. (6)

It is easy to see from this definition that

χ2 = 1 and (7)

χ(ab) = χ(b)χ(a) for all a, b ∈ A.

The canonical antiautomorphism χ : A → A plays an important role in understanding how the

action of the Steenrod algebra behaves with respect to Poincaré duality. More specifically, let Mn be

a closed n-manifold with stable normal bundle νMn having Thom spectrum TνMn . This spectrum is

defined as follows. Let e : Mn ↪→ RL be an embedding of Mn into some large dimension Euclidean

space. Let νe be its normal bundle and Mνe the corresponding Thom space. Consider its suspension

spectrum Σ∞(Mνe). Then the Thom spectrum is defined to be the desuspension

TνMn = Σ−LΣ∞(Mνe).

Notice that in the cohomology of the Thom spectrum, the Thom class has dimension zero:

uMn ∈ H0(TνMn ;Z/2).

Define the left ideal J̃(Mn) ⊂ A by

J̃(Mn) = {a ∈ A : auMn = 0}.

We can then take the intersection of these ideals to define the left ideal

J̃n =
⋂
Mn

J̃(Mn)

where the intersection is taken over all closed n-manifolds Mn. The following is the main calcula-

tional result that Brown and Peterson needed to compute all relations among the normal Stiefel-

Whitney classes of n-manifolds.
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Theorem 19. (Brown and Peterson [5][6])

J̃n = J[ n2 ] = A{χ(Sqi) : 2i > n}.

Outline of proof.

This theorem was proved by considering the following composite isomorphism

D : Hq(M
n;Z/2)

P.D−−→ Hn−q(Mn;Z/2)
Φ−→ Hn−q(TνMn)

where P.D is the Poincaré duality isomorphism and Φ is the Thom isomorphism. They heavily use

the following identity originally due to Wu.

Lemma 20. For a ∈ A having degree i,

D(χ(a)∗([M
n])) = a(uMn) ∈ Hi(T(νMn ;Z/2),

where [Mn] ∈ Hn(Mn;Z/2) is the fundamental class, and if b ∈ A is an operation in mod 2

cohomology of degree i, b : Hq(−;Z/2)→ Hq+i(−;Z/2), then b∗ denotes the dual operation in mod

2 homology, b∗ : Hr(−;Z/2)→ Hr−i(−;Z/2).

From this Brown and Peterson were able to show the following:

Lemma 21. Let a ∈ A have degree i. Then a ∈ J̃n if and only if

χ(a) : Hn−i(X;Z/2)→ Hn(X;Z/2)

is zero for every space X.

From this Theorem 19 followed from rather standard calculations.

This theorem allowed Brown and Peterson to describe the ideal In ⊂ H∗(BO;Z/2) indirectly by

explicitly describing the quotient space after applying the Thom isomorphism. Namely, they proved

the following (compare with the cohomology calculation of H∗(MO;Z/2) given in (5)).

Theorem 22. (Brown and Peterson [5][6]). Let I be the indexing set of monomials in the cobordism

ring η∗ ∼= π∗(MO) = Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1].

H∗(MO;Z/2)/φ(In) =
⊕

ω∈I,|ω|≤n

Σ|ω|A/J
[
n−|ω|

2 ]
,

where, for ω ∈ I, |ω| is the grading of the monomial bω ∈ Z/2[b2, b4, · · · , br · · · , : r 6= 2k − 1].

The next major step toward the proof of the immersion conjecture was accomplished by Brown

and Gitler [4] in 1973. In that paper, Brown and Gitler proved the following:
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Theorem 23. There exist spectra Bm, m ≥ 0, satisfying the following properties:

1. H∗(Bm;Z/2) ∼= A/Jm = A/A{χ(Sqi) : i > m} as modules over the Steenrod algebra

2. Let um : Bm → HZ/2 represent the generator of H∗(Bm;Z/2) as a module over the Steenrod

algebra. Then if X is any space of the homotopy type of a CW -complex,

um∗ : πq(Bm ∧X+)→ πq(HZ/2 ∧X+) ∼= Hq(X;Z/2)

is surjective for q ≤ 2m+ 1.

Furthermore, these properties characterize the homotopy type of the spectra Bm.

For any connected, closed n-manifold Mn, there is a well-known “Spanier-Whitehead duality”

between Mn and the Thom spectrum of its stable normal bundle, TνMn . A consequence of this

duality implies that

Hq(TνMn ;Z/2) ∼= Hn−q(M
n;Z/2), for all q ≥ 0.

Using this duality one can conclude the following:

Corollary 24. Let Mn be a connected, closed n-dimensional manifold. Let αr ∈ Hr(TνMn ;Z/2),

0 ≤ r ≤ n, be any cohomology class, represented by a map of spectra which by abuse of notation we

also call

αr : TνMn → ΣrHZ/2.

Then there is a map of spectra

α̃r : TνMn → ΣrB[ n−r
2 ],

such that the composition

TνMn
α̃r−−→ ΣrB[ n−r

2 ]

u
[n−r

2
]

−−−−→ ΣrHZ/2

is homotopic to αr. Here [n−r2 ] denotes the integral part of the real number n−r
2 . In particular the

Thom class

uMn : TνMn → HZ/2

lifts to a map

ũMn : TνMn → B[ n2 ].

This theorem was proved by Brown and Gitler by a rather complicated obstruction theory argu-

ment. They basically proved that there are no obstructions to the existence of spectra Bn satisfying

these properties. The relevance of these properties to the immersion conjecture, and specifically the

homotopy lifting properties needed to prove the immersion conjecture is the following corollary of

this theorem.
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Let νMn : Mn → BO be the stable normal bundle map of a connected, closed n-dimensional

manifold, and let

νtMn : TνMn →MO

is the induced map of Thom spectra. Define the spectrum MO/In to be the wedge of Brown-Gitler

spectra indexed by the monomial basis of the cobordism ring:

Definition 2.

MO/In =
∨

ω∈I,|ω|≤n

Σ|ω|B
[
n−|ω|

2 ]

Notice that by Theorem 22 we have that

H∗(MO/In;Z/2) ∼= H∗(MO;Z/2)/φ(In) ∼=
⊕

ω∈I,|ω|≤n

Σ|ω|A/J
[
n−|ω|

2 ]
(8)

as modules over the Steenrod algebra. This property is what motivated the notation of “MO/In”

for this spectrum.

As above, let um : Bm → HZ/2 be a map that represents the generator of H∗(Bm;Z/2) ∼= A/Jm
as a (cyclic) module over the Steenrod algebra. Taking a wedge of these maps produces a map

vn : MO/In =
∨

ω∈I,|ω|≤n

Σ|ω|B
[
n−|ω|

2 ]

∨u
[
n−|ω|

2−−−−−−→
∨
ω∈In

Σ|ω|HZ/2 = MO. (9)

As a consequence of Corollary 24 one immediate has the following.

Corollary 25. Let Mn be a closed n-manifold with stable normal bundle νMn : Mn → BO and

induced Thom spectrum map νtMn : TνMn →MO. Then there is a map of spectra

ν̃tMn : TνMn →MO/In

that lifts νtMn : TνMn →MO in the sense that the composition

TνMn

ν̃t
Mn−−−→MO/In

vn−→MO

is homotopic to νtMn .

Because of this corollary, the spectrum MO/In can be viewed as a “universal spectrum for the

Thom spectra of stable normal bundles of n-manifolds”. In order to pursue these ideas one needed

a way of going from this kind of structure on the level of Thom spectra, to structure on the level

of the stable normal bundles themselves. Brown and Peterson eventually accomplished this as well

[9]. But before we describe how this was done, we go back to Brown-Gitler spectra and describe
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an explicit construction of them that is related to Artin’s braid groups, which play an important

role in knot theory and geometric group theory. This description was also useful in the proof of the

immersion conjecture.

Let βk be Artin’s braid group on k strings. An element b ∈ βk can be thought of as a configuration

of k strings, connecting two sets of k fixed points, each set lying in parallel planes in R3. Thus one

can picture b ∈ βk as follows:

 

q

i

Y

I
µ

a
a
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More precisely, an element b ∈ βk is an isotopy class of such configurations. The group multipli-

cation in βk is given by juxtaposition of braids. The clearest way of making this definition precise

is by defining βk to be the fundamental group of the configuration space of k unordered points in

R2. That is, if we let

Fk = {(t1, · · · , tk) ∈ (R2)k : ti 6= tj if i 6= j},

and we let Ck be the orbit space of the natural, free action of the symmetric group Σk on Fk given

by permutation of coordinates,

Ck = Fk/Σk.

Then βk os defined to be the fundamental of Ck:

βk = π1(Ck). (10)

It is also not difficult to see that the configuration spaces Ck are Eilenberg-MacLane spaces:

Ck = K(βk, 1)

See [34] for example.

The configuration space Ck also comes equipped with a natural k-dimensional vector bundle

which we call γk. It is defined by

γk = Fk ×Σk
Rk → Fk/Σk = Ck.

Alternatively, γk is defined by the k-dimensional representation of the braid group βk defined by

associating to a braid the permutation matrix given by the permutation of the endpoints of the

strings.

Notice that the Thom space of γk is given by

Cγkk = Fk+ ∧Σk
Sk

where we are thinking of the sphere Sk as Sk = Rk ∪∞, with the action of Σk given by permuting

coordinates (and ∞ is a fixed point).

The relevance of the braid groups and the spaces Ck and Cγkk to Brown-Gitler spectra and the

Immersion Conjecture are the following two results:

Theorem 26. (Mahowald [30]) Let Tγk be the Thom spectrum

Tγk = Σ−kΣ∞(Cγkk ) = Σ−kΣ∞
(
Fk+ ∧Σk

Sk
)
.

That is, Tγk is the spectrum whose k-fold suspension is the suspension spectrum of the Thom space,

ΣkTγk = Σ∞
(
Fk+ ∧Σk

Sk
)
.

Then as modules over the Steenrod algebra,

H∗(Tγk;Z/2) ∼= A/J[ k2 ].
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Notice that this is the same cohomology as the Brown-Gitler spectrum. Mahowald also conjec-

tured that Tγk is indeed homotopy equivalent to the corresponding Brown-Gitler spectrum. This

conjecture was proved by Brown and Peterson.

Theorem 27. (Brown and Peterson [8]) There is a map of spectra

gk : Tγk → B[ k2 ]

that induces an isomorphism in cohomology with coefficients in Z/2. (Such a map is called a “2-

primary weak homotopy equivalence”.)

Putting these results together we have the following:

Corollary 28. There is a 2-primary weak homotopy equivalence

MO/In '
∨

ω∈I,|ω|≤n

Σ|ω|Tγn−|ω| =
∨

ω∈I,|ω|≤n

Σ2|ω|−n
(
Fn−|ω|+ ∧Σn−|ω| S

n−|ω|
)
.

This in turn, using Corollary 25, implies the lifting, on the level of Thom spectra, of stable

normal bundle maps to these Thom spectra of the braid group representations. This is related to

the notion of “braid orientations” of manifolds which was studied by F. Cohen [11] and the author

[14].

We now go back to the Brown-Peterson program. Notice that by the definition of the ideal

In ⊂ H∗(BO;Z/2), together with Massey’s calculation, one can conclude that in cohomology, for

any n-manifold Mn, there is a commutative diagram

H∗(BO)
ν∗M−−−−→ H∗Mny x

H∗(BO(n− α(n)) −−−−−→
Massey

H∗(BO)/In.

(11)

Basically, the Brown-Peterson program was to show that one could realize this diagram by a diagram

of maps between spaces. This is broken down into the following steps:

1. Show that there exist spaces “BO/In” together with maps ρn : BO/In → BO satisfying the

following properties:

(a). In cohomology the map ρ∗n : H∗(BO;Z/2)→ H∗(BO/In;Z/2) is surjective with kernel

In ⊂ H∗(BO;Z/2), and

(b) For every n manifold Mn, there is a map ν̃Mn : Mn → BO/In making the following

diagram homotopy commute:

Mn ν̃Mn−−−−→ BO/In

=

y yρn
Mn −−−−→

νM
BO.
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2. There is a map ρ̃n : BO/In → BO(n − α(n)) that lifts (up to homotopy) the map ρn :

BO/In → BO.

Notice that if these steps could be completed, then for every closed n-manifold, one would have

the following homotopy commutative diagram, realizing the cohomology diagram (11) above:

Mn ν̃Mn−−−−→ BO/In

νMn

y yρ̃n
BO ←−−−− BO(n− α(n)).

(12)

We now have the information necessary to do this program on the Thom spectrum level. Namely

we will prove the following. This was originally proved by Brown and Peterson in [7].

Theorem 29. (Brown and Peterson [7] (1977)) Let Mn be a closed n-dimensional manifold. Let

νMn : Mn → BO be the stable normal bundle map, and let TνMn : TνMn →MO be the corresponding

map of Thom Spectra. Let MO(k) = Σ−kΣ∞MO(k) be the Thom spectrum of the universal bundle

over BO(k). Then there is a map of spectra

T̃ νMn : TνMn →MO(n− α(n))

so that the composition

TνMn
T̃ νMn−−−−→MO(n− α(n))→MO

is homotopic to TνMn : TνMn →MO.

Notice that by Corollary 25, in order to prove this theorem it suffices to prove the following

“universal” result:

Theorem 30. There is a map

ṽn : MO/In →MO(n− α(n))

so that the composition

MO/In
ṽn−→MO(n− α(n))→MO

is homotopic to the map vn : MO/In →MO described in equation (9).

Note. The reason that Theorem 30 implies Theorem 29 is that by Corollary 25, the stable normal

bundle map νMn : Mn → BO has induced map of Thom spectra νtMn : TνMn → MO that factors

through a map ν̃tMn : TνMn → MO/In. Furthermore, Theorem 30 supplies us with a map ṽn :

MO/In →MO(n− α(n)), so we have the resulting composition

T̃ νMn : TνMn

ν̃t
Mn−−−→MO/In

ṽn−→MO(n− α(n))

that satisfies Theorem 29.
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Proof. (Sketch) . Recall that from Definition 2 and Theorem (16), we have that

MO/In =
∨

ω∈I,|ω|≤n

Σ|ω|Bn−|ω|
2

and MO '
∨
ω∈I

Σ|ω|HZ/2.

Furthermore the map vn : MO/In →MO is given by a wedge of maps of the form

vn,ω : Σ|ω|Bn−|ω|
2

= S|ω| ∧Bn−|ω|
2

1∧jn−|ω|
2−−−−−−→ S|ω| ∧HZ/2 = Σ|ω|HZ/2 ↪→MO, (13)

where jk : Bk → HZ/2 represents the generator of H∗(Bk;Z/2) as a module over the Steenrod

algebra, A.

In order to understand this map better, we recall some multiplicative structure possessed by the

Thom spectrum MO. Consider the Whitney sum map on the level of classifying spaces,

µ : BO(k)×BO(r)→ BO(k + r)

On the vector bundle level, this is the map that classifies the Whitney sum of vector bundles. On

the group level this map is induced by the pairing

O(k)×O(r)→ O(k + r)

given by “block sum”. That is, it takes a k × k-matrix and an r × r- matrix and puts them in the

upper left hand k×k - block and the lower right hand r×r - block, respectively, of a (k+r)×(k+r)-

dimensional matrix, with all other entries being zero. On the Thom space level, this defines a map

µt : MO(k) ∧MO(r)→MO(k + r)

and on the Thom spectrum level this induces a product, which by abuse of notation we also call µt,

µt : MO ∧MO→MO.

This gives the spectrum MO the structure of a “ring spectrum”.

Note. The fact that one can take smash products of spectra in an appropriately associative and

functorial way is, perhaps surprisingly, technically quite difficult. But the technology necessary to

do this is now part of every homotopy theorist’s “tool kit”.

This structure allows us to understand the splitting of MO as a wedge of Eilenberg-MacLane

spectra a bit better.

Let ω ∈ I be a monomial basis element of the cobordism ring η∗. By Thom’s Theorem 14,

η∗ ∼= π∗(MO), so we may let

bω : S|ω| →MO

represent the homotopy class defined by ω ∈ η∗. Now let

ιω : Σ|ω|HZ/2→MO
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be the inclusion given by the Thom splitting of MO (Theorem 16). This splitting map is given by

the composition

ιω : S|ω| ∧HZ/2 bω∧ι1−−−−→MO ∧MO µt

−→MO.

To prove Theorem 29 we need to show that the map vn : MO/In → MO, factors through

MO(n− α(n)). By the above, it therefore suffices to show that the maps

vn,ω : S|ω| ∧Bn−|ω|
2

1∧jn−|ω|
2−−−−−−→ S|ω| ∧HZ/2 bω∧ι1−−−−→MO ∧MO µt

−→MO

factors through MO(n− α(n)).

To do this we first observe that the homotopy group interpretation of R. Brown’s Theorem 18

about every n-manifold being cobordant to one that immerses in R2n−α(n), is that

πk(MO(n− α(n)))→ πk(MO) (14)

is surjective. Therefore the homotopy class bω lifts to a class

b̃ω : S|ω| →MO(|ω| − α(|ω|)).

Also, the calculations done of the mod 2 cohomology of the Brown Gitler spectra Bk, as well as odd

primary calculations about Brown-Gitler spectra and braid groups done in [13] and [12], say that Bk

has the weak homotopy type of a finite CW -spectrum (i.e a spectrum made up of CW -complexes

and cellular structure maps), of dimension 2k − α(k). Obstruction theory then tells us that the

generating map

Bk
jk−→ HZ/2 ι1−→MO

factors through MO(2k − α(k)):

j̃k : Bk →MO(2k − α(k)).

Therefore the map

vn,ω : S|ω| ∧Bn−|ω|
2

1∧jn−|ω|
2−−−−−−→ S|ω| ∧HZ/2 bω∧ι1−−−−→MO ∧MO µt

−→MO

lifts to the composition

ṽn,ω : S|ω| ∧Bn−|ω|
2

b̃ω∧j̃n−|ω|
2−−−−−−−→MO(|ω| − α(|ω|) ∧MO(n− |ω| − α(n− |ω|) µt

−→

MO(n− α(|ω|)− α(n− |ω|))→MO(n− α(n)), (15)

where the last map is the inclusion that exists because

α(k) + α(r) ≥ α(k + r).

As argued above, this is what is needed to complete the proof of this theorem.
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As mentioned above, Theorem 29 gives us the Thom spectrum analogue of the immersion conjec-

ture. More precisely, this theorem tells us that the stable normal bundle map of a closed n-manifold,

νMn : Mn → BO has induced map of Thom spectra, νtMn : TνMn → MO that factors through

MO(n − α(n)). The immersion conjecture would be proved once one shows that the actual stable

normal bundle map factors through BO(n− α(n)).

To do this, Brown and Peterson’s program is to essentially “de-Thom-ify” the above constructions

and arguments. The first major step in this was completed by Brown and Peterson [9] in 1979. For

each n they constructed what they called a “universal space for normal bundles of n-manifolds”,

“BO/In”, together with maps

ρn : BO/In → BO

that satisfies the following properties:

1. H∗(BO/In;Z/2) ∼= H∗(BO;Z/2)/In and ρ∗n : H∗(BO;Z/2)→ H∗(BO/In;Z/2) is the pro-

jection map.

2. The Thom spectrum of ρn : BO/In → BO is MO/In, as defined above.

3. For every n manifold Mn, there is a map ν̃M : Mn → BO/In making the following diagram

homotopy commute:

Mn ν̃M−−−−→ BO/In

=

y yρn
Mn −−−−→

νM
BO.

This Brown-Peterson construction of BO/In was obstruction theoretic. They used a kind of

Moore-Postnikov tower to show that no obstructions to the existence to these spaces with these

properties exist. They did not construct explicit models for these spaces. But the existence of

these spaces allows one to reduce the study of the Immersion Conjecture about the best immersion

dimensions of all n-manifolds, to a homotopy theoretic question about these spaces, and the maps

ρn : BO/In → BO. Namely their program proceeds with the following question:

Question. Is there a map ρ̃n : BO/In → BO(n− α(n)) lifting ρn : BO/In → BO?

Notice that if the answer is yes, then by Brown and Peterson’s theorem, for any n-manifold, the

composition

Mn ν̃M−−→ BO/In
ρ̃n−→ BO(n− α(n))

would be a lifting of the stable normal bundle map νM : Mn → BO, and by Hirsch-Smale, this

would classify the normal bundle of an immersion

Mn # R2n−α(n).
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Theorem 31. (C. 1985). Such a lifting ρ̃n : BO/In → BO(n − α(n)) exists, and therefore the

immersion conjecture is true.

4 The Immersion Conjecture II: Outline of its solution: the

homotopy theory

The proof of Theorem 31 was homotopy theoretic. Since the spaces BO/In were only understood in

terms of their homotopy theoretic and manifold theoretic properties, the existence of the required

liftings ρ̃n : BO/In → BO(n − α(n)) was proved using a homotopy theoretic, and indeed an ob-

struction theoretic, argument. It was quite technical. In this section we review the ingredients of

that proof given in [15], and mention a couple of places where the proof might be simplified, given

a more modern understanding of the relevant homotopy theory.

The basic object of study in the proof of the immersion conjecture was the Moore- Postnikov

tower for the inclusion map ιn−α(n) : BO(n−α(n))→ BO. This is a tower of fibrations of the form

Kj K1

↓ ↓

BO(n− α(n))→ · · ·Xj → Xj−1 · · · → X1 → BO (16)

where each Kj → Xj → Xj−1 is a fibration with fiber Kj being an Eilenberg-MacLane space, where

X0 = BO. The tower converges to BO(n− α(n)).

The idea of the proof is to use an induction argument that assumes that the map ρn : BO/In →
BO lifts to a map ρn,j−1 : BO/In → Xj−1 satisfying certain properties, and then show that the

inductive step of finding an appropriate map ρn,j : BO/In → Xj could be completed.

Kj K1

↓ ↓

BO(n− α(n))→ · · ·Xj → Xj−1 · · · → X1 → BO

↑ ρn,j−1 ↑ ρn
BO/In

=−→ BO/In

The first step in completing the inductive argument was to study the corresponding diagram on

the level of Thom spectra:
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Lj L1

↓ ↓

MO(n− α(n))→ · · ·(Xj)
γ → (Xj−1)γ · · · → (X1)γ →MO (17)

↑ Tρn,j−1 ↑ Tρn
MO/In

=−→ MO/In

Here Lj is the (homotopy) fiber of the induced map of Thom spectra, (Xj)
γ → (Xj−1)γ .

Now from Theorem 30 we know that the map of Thom spectra Tρn : MO/In → MO has a

lifting all the way up the tower to MO(n− α(n)). The idea is to then use this lifting to show that

an appropriate lifting on the level of base spaces exists. In order to understand the relationship

between the obstructions to obtaining liftings on the Thom spectrum level and liftings on the base

space level, one needs to understand how the successive homotopy fibers Lj of the map of Thom

spectra (Xj)
γ → (Xj−1)γ compare to the homotopy fibers Kj of the map of base spaces Xj → Xj−1.

This was studied by Brown and Peterson in their paper constructing the BO/In spaces [9]. Central

in their study was understanding how Steenrod algebra interacts with the Thom isomorphism. We

recall their result now.

Let f : B → BO be a map that induces an isomorphism in homotopy groups through dimension

k. Let V be a graded Z/2-vector space with Vq = 0 for q ≤ k. Let K(V ) be the corresponding

Eilenberg-MacLane space and suppose γ : B → K(V ) is a map with homotopy fiber B1. So we have

a “two stage system over BO”:

B1
ι−−−−→ B

f−−−−→ BO

γ

y
K(V )

Let T and T1 be the associated Thom spectra of the maps f : B → BO and f ◦ ι : B1 → BO.

Consider the induced (co)fibration sequence of spectra:

T1 → T→ T/T1.

The goal is to understand, at least through a range of dimensions, the homotopy type of the cofiber

T/T1 in terms of the Eilenberg-MacLane space K(V ). Brown and Peterson showed that, through a

range of dimensions, the cohomology H∗(T/T1;Z/2) can be described in terms of the vector space

V , the Steenrod algebra A, and the cohomology of BO, H∗(BO;Z/2). We now describe their result

more carefully.

Let A(BO) be the semi-tensor product of the Steenrod algebra A with H∗(BO;Z/2). That is,

A(BO) = A⊗H∗(BO;Z/2)
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with the algebra structure defined by

(a⊗ u)(b⊗ v) =
∑
i

ab′i ⊗ (χ(b′′i )u)v

where if ∆ : A → A ⊗ A is the Cartan diagonal map, then ∆(b) =
∑
i b
′
i ⊗ b′′i . To remember this

twisted multiplication we denote a⊗ u by a ◦ u.

Given any map g : X → BO, then of course H∗(X;Z/2) has the structure of a graded module

over the graded algebra H∗(BO;Z/2). This induces a A(BO) module structure on the cohomology

of the Thom spectrum Tg:

A(BO)⊗H∗(Tg;Z/2)→ H∗(Tg;Z/2)

(a ◦ u)(φ(x)) = a(φ(u ∪ x))

where x ∈ H∗(X;Z/2), φ : H∗(X;Z/2)
∼=−→ H∗(Tg;Z/2) is the Thom isomorphism.

Consider the map

ψ : (A(BO)⊗ V )∗ → H∗+1(Tg/Tg1).

defined by

ψ(a ◦ u⊗ v) = a(u ∪ φ(γ̃∗(v)))

where we are identifying v ∈ V with the corresponding cohomology class v ∈ H∗(K(V );Z/2), and

here φ denotes the relative Thom isomorphism. In [5] Brown and Peterson proved the following:

Theorem 32. ( [5]) The map

ψ : (A(BO)⊗ V )q → Hq+1(Tg/Tg1)

is an isomorphism for q ≤ 2k.

Moreover, since A(BO) ⊗ V is a free module over the Steenrod algebra A, one can conclude

that the cofiber Tg/Tg1 has the homotopy type of a wedge of Eilenberg-MacLane spectra through

dimension 2k. Applying this to the Postnikov tower 16, one can conclude that the homotopy

(co)fibers Lj of the induced tower of Thom spectra 17 have the homotopy type of Eilenberg-MacLane

spectra through dimension 2(n − α(n)) ≥ n (assuming n > 3). In particular the homotopy type of

these spectra are determined, through this range, as free A(BO)-modules on the homotopy type of

the fibers Kj of Postnikov system (16). This was a crucial fact in the obstruction theory arguments

of [15] in knowing when lifts on the level of Thom spectra “de-Thom-ify” to give lifts on the level of

base spaces.

There were two other ingredients in the obstruction theory arguments (i.e lifting arguments) of

[15].
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1. Stable homotopy properties of the spaces BO/In. This produced a “stable lifting” of the map

ρn : BO/In → BO(n− α(n)).

2. The existence of certain multiplicative properties of the disjoint union of the space
∐
nBO/In.

These showed how the liftings of the BO/Ik’s for k < n force liftings on a large skeleton of

BO/In.

The first of these ingredients can be stated in the following theorem.

Theorem 33. [15] . For sufficiently large N ≥ 0, the N -fold suspension of the map ρn : BO/In →
BO lifts to ΣNBO(n− α(n)). That is, there is a map

ρNn : ΣNBO/In → ΣNBO(n− α(n))

making the following diagram homotopy commute:

ΣNBO/In
ρNn−−−−→ ΣNBO(n− α(n))

=

y y
ΣNBO/In −−−−→

ΣNρn
ΣNBO.

Proof. (Sketch) The obstruction to the existence of a stable lifting map ρNn : ΣNBO/In → ΣNBO(n−
α(n)) is the composition

ΣNBO/In
ΣNρn−−−−→ ΣNBO → ΣN (BO/BO(n− α(n))).

That is, one can find such a lifting if and only if this composition is null-homotopic. Now one can show

in a rather direct way, using a stable splitting theorem of Snaith [40] stated below, that the quotient

space BO/BO(n−α(n)) has the same homotopy type, through dimension n, as a product of mod-2

Eilenberg-MacLane spaces. Since BO/In has the same homotopy type as an n-dimensional CW -

complex, this obstruction is entirely cohomological. But the fact that all cohomological obstructions

vanish follows from Massey’s result (Theorem 11 above) and the definition of the ideal In.

Here is Snaith’s splitting result referenced above:

Theorem 34. (Snaith [40]) There is a weak homotopy equivalence of suspension spectra,

Σ∞BO ' Σ∞(BO(1) ∨BO(2)/BO(1) ∨ · · ·

∨BO(m)/BO(m− 1) ∨ · · · )
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At this point have the required lifting on the Thom spectrum level, and stably (i.e after taking

suspension spectra). And we also know the result at the level of cobordism theory (i.e that every

n-manifold is cobordant to one that immerses in R2n−α(n)).

The final ingredient we need is that there are “multiplicative structures”

BO/Ik ×BO/Im → BO/Ik+m (18)

S1 ×Z2
(BO/Ik)2 → BO/I2k.

These multiplicative structures were produced using the universal normal space properties of the

Brown-Peterson spaces BO/In as well as cobordism theory arguments. It also used the description

of the Brown-Gitler spectra as Thom spectra of bundles over the classifying spaces of braid groups

(Theorem 27) and the well-known multiplicative structure that these classifying spaces possess.

These multiplicative structures, including the induced structures on homology, were used in the

following way. If one strengthened the inductive assumptions to assume that there exist liftings of the

spaces BO/Ik to BO(k−α(k)) for k < n that respect, in an appropriate sense, these multiplicative

structures, then this forces the obstructions to the lifting of BO/In to BO(n − α(n)) to be zero

on the (n− 1)-dimensional skeleton of any any CW -complex of the homotopy type of BO/In. The

n-dimensional cells were analyzed and shown to not contribute an obstruction by using the existence

of the stable lifting. This argument then produced, via a complicated inductive argument, a lifting

of the map ρn : BO/In → BO up the Moore-Postnikov tower and thereby the required lifting

ρ̃n : BO/In → BO(n− α(n)).

Comments. The primary reason for this complicated inductive obstruction theoretic argument was

the fact that the Brown-Peterson spaces BO/In were not constructed explicitly. That is to say there

are no explicit models known for them. They were shown to exist with the appropriate properties by

an obstruction theoretic argument. In particular one does not have a clear cell decomposition of the

spaces BO/In that would allow for a more concrete obstruction theory argument for the required

lifting to BO(n − α(n)). However in the 35 - 40 years since the writing of [15], much has been

learned by the algebraic topology community. For example the multiplicative structures described

above (18) suggest that the disjoint union
∐
nBO/In has the structure of an algebra over an E2

operad. The conjecture of this structure was made by Mike Hopkins. Indeed if one takes the operad

of little 2-dimensional disks, which are models of the classifying spaces of braid groups, one might

be able to find explicit models of the BO/In’s that come equipped with cell decompositions that

respect this E2-structure. The recent work of Galatius, Kupers, and Randal-Williams on E2-cell

decompositions [20] might be relevant. If such explicit models can be found, surely the obstruction

theory argument needed to prove the immersion conjecture could be simplified greatly.
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5 Manifolds with structure, projective spaces, and the Goodwillie-

Weiss embedding calculus

Up until now, the bulk of this paper has been a discussion of the techniques used in the proof of

the immersion conjecture. In this section we comment on three topics. The first has to do with

manifolds with structures such as orientations, spin structures, or stably almost complex structures.

The second is about the question of finding the best immersion dimensions for specific manifolds,

and in particular real projective spaces. Finally we give a brief description of another more modern

approach to studying the question of embeddings of manifolds originally introduced by Goodwillie

and Weiss, which relies heavily on homotopy theoretic techniques.

5.1 Manifolds with structure

At the end of the author’s lecture on “Immersions of manifolds and homotopy theory” at the Math-

ematics Science Literature Lecture Series of Harvard University in 2020 (upon which these notes are

based), the moderator, M.J Hopkins asked if there were results similar to the immersion conjecture,

or perhaps any of its motivating preliminary results, known for for other classes of manifolds, such

as orientable, Spin, or stably almost complex manifolds. Of course, as pointed out above, one of

the most important motivating factors in the original immersion conjecture were the calculations

done by Massey and Brown-Peterson of the relations among the normal Stiefel-Whitney classes of

n-manifolds. In response to the Hopkins’s question, I mentioned that many years ago, a PhD stu-

dent of mine, A. Koonce did some calculations analogous to the Brown-Peterson Stiefel-Whitney

class calculations [5], that computed relations among the K(n)-characteristic classes of almost com-

plex manifolds. Here the K(n) are “Morava K-theory” spectra that have proven to be extremely

important in homotopy theory over the last 45 years. Koonce’s results can be found in [27].

At the time the question was asked, I did not remember that Massey and Peterson [32] and

Papastavridis [36] did some calculations of Stiefel-Whitney classes of orientable manifolds and of

manifolds with spin structures. I was reminded of this shortly after the lecture by Donald Davis.

Davis and Wilson [19] then wrote a paper giving a much cleaner exposition of these old results,

clarified their implications, and extended them in significant ways. Among their results is the

following:

Theorem 35. (Davis and Wilson [19]) Let εn = 0 if n is congruent to 1 mod 4, otherwise let εn = 1.

As above, let w̄j(M
n) denote the jth Stiefel-Whitney class of the stable normal bundle of a closed

manifold Mn. Then there exists a closed orientable n-manifold Mn with w̄n−k(Mn) 6= 0 if and only

if k ≥ α(n) + εn.

The following is an immediate corollary.
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Corollary 36. There exists a closed orientable n-manifold which cannot be immersed in R2n−α(n)−εn−1.

Notice that says that for n congruent to 1 mod 4, one cannot find a better general immersion the-

orem for orientable n-manifolds than what the immersion conjecture guarantees for all n-manifolds.

For n not congruent to 1 mod 4, the best result one might conjecture is that it might be possible to

immerse orientable n-manifolds in R2n−α(n)−1. This is a fascinating open problem.

5.2 Immersions of projective spaces

The immersion conjecture is a statement about all closed n-dimensional manifolds. But particular

n - manifolds may immerse in a much lower dimension than is guaranteed by the immersion conjec-

ture. To state an obvious example, the n-dimensional sphere Sn has a standard immersion, indeed

embedding, into Rn+1. So given a particular n-manifold Mn, finding it’s best immersion dimension

using Smale-Hirsch theory as well as the homotopy theory of classifying spaces is an important and

often difficult problem. More specifically one would like to answer the following question:

Question: Given a fixed n-dimensional closed manifold Mn, what is the smallest k such that

Mn # Rn+k.

By Smale-Hirsch theory and the theory of classifying spaces discussed above, this is equivalent

to the following homotopy theoretic question.

Question: Give a fixed n-dimensional closed manifold Mn find the smallest k such that there

exists a map

νkMn : Mn → BO(k)

that lifts the stable normal bundle map νMn : Mn → BO. That is, the composition

Mn νk
Mn−−−→ BO(k)→ BO

is homotopic to the stable normal bundle map νMn .

Probably the most studied of such specific manifolds are projective spaces, Mn = RPn. In these

cases there has been much work over many years. But still the final general answer is not known.

Prominent among the contributers to our knowledge about this problem include, J. Adem, L. Astey,

A. Berrick, D. Davis, S. Gitler, I. James, M. Mahowald, R.J. Milgram, and others. All of their work

uses homotopy theoretic obstruction theory of different types, including K-theory, other generalized

cohomology theories, stable and unstable homotopy theory, etc. Indeed, so many different types

of obstruction theory have been used to study this problem that the projective space immersion

problem became known not only as an important example of how homotopy theory can be used to

study a basic question about manifolds, but conversely it became a testing ground for new homotopy

theoretic technology. Indeed, around 1980, Mark Mahowald, one of the leading homotopy theorists

of the second half of the twentieth century and beyond, told the author that to him, the main value
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of the projective space immersion problem is that it is a good test for the efficacy of an obstruction

theory.

One of the strongest results along these lines is a “nonimmersion” result proved by D.M. Davis

in 1984. It uses an obstruction theory based on a spectrum usually denoted by “BP 〈2〉” which is an

offshoot of the Brown-Peterson spectrum “BP”. BP , in turn represents a cohomology theory that

is a summand of (almost) complex cobordism theory, localized at a prime.

Davis’s theorem states the following.

Theorem 37. (Davis, [18]) For all m, RP2m does not immerse in R4m−4d−2α(m−d) where d is the

smallest nonnegative integer such that α(m− d) ≤ d+ 1.

Examples: (1) When m = 2k + 1, one concludes that RP2m does not immerse in R4m−6.

The immersion conjecture implies that it does immerse in R2m−2, so the best possible immersion

dimension for such a manifold lies in dimensions between 2m− 5 and 2m− 2.

(2) A more general, interesting collection of examples occurs when n is of the form n = 22k+k+2−
3 ·2k. Then this theorem implies RPn does not immerse in R22k+k+3−6·2k+1−2. So for example, when

k = 1 this says that RP26 does not immerse in R38, yet the immersion conjecture says it does

immerse in R49. When k = 2 this says that RP244 does not immerse in R462, whereas the immersion

conjecture says it does immerse in R483.

5.3 The Goodwillie-Weiss calculus for studying embeddings

As mentioned in the first section, the study of immersions of manifolds has traditionally been much

more tractable using the techniques of homotopy theory, than the study of embeddings of manifolds.

This is primarily due to two facts. The first is the theory of Smale and Hirsch which reduces the

study of immersions to the study of vector bundles. The second is the old result of algebraic topology

that says that vector bundles can be understood in terms of the homotopy type of mapping spaces

where the targets are classifying spaces of the form BG, where G is typically one of the groups O(n),

SO(n), or U(n). Since Smale-Hirsch theory does not apply to embeddings of manifolds, for many

years homotopy theoretic methods were of limited use in studying spaces of embeddings.

A new homotopy theoretic approach was discovered in the 1990’s by Goodwillie and Weiss [44],

[45], [22] with subsequent extensions and generalizations by many others, including Klein, Sinha,

Arone, Lambrechts, Turchin, Volic, and others (see for example [23], [37], [3]).

This theory has become known as the “Goodwillie-Weiss Embedding Calculus”.

The basic viewpoint in this theory is the following. Given an n-manifold Mn, let OM be the

poset of open subsets of Mn, partially ordered by inclusion. Given an L-manifold NL, one considers
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the contravariant functor (“cofunctor”)

Emb(−, NL) : OM → Spaces

V → Emb(V,NL)

Of course one can also view the space of immersions as a cofunctor,

Imm(−, NL) : OM → Spaces

V → Imm(V,NL)

The immersion cofunctor is a sheaf, in that

Imm(V1 ∪ V2, N
L) −−−−→ Imm(V1, N

L)y .
y

Imm(V2, N
L) −−−−→ Imm(V1 ∩ V2, N

L)

(19)

is a pullback square for any open subspaces V1 and V2 of Mn.

What is less obvious, is that this square is a homotopy pullback square as well. This means that

for example, if one takes homotopy groups of the four spaces in this square, one gets a Mayer-Vietoris

long exact sequence. This was proved by Weiss [44][45] and is, in a sense that can be made precise, a

reconstituted form of Smale-Hirsch theory. In homotopy theory a cofunctor with this Mayer-Vietoris

property is called “excisive”, and by borrowing terminology from Goodwillie’s calculus of homotopy

functors (developed a bit prior to Weiss’s work) one can summarize this excisive property by saying

that the immersion cofunctor is a “polynomial cofunctor of degree ≤ 1”.

From this viewpoint, what makes the cofunctor Imm(−;NL) more calculable than Emb(−;NL)

is that, being of degree ≤ 1, the homotopy type of the immersion cofunctor is determined by

this Mayer-Vietoris property as well as how it behaves on open sets diffeomorphic to a disk Dn.

Furthermore, in a sense that Goodwillie and Weiss make precise, the natural transformation

Emb(−;NL)→ Imm(−;NL)

is the “best approximation” to the embedding cofunctor by a cofunctor of degree ≤ 1. The immersion

cofunctor is therefore denoted in this theory by

Imm(−;NL) = T1(Emb(−;NL))

where the notation is meant to conjure up the notion of being the “degree 1 Taylor polynomial”

approximation to the embedding cofunctor.

The basic idea in the Goodwillie-Weiss embedding calculus is to construct a tower of cofunctors

Emb(−;NL)→ · · · → TkEmb(−;NL)→ Tk−1Emb(−;NL)→ · · ·T1Emb(−;NL) = Imm(−;NL)

(20)
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that, in an appropriate sense converges to the embedding cofunctor, and so that the natural trans-

formation

ηk : Emb(−;NL)→ TkEmb(−;NL)

is the “best” approximation to the embedding cofunctor by a “polynomial cofunctor of degree

≤ k”. That is, TkEmb(−;NL) is the “degree k-Taylor polynomial” cofunctor approximation to

the embedding cofunctor. We will not give the precise definition of a polynomial cofunctor of

degree ≤ k, but such cofunctors are distinguished by the property that their homotopy types are

determined by its values on tubular neighborhoods of subsets S of Mn of cardinality ≤ k (i.e open

subsets diffeomorphic to a disjoint union of ≤ k open disks, Dn).

In order to understand the notion of ”the best” approximation by a polynomial functor of degree

≤ k we introduce a bit more terminology and recall a theorem of Weiss [45].

Definition 3. A cofunctor F : OM → Spaces is said to be good if

1. it takes isotopy equivalences to homotopy equvalences, and

2. for any sequence {Vi : i ≥ 0} of objects in OM (i.e open subets of Mn), the canonical map

F (∪iVi)→ holimiF (Vi)

is a homotopy equivalence. (Here “holim refers to the homotopy inverse limit.)

Now let F be the category of good cofunctors. Weiss showed that the construction of Tk extends

to all of F and proved the following.

Theorem 38. [45] The functor Tk : F → F and the natural transformations ηk : idF → Tk satisfy

the following properties:

• Tk takes equivalences to equivalences

• TkF is polynomial of degree ≤ k, for all F ∈ F ,

• If F is polynomial of degree ≤ k, the ηF : F → TkF is an equivalence, and

• For every F ∈ F , the map Tk(ηk) : TkF → TkTkF is an equivalence.

These properties of the construction of the “kth” Taylor approximation TkF are what is meant

by the statement that it gives the “best” approximation to the functor F by a polynomial functor

of degree ≤ k.

The notion of convergence in this theory is sometimes known as “analyticity”, and is proved

under the appropriate hypotheses using the notion of “multiple disjunction lemmas” for concordance

embeddings and diffeomorphisms by Goodwillie [21] and Goodwillie-Klein-Weiss [23].
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Now in order for the tower (20) to be useful for calculations, one needs to be able to compute

the homotopy types of the homotopy fibers of the successive terms:

Lk(F (V ))→ TkF (V )→ Tk−1F (V ).

The functor Lk : OMn → Spaces is known as a homogeneous polynomial functor of degree k, in

that its lower degree Taylor approximations, TjL(V ) are contractible for all j < k.

An impressive part of the Goodwillie-Weiss theory is that they can completely classify the ho-

mogeneous polynomial cofunctors OMn → Spaces. For example, let C(Mn, k) be the configuration

space of k-distinct, unordered points in Mn. That is, an element of C(Mn, k) is a subset of Mn of

cardinality k. Notice that this space can be viewed as the complement of the fat diagonal in the

k-fold symmetric product Mn × · · · ×Mn/Σk. Let

p : Z → C(Mn, k)

be a fibration with partial section s : C(Mn, k) ∩ Q → Z where Q is a neighborhood of the fat

diagonal in the symmetric product. For V ⊂ OMn one can define F (V ) to be the space of sections

of p which are defined on C(V, k) and agree with s on C(V, k) ∩ Q′ for some neighborhood of the

fat diagonal Q′ ⊂ Q. The cofunctor F defined this way is a homogeneous polynomial cofunctor of

degree k and the remarkable theorem of Goodwillie and Weiss is that all homogeneous polynomial

cofunctor of degree k come about this way, for some fibration p and section s.

Now the topology of the configuration spaces C(Mn, k) have been well-studied over the last fifty

years, so the homotopy type of the homogeneous degree k polynomial cofunctors LkF lends itself to

calculation.

So in the case of the embedding cofunctor, one has a tower of fibrations (20) whose base is the

space of immersions, that “converges” to the space of embeddings (under appropriate hypotheses),

and the homotopy fibers Lk(Emb(−;NL)) have tractable homotopy types. One can view this

as a “resolution” of the embedding cofunctor Emb(−;NL) in terms of the immersion cofunctor

Imm(−;NL) where the “layers” of the resolution lend themselves to calculation. Of course how

these layers fit together is another, often very difficult problem. Nonetheless over the past 25 years

the Goodwillie-Weiss machinery and subsequent extensions and generalizations have lead to a good

bit of progress on understanding the homotopy type of the embedding spaces Emb(Mn, NL). We

end with a quick description of some results that have been obtained using this theory.

Examples of results using the Goodwillie-Weiss embedding calculus

1. B. Munson [35] gave a complete obstruction for an immersion Mn # RL being isotopic to an

embedding for 3L > 4n+ 4, extending classical work of Haefliger.

2. I. Volic [42] studied knots, Emb(S1,R3), and he related the Goodwillie-Weiss obstruction

theory to the finite-type knot invariants of Vassiliev.
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3. Arone, Lambrechts, and Volic [2] used this theory to study the rational homotopy type of the

“difference” (homotopy fiber) between embedding and immersion spaces,

˜Emb(Mn;RL)→ Emb(Mn;RL)→ Imm(Mn;RL)

when L > 2 · embedding dimension ofMn.

4. G. Arone, P. Lambrechts, V. Turchin, and I. Volic [3] combined this theory with work of

Kontsevich to calculate the rational homotopy type of the space of “long knots” in RL, L ≥ 4.

5. R. Koytcheff [28] related the Goodwillie-Weiss obstruction theory to the “Bott-Taubes inte-

grals”, giving invariants of knots.

6. D. Sinha [37] adapted the Goodwillie-Weiss theory to construct a cosimplicial model for

Emb([0, 1], N) where N is simply connected and has dimension ≥ 4.
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