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6 Floer theory for the projective space of a polarized
vector space and LCP”"

We now explain what the method described in the previous section gives in some
infinite dimensional examples. Motivated by the fact that the compactification of
the flow category of the area functional on LCP", constructed in §4, is the flow
category of a function on an infinite dimensional projective space, we begin by
considering projective spaces.

Example 6.1 — Real projective space

Let V be the real vector space of sequences X = {x,},ez with only a finite
number of non-zero terms, topologized as the direct limit of its finite dimensional
subspaces. We use the usual Hilbert norm || — || on V; of course V is not complete
in this norm. Let S(V) be the sphere in V, and consider the function f : S(V) — R
defined by -

o0
f(x) = Z nx?
H=—0QO
This descends to a function
f:P(V)—-R

with critical points ¢; = [6;], i € Z, where 4; is the i-th element in the standard
basis for V. The gradient flow of f, with respect to the Hilbert norm, is the flow
on P(V) defined by the linear flow 1 on V where ;(6,) = e™6,. We could
replace V by a space of sequences of suitably rapid decay, but this does not make
any real difference. '

The unstable manifold W'(c¢;) and the stable manifold W¥(c;) are given by

W' (ci) = {[x] € P(V )',\‘,'74(),\‘/'=() if j <i}
W3(ci) ={[x] e P(V) :xi #0,x; =0 if j > i}.

Neither W (c;) nor W?(¢;) is finite dimensional, but the intersection W(c;) N
W?(c;) is transverse, finite dimensional, and

dimW3 () AW (cj)) = j—i ifj>i.

From this it is not difficult to identify the flow category ‘¢ = G explicitly.
Now consider the question of whether this category is framed in the sense

of 43. Fix a pair of integers a < b and let ¢! be the full subcategory generated
by the critical points ¢; with a <7 < b. This catq,my is the flow category of the

function
b
_ 2
) = E Hx;,

n—a

on RP!-7 = P(V'), where V! is the finite dimensional subspace of V with
basis &, a < i < b, and we are using the natural homogenecous coordinates
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x = [xXg,...,xp] with D>x2 = 1 on P(V"). Therefore, ‘6! is a framed category
and each of the spaces of morphisms F(j,i) witha < i < j < b inherits a framing
©b from the flow category @Y. The framing @b comes from embedding F ( J,i) in
the unstable sphere of the critical point ¢; in RPY=4, which, since ¢ j has index
j —ain RPP~, is a sphere of dimension j —a — 1. In particular, this shows that
the framings cpf,’ and 90,';, are identical. However, the framings ! and 99,',’, are not
the same, as we will show.

Let us work in the stable category /', described in the Appendix, and deline
b __ ca=b
I(G(,,CP)I-—S IZI

where Z @ 9! — T, is the functor defined by the category @L equipped with
the framing ¢. This has the effect of removing the suspensions which occur in
the statement of Proposition (5.1) and it simplifies notation; it is a straightforward
matter to keep track of the suspensions, if necessary.

The manifold F(i + 1,i) has dimension zero and, using gof,’, is framed in
Si=%, the unstable sphere of the critical point cj;; in RP"~2 Thus it gives a
map of spheres S'=% — S/=% This map is the relative attaching map between
the (i —a+ 1)-cell and the (i — a)-cell in |(€L, ©b)| = RIP’=“. Therefore it has.
degree 1 — (—1)"=“. Using the framing cpf;“l of F(i + 1,i) in the unstable §/—+1
of the critical point cj; in RPP=9+! we get a map ST+ — Si=0+1 which is
the relative attaching map between the (i — a + 2)-cell and the i 4+ 1 — a-cell of
(68,00 )| = RPY=+1; therefore it has degree 1 —(—1)"="+!, So the framings
<p,’; and cpf;_l produce different maps.

For @’ < a the framings gog, and ! differ because the normal bundle to RPY—7
in RP?=7| that is (a — a’)y where 7 is the real Hopf line bundle, is non-trivial.

Furthermore, it is straightforward to check that
|(<Gg ‘Pl;')i — (pr—a)(n—a')u
bl It ©
Since the framings gof,’,' and <,of,’, agree it follows that
I((Gg’ ‘Pg:)l — (pr-n)(n—n/)n

whenever ' <a< b <.
From the construction of the realization there are maps

b v b [ l b
|(Ga, @) — (65 b ), 1(Bhm )] — 1(Gy o)
for a’ <a < b < b’ which we now identify. The first is the inclusion

R[})b—-n N pr’—n
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and the second is the map
Rlph—n' N (Rplr—fl)(zl~ll')1]

obtained from (hu Pontryagin-Thom construction applied to the embedding
RPY= — RPP~"; we describe this construction briefly.

Suppose we have an embedding P — M of compact manifolds. Let v be the
normal bundle of the embedding and let Np be an open tubular neighbourhood of
P in M. Then the inclusion Np — M is an open embedding and so it gives a map
Nf — M where Nj is the one-point compactification of Np. Now Ny is just
the Thom complex of v and so the embeddmg, N — M gives a map M — P”.
Applied to the embedding RPP—? — RP- ' with normal bundle (a — a')n, this
gives the required map.

We now explain how to assemble the spaces |(‘6L, ‘Pa')l into a single object,
a pro-spectrum, which correctly reflects the relation between the different spaces.
To do this, we use the maps we have just described. The bundle (a —a’)n extends
over RP?~ and so, using the theory of Thom spaces of virtual bundles described
in the Appendix, we can convert the map RP?~% — (RP?—7)(a—a 7 into a stable
map

(RP!)—»H')——(H—{I')'Ir;‘_9’ pr——n.

Therefore we can construct the sequence
pr—a — (pr—a+l)—71 — (pr—n+2)—2n -

in the stable category of compact spaces. As explained in the Appendix, this
sequence defines a pro-spectrum.

Using the inclusions RP!—7 — RPY" =4 we can take the limit over b and
then, using Thom spaces of virtual vector bundles over CW complexes of finite
type (see the Appendix), we get the pro-spectrum defined by the sequence of Thom
spectra

RP™ — (RP®)™ — (RP™) "2 ..

This pro-spectrum is the final output of the construction; it is the I'loer homotopy
type associated to the function f : P(V) — R. In fact, this pro-spectrum, which
is usually denoted by RP>_, is exactly the pro-spectrum which occurs in the
theorem of Lin mentioned in the introduction.

Floer’s method of associating a chain complex to the function f : P(V) — R
gives the chain complex C, with Cp = Z for all p € Z, and the boundary operator
dp : Cy — C,—; is multiplication by 1 + (=1)P. It is easy to check that the
homology of this chain complex is the same as the homology of the pro-spectrum

RP>°,, for any coefficient group. So the Floer groups do compute the homology
of RP>
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Example 6.2 — Complex projective space

Now consider the complex analogue of the previous example. Let W be the
complex vector space of sequences z = {z,},cz with only a finite number of
non-zero terms, equipped with the direct limit topology, and Hilbert norm || — |.
This time the function S(W) — R defined by

%)

Z Z ”|:”|2

Hn=-00

descends to a function f : P(W) — R, and the flow of this function is exactly the
flow ®© on the projective space P(W) which arose in 4. The construction used
in the case of the real projective space P(V) shows that the Floer homotopy type
associated to this function is the pro-spectrum CP>_ defined by the sequence of
Thom spectra

CP® — (CP™®)™¢ « (CP*®)~X —

where ¢ is the complex Hopf line bundle. Once more we find by direct computation
that the Floer chain complex of f does indeed compute the cohomology of this
pro-spectrum.

Example 6.3 — The area function on YCP" :
To associate a Floer homotopy type to the area functional & on Y'CP", we first
compactify the flow category G, to give the flow category of the flow &) on
the projective space P(C"*! @ C[z,z7"]), as in §4. Now the method of (6.1) and
(6.2) gives the pro-spectrum defined by the sequence of Thom spectra

CP™>® — (Cpoo)——(n+l)(: — (Cpm)—2(11+l)c - ...

where ¢ is the complex Hopf line bundle. This pro-spectrum is CP>_.

The reason why (1 + 1)¢ appears in this construction is that the category <@f;
which occurs in this example is the flow category of a Morse-Bott-Smale function
on CPU+D0=0 "and the normal bundle to the embedding of CPU)(b=a) iy
Cp+D)(=(a=1)) s (n+ 1)¢.

As explained in the Appendix, the cohomology of CP>_ with integral coef-

ficients is Z[u, "], the ring of Laurent polynomials in 1, where  has degree 2.
Thus, as a group, this is one copy of Z in every even dimension. Computing the
first Chern class of CP" shows that the Floer homology HF (SCP") is Z/(21n+2)
graded, and Floer [12] shows that these groups are Z in even degrees and 0 in
odd degrees.

The relation between these groups is as follows. Let ¢((11+ 1)) be the Euler
class of the bundle (1 + 1)¢, which is the bundle which naturally occurs in the
above sequence of Thom spectra; of course e((n + 1)¢) = 1. If we now set
e((1n+1)¢) to be 1, we get Floer’s groups with their Z /(211 + 2) grading:

Zuu™']  H*(CPX,)

HF, (XCP") = (it — 1) T (e((n+ 1)) = 1)
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The Floer cohomology of LCP" has a ring structure using the «pair of pants»
product and what is more the above isomorphisms are isomorphisms of rings.

We close this section with some final comments.

(i) Itseems very likely that the same method will work for the area functional on
LGri(C") where Gri(C") is the Grassmannian of complex k planes in C".
In this case the ring strucuture of Floer cohomology ring has been computed,
by Witten; it is the «deformed cohomology ring» of the Grassmannian. Once
more, we expect the Floer homotopy type to come from an inverse system of
Thom spectra, and to find the Floer cohomology ring is given by a formula
similar to the one which arises in the case of CP".

(i) In the projective space examples, the pro-spectra RP, and CPZ, are in-
deed the natural candidates for the semi-infinite homotopy type of the polar-
ized manifolds P(V) and P(W). The polarization of these projective spaces
is defined by the natural polarization of V and W. For example the construc-
tion of RP>_ can be phrased so that it only depends on the polarization
V=V"0V"pH V" where V™ has basis {6;j}i<o, V' has basis {6;}i~0 and
V9 the «finite dimensional ambiguity», is the one dimensional space spanned
by 5().

Let W be a finite dimensional subspace of V such that W = W~ @ Wolgw+
where WE = W N VE and WO = W N V. We refer to WO-O'W™ as the
positive part of W and W™ as the negative part. To W we associate the Thom
space P(W)~¢ of the virtual bundle —£ where £ is the vector bundle over P(W)
defined by W ~. If we choose bases then we get an isomorphism £ = (dimW™)n
where 7 is the Hopf line bundle. In the stable category P(W)~¢ has one i-cell for
each i with —dimW_ <i <dimW —dimW ™. ‘

Now suppose we have an inclusion W; — W; which preserves the decom-
positions. If it is an isomorphism on the negative part, i.e. increases the positive
part, then we get an obvious map

P(W,)™% — P(W,) %,

On the other hand, if it is an isomorphism on the positive part, i.c. increases the
negative part, then we get a map

P(W)™8 — P(W,) "%

This map is constructed as follows. The bundle &) is a sub-bundle of &; restricted
to P(W,) and thercfore the virtual bundle —& restricted to PP(W)) is a sub-
virtual-bundle of —¢,. This gives a map (in the stable category) of Thom spaces
P(W)~8 — P(W3) 7%,

Thus we get a system of Thom spectra indexed by subspaces W of V. An
inclusion which is an isomorphism on the negative part (i.e increases the positive
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part) gives a map in the same direction whereas an inclusion which is an isomor-
phism on the positive part (i.e. increases the negative part) gives a map in the other
direction. Using the basis for V, we can use the subspaces V(',I’ to reduce this system
to one indexed by pairs of integers, and this gives the pro-spectrum RP_. This
construction fits in rather well with the coordinate free theory of spectra described
in [19], where the spaces defining the spectrum are indexed by finite dimensional
subspaces of an infinite dimensional real vector space, rather than the integers.
Here we have spaces indexed by the finite dimensional subspaces ol a polarized
veetor space.

Therefore, we are able to associate a «semi-infinitc homotopy type 1o P(V)
which depends only on the polarization of V, and the Floer function f:P(V)—
R docs indeed compute the «semi-infinite» cohomology of P(V). However the
construction depends very heavily on special features of P(V).

Appendix — Spectra and pro-spectra

In stable homotopy theory it is convenient, and it greatly simplifies many ar-
guments, to be able to work in a suitable stable category of spaces. The stable
category & of finite CW complexes is defined, essentially, by inverting the sus-
pension functor on the category of finite CW complexes. The objects of & are
defined to be §$"X where X is a finite CW complex, and 1 € Z. If n is positive
then $"X is just the n-th suspension of X, but by allowing 1 to be negative we
have introduced formal desuspensions of X. More precisely, the objects of & are
pairs (X, n), where X is a finite CW complex and 1 € Z, modulo the equivalence
relation generated by identifying (X, 1) with (S"X,0) if 1 is positive, and S"X
is the equivalence class of (X, n). A map from $"X — S™Y is defined by giving
a map S"*KX — SMtky where k is chosen large enough so that both S$"+kX
and S"*KY are genuine CW complexes. Two maps are identified if they are equal
after a suitably large number of suspensions. Thus,

Map(S”X, S'"Y) = lim Map(S”"*'kX’SnH—k Y)

where the maps in the direct system are given by suspension.

The main difficulty with this stable category is that it is not closed under
direct and inverse limits. The category of spectra S is delined, essentially, to
be the category one obtains by formally adjoining dircct limits of sequences in
the stable category. Thus a spectrum K is given by a sequence of CW complexes
{Kp} and maps SK, — K. One thinks of the spectrum K as the direct limit of
the sequence

Ko — S 'Ky — ... = S7PK, — STPH Ky — -

in S Note that it is only necessary to define the spaces K, and the maps
SPt=inKy, — Kp,,, for a strictly increasing sequence of integers Pus for if
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pn < m < puyr we can define K, = S" K, and use the identity map
SKi — Ky if m 41 % pyy.

It takes some work to define maps between spectra and set up a good category
of spectra. The essential difficulty is the usual one when dealing with maps from a
direct limit K to a direct limit L; it is certainly the case that a map of direct systems
defines such a map but there are many different direct systems with limits K and
L. However the technicalities involved in the definition of a suitable category of
spectra are well-understood; see [ 1] and [19]. In particular [ 19] gives the definition
from the «coordinate-free» point of view which leads to a category of spectra with
all the good properties one could expect.

Spectra define generalised cohomology theories: if X is a finite CW complex

W(X;K) = [SK=PX; Ky ]

lim
k—o0
The maps in the direct system are defined by

[SI\' - ,JX, KI\] N [Sl\'»—pl lX, SK[\] — [Sk—p—H X, Kk-H]a

where the first map is given by suspension, and the second by the structure maps of
the spectrum K. In the literature this group h¥(X;K) is often denoted by KP(X).
Furthermore every generalised cohomology theory arises in this way. This is one
of the main justifications for introducing spectra.

For some purposes the category of spectra is still not big enough. In the
study of the Segal conjecture it becomes clear that one also needs pro-spectra,
inverse systems of spectra. The most convincing argument for the necessity of
pro-spectra is given in [2], pages 5-6. By definition, a pro-spectrum is a doubly
indexed family of finite CW complexes {Xp 4} equipped with maps

SXpag = Xpgi1s Xpag = Xpag-1-
Thus if we fix p the sequence of spaces X, 4 with structure maps 5Xp 3 — Xp g1
form a spectrum X, and the maps X, , — X1, give a map of spectra X, —
X,,_;; so we have an inverse system of spectra

.(—Xp_| (._xll4__....

It is only necessary to define these spaces and maps for a strictly increasing se-
quences of integers p,, and ¢,,. Furthermore, to define a pro-spectrum it is sufficient
to give the structure maps in the stable category .
The first example of a pro-spectrum which arises in the main text occurs in
§5, where for any pair of integers a and b with a < b, we have spaces |Z]2, and
fora’ <a < b <, we have maps
S V4 (A A 4

a o a’
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The corresponding pro-spectrum is defined by X, = S”I'/f|f,’ and the natural
structure maps. Note that since a can be negative, these spaces and maps really do
lie in the stable catcgory; as noted above, they nonetheless deline a pro-spectrum.

A good example which illustrates these ideas and is of considerable im-
portance in our approach to Floer homotopy type arises from the theory of Thom
spaces. Recall that the Thom space X L of a vector bundle E over a compact space
X is defined to be the one-point compactification E'' of the total space of E. Now
consider the problem of defining the Thom space of a virtual vector bundle § over
X. A virtual vector bundle is an clement ¢ € KO(X) and its dimension, which
is an integer, is defined by the homomorphism KO(X) — KO(pt) = Z given by
the inclusion of a point in X. We are assuming, of course, that X is connected.
By standard propertics of K-theory we can find a genuine vector bundle £ over
X such that

‘ ¢ =L -k € KO(X).

where k is a trivial bundle of dimension k. Now X< is defined to be the object
S~k XE in the stable category . It is not difficult to check that in & the homotopy
type of X< does not depend on the choice of E and k.

Now suppose that X is CW complex of finite type (this means that the -
skeleton X" of X is a finite CW complex for each 1) and £ is a virtual vector
bundle on X. In this case we cannot necessarily choose a vector bundle E such
that £ = E — k, but we can choose vector bundles EM over XU such that

gl = EM _k, € KO(X(H))’

where £ is the restriction of € to X, Furthermore these bundles can be chosen
so that there is a bundle map E) + k,, — k,, — EU | covering the inclusion of
X — X which is an isomorphism on fibres. Thus we get maps
Sk,,_,.,—k,,(x(n))zs(") - (X(n+l))E(’”".

and the spaces {(X(”))E(")} with these maps define a spectrum. This is the Thom
spectrum of &, denoted by X¢. Once more the homotopy type of X< does not
depend on the choices made in its definition. For example, the MU-spectrum used
in §5 is the Thom spectrum of the universal bundle over BU.

On a compact space X, if E is a sub-vector-bundle of F, we get a map of
Thom complexes XE — XF. Similarily if X has finite type and € is a sub-virtual-
vector-bundle of 77, which means that there is a genuine vector bundle E such that
&+ E =), then we get a map of Thom spectra

XS — X",

In particular, suppose that X has finite type, and E is a vector bundle over X.
Then —E is a virtual vector bundle over X, and if kK > 0 then —kE is a sub-
virtual-vector-bundle of (=k + E. So we get maps X R xRNk

can form the inverse system of Thom spectra

X «-—X_E *____XMZI.' - ...

and we
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with k-th term X *E where k > 0. This inverse system ol Thom spectra is a
pro-spectrum which we will denote by X ~>E_ The examples which occur in the
main text are the cases where X = RP™ and E is the real Hopf line bundle;
X = CP™ and E is the complex Hopf line bundle. These pro-spectra are denoted
by RP>_ and CP> respectively.

The cohomology of a pro-spectrum X is defined as follows. The pro-spectrum
is an inverse system of spectra

Ce= X = Xy

and then

H*(X) = lim H*(X,).

p—00

In good cases, that is where there is no lim'-term, we get

H*(X). = lim lim H*(Xp‘q)

P00 Ou—]

where the spaces {Xp,}, with the appropriate structure maps, define the pro-
spectrum X.

In the case of the pro-spectrum X~°°E defined by a vector bundle over a
CW complex of finite type, it is straightforward to compute cohomology. If E is
orientable it has an Euler class ¢(E) € HY™(E)(X;Z), and

H*(X >F.7) = H*X;Z)[¢(E)"").

If E is not orientable then it has an Euler class in mod 2 cohomology, and the mod
2 cohomology of X~>F is given by the same formula. For RP>, and CPX
this shows that
HY(RP™, . Z/2) =Z/2]x,x ]
YOI 2 Z) = 2 ).

Here v has degree | oand corresponds to the Euler class of the real Hopf line

bundle in H'(RP>;Z/2); 1 has degree 2 and corresponds to the Euler class of
. e . al

the complex Hopf line bundle in H=(CP™:Z).
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