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1 Introduction

This paper is a progress report on our efforts to understand the homotopy theory
underlying Floer homology. Its objectives are as follows:

(A) to describe some of our ideas concerning what exactly the Floer homology
groups compute;

(B) to explain what kind of an object we think the «Floer homotopy type» of an
- infinite dimensional manifold should be;

(C) to work out, in detail, the Floer homotopy type in some examples.

We have not solved the problems posed by the underlying questions, but we do
have a programme which we hope will lead to solutions. Thus it seems worthwhile
to describe our ideas now, especially in a volume of papers dedicated to the
' memory of Andreas Floer. We plan to write a complete account of -this approach
to Floer homotopy theory in a future paper.

Floer homology arises in two different contexts, the study of curves and
surfaces in symplectic manifolds, and gauge theory on three- and four-dimensional
manifolds. In each of these contexts there are two different perspectives, which
one can think of as «Hamiltonian» and «Lagrangian».

The theory began with Floer’s proof of the Arnold conjecture. On a compact
symplectic manifold M a Hamiltonian flow is generated by a Hamiltonian function
h M — R, and the stationary points of the flow are the critical points of h.
Classical Morse theory tells us that there are at least as many such points as the
dimension of the homology H.(M;R). Arnold conjectured that the same is true of
the number of fixed points of a diffeomorphism ¢, : M — M which arises from
a time dependent Hamiltonian flow {¢y }o<i<i. The trajectories of such a flow are
critical points of the «action functional» Sy on the space of paths v: [0, 1] = M,
where

Sp(y) = /(pdq — hdt),
I

and 1 © M x R — [¥ is the varying Hamiltonian, The fixed points of ¢y are
therefore the critical points of S, on the space S’M of loops of length | in M.
Thus Arnold’s conjecture would follow from a version of Morse theory applicable
to the function S, : $M — R, but relating its critical points to the homology of
M rather than M. This was the theory that Floer developed.
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In conventional Morse theory it is geometrically clear why the homotopy
type ol a manifold X is reflected in the disposition of the critical points of a
function f : X — R; for example, if there are no critical points apart from the
minimum, the gradient flow of f provides a contraction of X. At present there is no
comparable homotopy-theoretic underpinning of Floer theory. Ordinary homology
can be defined in a great variety of quite different ways, but one docs not know
how to define Floer’s groups without using a Floer-Morse function. One of our
purposes in this paper is 1o speculate about what exactly the Floer groups are
describing, or what additional structure an infinite dimensional manifold such as
£M must have for the groups to be defined. We should say at the outset, however,
that we have not solved this problem.

One ingredient in the answer is clear. An important feature of a Floer-Morse
function, such as Sy, is that at critical points its Hessian has infinitely many neg-
ative as well as positive eigenvalues. In fact at every point v of £M, the Hessian
of 55 decomposes the tangent space T, (M) into two parts T.?‘" corresponding (o
the positive and negative cigenvalues, with a finite dimensional ambiguity coming
from the zero eigenspace. Such an approximate splitting of the tangent bundle of
an infinite dimensional manifold X, we shall call a polarization of X. A formal
definition will be given in §2. The significance of the polarization becomes clearer
if we turn to the second — or Lagrangizlll — perspective on Floer theory.

If we choose a Riemannian metric on M making it an almost complex man-
ifold then we can consider pseudo-holomorphic maps ¢ : ¥ — M, where ¥
is a Riemann surface. In Amold’s problem the gradient flow lines of the func-
tion S : M — R when i = 0 are precisely the pseudo-holomorphic maps
S!' xR — M. If a closed surface & = Y| U X, is the union of two pieces
intersecting in a common boundary circle then, because a pseudo-holomorphic
map X; — M is determined by its boundary values, the finite dimensional space
Zy, = Hol(X; M) can be regarded as the intersection of two infinite dimensional
submanifolds Zy;, = Hol(X;: M) of the loop space M. Here the notation Hol
means pscudo-holomorphic maps. The tangent spaces (o Zy;, and Zy,, are close
— in a sense explained in §2 — to the positive and negative parts Tf of the
polarization of T,(¥£M). Furthermore Zy, and Zy, define a cycle and a cocycle
respectively in the Floer theory of M, and the pairing between them is, in good
cases, the number of isolated pscudo-holomorphic maps X — M.

This suggests (compare [4]) that Floer theory is the homology theory of semi-
infinite dimensional cycles in a polarized manifold. There is a natural concept of
semi-infinite dimensional differential forms on such a manifold, and one might
hope to use them to give a de Rham definition of Floer homology; see [11]
for interesting work along these lines. To define the Floer groups for an infinite
dimensional manifold, it seems clear that more structure is needed than just the
polarization of X. A crucial point scems to be that the critical manifold of a Floer-
Morse function is compact. and it seems conceivable that some preferred class of
compact subspaces of X should be an ingredient in the structure.
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Though we cannot answer the question «what does the Floer homotopy type
of a manifold depend on», we can do better with another question, «what sort
of object is the Floer homotopy type of a manifold». Unfortunately one cannot
hope that the Floer groups of X are the ordinary homology groups of a space
associated to X, or even of a «stable space» or a «spectrum». We shall show
that under reasonable hypotheses one can associate to the flow category, see [9],
of a Floer-Morse function an object called a pro-spectrum. This is a technical
homotopy-theoretic concept which has proved to be central in one of the deepest
recent results of homotopy theory. As the pro-spectra involved arise in Floer theory
on the projective spaces of polarized vector spaces and also the loop space LCP",
it seems worthwhile to explain this result briefly.

For any positive integers n > ni, let P} be the space obtained from real
projective space RP" by collapsing the standard linear subspace RP"! to a
point. Now fix two large positive integers p and g and consider the homotopy
groups 7r,~+N(P,I\}’_+‘;’ ) as N — oo. Notice that P,{}':;’ is a space made of cells whose
dimensions range from N + p to N — g, so that for small |i| we are looking at
a kind of «middle dimensional» homotopy group. The following deep theorem
of Lin [20], conjectured by Mahowald [21] and Adams [2], was a crucial step in
determining the stable homotopy type of the classifying spaces of finite groups and
proving the Segal conjecture; see [3] and [8] for surveys and further references.

Theorem If N is a multiple of 2+, then there is @ map SN=! — Pﬁ:’;'whicb '
induces isomorphisnis o

Z/2°(N) ifi =—1

, IN+PY ~
W:+N(’N_,,) = {W,’+N(SN_l)(2) ifi#—1but —p<Kikyq

where 7r,~+N(SN “')(2) is the 2-primary component of the homotopy  group
Tian (SN, and a(N) — oo as N — oc.

v (he . . N+py .
In particular note that, when / is small compared to N, 7r,+N(PN_"1) is in-

dependent of N, except that when i = —1 it tends to the 2-adic completion of
7TN_.|(SN_I) =/Z.
There are natural inclusions Pll\\]]f"; — PI\I\,]:’]"H and collapsing maps PICI:’; —

Pﬁ}’:’]ﬂrl. In addition, if N and M are both multiples of 2P*1 with N > M,
there is a homotopy equivalence between PI{}I:’I’ and the (N — M)-fold suspension

GN-M Pxf‘,’ It follows that the system of spaces Pﬁ:’; form a pro-spectrum, and
this is the prime example of a pro-spectrum.

Let us now outline the contents of this paper. In §2 we describe some of the
homotopy-theoretic properties of polarized manifolds. In §3 we describe the flow
categories of Morse functions. In §4 we analyse the flow category of LCP", and
explain how to compactily this category. In §5 we describe a method of recovering
the stable homotopy type of a finite dimensional manifold from the flow category
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ol a Morse-Bott function. This method is not the same as that used in [9]; in spirit,
it is related to the work of Franks [14]. We go on to show how a pro-spectrum
can be associated to the idealized flow category of a Floer function. In §6 we
describe how the ideas of §5 can be applied to the projective space of a polarized
vector space, and to the arca function on LCP", and we identily the corresponding
pro-spectra. The most surprising point is that the pro-spectrum associated to the
compactificd flow category of the arca function on LCP" is the complex analogue
of the one occurring in Lin’s theorem.

In an Appendix we give a very brief account, for non-experts, of some of the
ideas which lead to the introduction of the stable category of spaces, the category
of spectra, and the notion of a pro-spectrum.

2 Polarized manifolds

A polarization of a real topological vector space E is a class of decompositons of
E = E, ®E_ which do not differ too much among themselves. The main example
arises when one has an unbounded self adjoint Fredholm operator D : E — E.
This splits E according to the positive and negative parts of the spectrum of D:
" vie want to allow the ambiguity of assigning the O-eigenspace arbitrarily to E or
E_. The most convenient definition is as follows.

‘Definition 2.1 A polarisation of E is a class $ of linear operators | : E — E, all
congruent modulo the ideal of compact operators, and such that J* = 1 modulo
compact operators. Further, $ must not contain +1 or —1.

If E is polarized we can define the restricted gencral linear group GLes(E)
which consists of all g € GL(E) which preserve the polarization. We can also
define the restricted Grassmannian Gr(E ), consisting of all the (—1)-eigenspaces
of all ] € § such that J? = 1. :

If E is a Banach space then GL s (E) can be regarded as a closed subgroup of
GL(E) with the norm topology. But, in general, it is better to give it the topology
for which {g,} converges if both {g,} and {g7'} converge in the compact-open
topology, and [J, g,] converges in the uniform topology for some (and hence all)
Je .

A polarized manifold X is one whose tangent spaces Ty X are polarized.
More precisely, if X is modelled on E, the structural group of the tangent bundle
of X is reduced to GLes(E). In all of the examples we know the polarizations
are integrable, that is X has an atlas {¢, : U, — X} such that D(pgp5')(y) €
GLes(E) for all y € ¢, (U, ); but we shall not need this. The two basic examples
which arise in Floer theory are the following.

(1)  An almost complex structure on a Riemannian manifold M defines a polar-
ization of the loop space S"M. The tangent space T at vy € LM is the space
of tangent vector ficlds to M along «, and we have the sclf-adjoint operator




FCCE S LRI dnibCHS EOHWE (v OFSC THeol v i HOTNOEOp Y o]y AV

JD/DO : T, — T,, where | is the almost-complex structure of M and D /D0
is covariant differentiation. The spectral decomposition of jD /D6 polarizes
IM.

(i) The space X = A* /G, where A* is the space of irreducible connections on a
complex vector bundle E with compact structural group G on a 3-manifold M
and 4 = Aut(E) is the gauge group of E, also carries a natural polarization.
The tangent space to &4* at any point is Q' (M; End(E)), and that of ${/%9 at
a connection A is the cokernel of

da: Q°(M;End(E)) — Q' (M;End(E)).

If A is a flat connection then d% = 0, and the operator *d 4 induces a self-
adjoint Fredholm operator, and hence a polarization, on the tangent space
Ta = Q'/ds0°. With more work, one can define the polarization at all
points of X.

In both these cases the polarization is the same as the polarization induced by
a Floer-Morse function. In the first case, it is the area functional — the action
functional S, described in the introduction, with i = 0. In the second case, it is
the Chern-Simons functional.

For the usual topological vector spaces of analysis the group GL(E) is con-
tractible, and so the tangent bundle of a manifold X modelled on E carries no
homotopy-theoretic information. The position is different when E is polarized. For
the usual choices of E, the group GL.s(E) has the homotopy type of Z x BO, the
classifying space for stable finite dimensional vector bundles; see [22]. The tangent
bundle of a polarized manifold X is therefore described by a map X — BGL(E),
determined up to homotopy, which we call the structural map of X. By Bott pe-
riodicity the homotopy type of BGL(E) is U/O, where U = |JU(n) and
O = [JO(n) are the infinite unitary group and orthogonal group respectively. The
space U/O represents the functor KO'. Its fundamental group is Z and its rational
cohomology is an exterior algebra on generators of dimensions 4k + 1. Therefore,
a polarized manifold X has characteristic classes in H4*+1(X; Q).

The most obvious information provided by the structural map X — U/O
concerns the grading of Floer homology. At each point x € X we have the
Grassmannian Gry = Gryes(TxX), whose connected components correspond to
the integers Z, though with no preferred choice of zero: two points of Gry have
a well-defined relative dimension, but no absolute dimension [22]. The sets X, =
m0(Gry), as x varies, form a covering space X of X, and when one goes around
a path X in X starting at x, the holonomy X, — X, shifts Xy by the image
of A in m(U/O) = Z. This means that for a particular polarized manifold X
the «dimension» of a semi-infinite subspace of Ty X, and hence of a semi-infinite
cycle, or Floer homology class, can be taken to be well-defined modulo the image
of 7 (X) in m; (U/O) = Z. On the covering space X the dimension — or «virtual
dimension» — is a well-defined element of Z.
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I M is an almost-complex manifold of real dimension 2u1, then the tangent
bundle of M is classiicd by a map ¢ : M -— BU(m). The structural map of
X = LM is casily scen to be the composite

gM 2 eBUM) =5 U — U/O.

where /3 is the transgression. It is important that the structural map factorizes
through U, i.c. the structural group of TSM is reduced to the compley restricted
general lincar group. This means, in particular, that the grading of Floer homology
is always well defined modulo 2, for the map 7, (U) — 7 (U/O) is multiplication
by 2.

The same is true in the gauge theory case, when X has the homotopy type
of Map(M; BG). Then the structural map is the composite

Map(M: BG) — Map(M: BU(k)) — U — U/O,

where the first map is induced by the representation G — U(k) which defines
the bundle E, and the second map is the direct-image map in complex K-theory.
(This map represents the element of K=3(Map(M; BU(k)) obtained by pulling
back the tautological element of K(BU(k)) to K(M x Map(M; BU(k))) by the
evaluation map, and then «integrating» over the 3-dimensional manifold M, i.e.
evaluating on the K-theory fundamental class in K3(M).)

From these descriptions of the structural map it is easy to compute its effect
on 7. Il M is a simply connected almost complex manifold, we have 7, (¥M) =
m2(M). The homomorphism

m(M) = m (M) — m (U/O) =Z

is the homomorphism defined by 2cy(M), and the grading of Floer homology
is well defined modulo its image. In the gauge theory case with structure group
G = SU(2), we have m(s1*/96) = Z. The corresponding homomorphism is
multiplication by 8, and the grading of Floer homology is well-defined modulo 8.

3 The flow category

Let us begin by considering a Morse-Bott function f: X — R on a finite dimen-
sional compact Riemannian manifold X. Morse-Bott means that the critical set
F of f is a smooth manifold, and that the Hessian D?f is non-degenerate on the
fibres of the normal bundle to F in X.

In this situation we can define a catcgory G¢ whose objects are the critical
points of f and whose morphisms from x to y arc the piccewise gradient trajectories
(or flow lines) 4 of f from x to y. This means one permits 4 1o stop at intermediate
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critical points en route. More precisely, 7y is a sequence vy = (70, V15 - - - ,’y,,) where
~i : R — X is a descending trajectory of grad(f) such that

~i(t) — x as t — +oo
_*. —_—

- + . A4
X=Xy, Xi =Y Xp =Y

+
i

We identify two such sequences if they differ only by translating the parameters
of the ;. The category ‘G is a topological category 1231, in that the sets Ob(6y)
and Mor(‘65), of objects and morphisms, have natural topologies, and the structure
maps of ‘65 are continuous.

In the case where the gradient flow of the function f also satisfes an ap-
propriate version of the Smale transversality condition (see [26] and [6]) these
spaces have a great deal of extra structure which we now describe in detail. Let
the critical values of f be t, > t,_y... > to, and let the critical manifold with
critical value t; be Fj; then

ob(6f) = [ Fi-

If j > i, let the space of morphisms from points on F; to points on F; be F(j,1).
It is known (see [26] and [6]) that F(j,i) is a compact manifold with corners. By
- a manifold with corners we mean a manifold modelled on the space R4 , where
R, is the set of real numbers x with x > 0, and by the boundary of a manifold
with corners we mean the set of points whiclr in coordinate charts do not lie in
the interior of RY .

If 1= (ixq1,ik,---,i0) is a sequence with

j=iggr > > ... >0 =1,

let F(I) be the part of F(j,i) consisting of piccewisc trajectories which stop at
all of the F;, for | < r < k. Then F(j,1) is stratified by the F(I), and F(I) is
a compact submanifold of codimension k in F(j, 7). Furthermore, OF(I) is the
union of the F(J) with /] D I. In a neighbourhood of a point of F(I), the space
F(j,i) is modelled on RY x R"—* where m = dim F(j,i). Composition in the
category maps F(j,r) x F(r,i) diffeomorphically to F(j,r,i) C OF (j, ). Finally,
the beginning and end point maps

Fj - F(ji) == F

are transverse, i.e. they are cither fibrations, or embeddings of submanifolds. In
the following account we shall assume for simplicity that these maps are always
fibrations, though it is not much harder to treat the general case.

We shall call a category of the type just described a compact smooth category.
In the finite dimensional case it has one further basic property: it is framed, in the
following sense.
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Let E; be the downward part of the tangent bundle to X along Fj. That is, E;
is the sub-vector-bundle of the normal bundle of F; spanned by the eigenvectors
of the Hessian D?f corresponding to negative eigenvalues. The geometry of the
flows gives us canonical isomorphisms of vector bundles on F(j, )

W*E,”ET]','EBRG)W,'*E:‘, (3.1)

where Tj; is the tangent bundle along the fibres of the projection m; F(j,i) — Fj.
These 1somonph|sms are compatible with the compositions in the category 6. ln
the case when the function f has isolated critical points, the isomorphism (3.1) is
a stable framing of the flow manifold in the usual scense.

To see that (3.1) holds, observe that F (j, i) embeds in the sphere bundle S(E;)
of E, (Actually the natural map F(j,i) — S(E;) is not injective on OF (j, 1), but
that is irrelevant to the present argument, and in any case the map can be made
injective by a canonical small deformation.) The normal bundle to F (j,i) in S(E;)
can be identified canonically with 77 E;, as its libre at v € F(j,i) consists ol the
piecewise trajectories emanating {rom 7j(y) which just miss F;.

In the infinite dimensional situation which Floer considered, the function f
always has a compact critical manifold F, and there is a flow category € in which
each connected component of the space of morphisms is finite dimensional. Three
new features, however, need to be considered.

(i) The function f is not usually single-valued. Usually it takes values in R/Z,
but in principle it might be the indefinite integral of any closed I-form rep-
resenting a class a in H'(X;R). Floer theory seems to work well only in
the monotone case where « is a multiple of the basic element of H "X;2)
defined by the structural map X — U/O of the polarized manifold X. We
shall confine ourselves to this case. Then f can be lifted to a map f:X-R,
where X is the infinite cyclic cover of X defined by X — U/O. The critical
set off is then an infinite disjoint union [[;c7 Fi, where each Fj is compact,
and is periodic in i with some finite period. Henceforth, when we speak of
the flow category of a Floer function we shall mean the flow category of f

(i) The flow category is no longer framed. We still have the isomorphisms (3.1),
but now the bundles E; are infinite dimensional, and so give no information
about the tangent bundle Tj;, except to give it a complex structure when the
structural map X — U/O of the polarized manifold X lifts to U. This feature
was pointed out long ago by Floer himself. We shall see that whether the flow
category is framed is essentially the same question as whether the structural
map X — U/O is homotopic to a constant map.

(iii) Because of the phenomenon of «bubbling», the flow spaces F(j,i) are no
longer compact. This is the most important difference from the finite dimen-
sional case, and the hardest to handle. In the cases that we have studied in
detail, there is a natural way to compactily the F(j,7) so that one has a com-
pact smooth category, but the precise relation between the categories before
and after compactification is still not well-understood.
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A topological category ‘¢ has a realization |‘¢| as a topological space; see [23].
In the case of a Morse-Bott-Smale function, i.e. a Morse-Bott function whose gra-
dient flow satisfies an appropriate transversality condition, |'G¢| is homeomorphic
to X. These results are proved in [9].

It is striking that for the flow categories of the usual Floer functions, it still
seems to be true that |6 | is homotopy equivalent to X, il one does not compactify
the category. Thus if X = &M is the loop space of a Kiihler manifold M with
my(M) = Z for which one knows that the inclusion

Hkol(Sz;M) — Map(5%; M) (3.2)
k

of holomorphic maps of degree k into smooth maps of degree k tends to a
homotopy equivalences as k — oo, then, as we shall show in a future paper,
[6¢| ~ X. The hypothesis is known to hold when X is CP" [24], or more generally
a Grassmannian [17]. Furthermore the appropriate version of (3.2) (taking account
of the fact that 7, is free abelian on more than one generator) is also true for a
flag manifold [16].

A version of (3.2) is also true for the flow category arising in the context
of gauge theory for a compact group G, in virtue of the corresponding homotopy
approximation property for the inclusion

Hkol(Sz; QG) — Map(5% QG).
k

In fact to show that |'€¢| >~ X one needs only the weak version of this result —
called the Atiyah-Jones conjecture [5] — which was proved by Taubes [27], and
Gravesen [15], rather than the stronger version proved in [7] and [18].

We should also point out that for any compact smooth category € with

Ob(¢) = ]_I Fi, Mor(6) = ]l F(j,1),

the tangent bundles along the fibres of F(j,i) — F; really define a functor from
the topological category ‘G to a topological category V. This category V' has
one object; its morphisms Mor (V') are finite dimensional vector spaces; and the
composition law is direct sum. The functor assigns to a morphism « € F(j,7) the
vector space Tji, @ R.

To be more precise, V' is the topological semi-group

¥ =[] BGL,(R),

p=0

and the functor is a coherent collection of maps F(j, 1) — V' which are classifying
maps for the bundles Tj; () R. The realization [V| = BV is the space U/O of §2,
and so the functor ¢ — V" induces a map ‘€| — U/O which, when [€] ~ X, is
the structural map of the polarization of X.
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4  The area function on L CP"

We now analyse the flow category of the area functional on LCP". Our main
objective is to show that even though this flow category is not compact it does
have a natural compactification, which turns out to be the flow category of a
function on an infinite dimensional complex projective space. For simplicity we
describe the details for CP! = S2 = CU .

_ As we saw in §2, we must really consider the arca functional on the universal
~cover £5?% of LS. This is the space of smooth maps S' — S2, together with
an extension to a smooth map D? — S? which is well-defined up to homotopy
relative to the boundary. If f : D? — S? is a smooth map its area is given by

frw,
D2
where w is the standard symplectic 2-form on S2. This gives smooth functions
A: 25 - R,  oA:LS? - R/4nZ.

~ The critical points of # are the constant loops, and those (’)I’_,f:q are pairs (7, 1),
where v is a constant loop and 11 is the degree of the extension. Thus the critical
manifold of o is S2, and that of ¥ is S% x Z.

It is easy to see, compare [12], that the gradient vector field of sl at a loop v
is the vector field along + given by j%, where j is the complex structure on TS?.
This means that flow lines of & are given by holomorphic maps / : S — 5% in
the following way. Consider the path in £S? given by t — /i; where

hi(s) = hi(e™"+5).

(We have parametrized loops by the closed interval [0,27].) Then /i converges to
the constant loop at i{(co) = a as t — —oo, and as t — oo it converges to the
constant loop at i(0) = b. This path /1; is-a flow line of &, and every flow line
from a to b is of this form.

The holomorphic map /i gives a natural exension of the loop /i to the lower
hemisphere of S? and this defines a path Ji; in £52. This path Ji; is a flow line
of gl from (a, k) to (b,0), where k is the degree of /1, and every such flow line
arises in this way. The flow lines from (a, 1 + k) to (b, 1) are given by applying
the appropriate covering translation to flow lines from (a, k) to (b,0).

Let W (ii,m) c £S5 be the space of points which lie on flow lines from
a critical point of the form (a,n) to one of the form (b,m). Thus a point is in
W (11,m) if and only if it is on a flow line of # which starts at level 17 and ends
at level m. The above identification of the flow lines of A shows that

W (11,m) = Rat,_,
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where Rat,_,, is the space of holomorphic maps, or rational functions, 1 : S? — §2
of degree n — m.

The space Raty is not compact and it is very important to understand this
non-compactness. A rational function /1 : S — S2 of degree k is given by
h=p/q where p and g are polynomials of degree < k with no roots in common.
Throughout we allow roots at infinity: thus if p has degree r with r < k, then we
say p has k — r roots at infinity. This is a convenient device which, for example,
allows us to say that the zeroes of the rational function p/q are the roots of p, and
its poles are the roots of 4. Suppose we now take a sequence of rational functions
hw = pu/qn Where a root v, of p, converges to a root £3,, of qu. Then this sequence
does not converge in Rat. This is the bubbling phenomenon for rational functions
and we shall say that a bubble occurs at the point a which is the common limit of
ay and Gy.

The reason for this terminology is as follows. Suppose that |, — 3| is
extremely small, and that € > 0 is also very small but much greater than |, — 3,].
Let D be the disc of radius e around ;. Then Pn/qn is almost constant on OD.
Outside D the function p, /g, is almost equal to a rational function of degree
k — 1, namely (x — 3,)pn/(x — a,)qu. The interior of D, however, is mapped by
a map which is almost surjective with degree 1.

-If we have a sequence of rational functlons h, in which a bubble occurs
~ at either oo or 0, then -the corresponding sequence of paths in $52 converges
'to a piecewise flow line. However, if the bubble occurs at any other point the
corresponding sequence of paths, no matter how it is parametrized, does not even
converge to a path in £52. Thus the flow category ‘€ is not compact.

We now construct a compactification of €. Let W = Clz,z~!] be the vector
space of Laurent polynomials topologized as a space of maps C* — C, where
C* = C\ 0. Now the lincar flow 2" — ¢™z" defines a flow & on P(C2 o W).
It is stuughllorwmd to check that the space of slalmnaly points of ® is $2 x Z,
where 52 x 11 is the subspace P(C2 3z") C P(C? e W). Let W/ be the subspace
of W spanned by z' with m < i < n. The space of pomls which lie on piccewise
flow lines of ®, which go from level 11 to level m, is P(C2@W,!) = CP2n—m)+1,
and since this space is compact the flow category @¢ is compact.

A pair (fo, f1) of elements of W with no roots in common except, possibly,
at 0 and oo defines a map

f:C* - CP' =52

Since this map is algebraic it extends to a holomor phic map f : CUoo = §2 — 52,
Let U be the open subset of the projective space P(C? @ W), defined by the pairs
(fo, fi) with no roots in common in C*. Then there is a map

i — P82,

defined by restricting the holomorphic map f : S — S2 given by the pair (fo, f1)
to the unit circle and using the extension of this loop to the lower hemisphere to
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get an clement of 282, 1t is clear that U C [P(C? ¢y W) is invariant under the
flow ¢ and that i : U — £S? is equivariant with respect to the flow @ on U and
the gradient flow of 4 on $S2. Furthermore it is straightforward to check that
i — PS? defines an isomorphism of flow categories. In fact, this map 7 is a
homotopy cquivalence, as we will show in a future paper, but we do not need this
for our present purpose.
The diagram
£st— a-Ls P(CP o W)

(where j is the inclusion), together with the fact that i induces an isomorphism of
flow categories, gives us an embedding of flow categories

~ Gy — Gy

The flow category ‘Gy, is compact and ‘6 is embedded as an open dense subcat-
cgory; therefore Gy is a compactification of ‘G.4. Morcover, it is natural to view
the flow @ on P(C? » W) as a «compactilication» of the gradient flow of # on
£s?.

The above compactification’ of €, gives a compactification of the space of
rational functions Raty = Wy (n + k,n) as CPZ,"‘L‘H. This is the precise analoguc
for rational functions of the Donaldson-Uhlenbeck compactification of the moduli
space of instantons on a 4-manifold, compare | 10], §4.4. To sce the analogy, regard
CP?*+1 a5 the projective space of the vector space of pairs of polynomials (p, q)
where degp,degq < k. Then

CP2k+l = URalk_I X SPI(Sz)
!

where SP'(52) is the I-th symmetric product of S2, i.e.. the space of unordered
sets of I not necessarily distinct points in S2. To a pair of polynomials (p,g) we
associate the rational function f = p/q which has degree k — [, where p and g
have [ roots in common, and the point of SP/(S2) given by the I common roots
allowing, as above, roots at infinity.

This construction of a compactification works equally well for the area func-
tional on LCP", and it gives the flow category of the flow &) on P(C"! ¢y W)
defined by the lincar flow v ® z" +— v ® ¢"z" on C'"' @ W. It is strik-
ing that the compactification of the flow category of the arca functional on the
loop space of CP" = P(C"*!) is given by the flow category of a function on
P(C"' ® Clz,z7)).

S Morse theory and homotopy theory

The most important result of finite dimensional Morse theory is the relation be
tween the topology of a compact manifold X and that of the manifold I of c¢ritical
points of a smooth function f: X — R. It asserts that after changing the grading
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ol the chain groups C,(F) appropriately, there is a differential d on C,(F) whose
homology is H,(X). '

In fact more is true. Let F; be the part of the critical set Foat the i
level. We get a filtration of X

it critical

X()CXIC...CX”:X

by closed subspaces, where X; consists of the points on downward piecewise
trajectories emanating from F;. The successive quotient spaces Yy = X /X_,
are the Thom spaces Yy = F ,E k of the downward bundles E; on Fi. Recall that

the Thom space XE of a bundle E over a compact space X is the one-point
compactification E™ of the total space of E.

This leads to the homological assertion above because of the following general
principle. Although the homotopy type of a filtered space X is not determined by
the quotients Yy = X /Xk_;, nevertheless the stable homotopy type — more
precisely, the homotopy type of the n-fold suspension S"X — is determined by
the Y} together with certain maps between them.

Thus if 1 = 1, the Puppe construction for the inclusion Xy — X, tells us
that the suspensnon SX, is obtained by attaching a cone C(Yl) on Y| to $Xq by
amap d; 2 Y =X, /Xy — SXo: , .

SX; ~SXouC(1).
When 11 = 2, one finds that
$2X2 ~ 52X, UC(SY)) UC*(Ys).
To reconstruct $2 X, in this way we need the maps > : Yo — SY; and 9 1 Y] —
5 Xp. obtained from the Puppe construction, together with a null-homotopy of the
cmnpmilc Sdyod)y. Explicitly, this null-homotopy provides a map SY;U,, C(Y2) —

S2(Xqy) whose restriction to SY; is equal to Sy, and the mapping cone of this
map is homotopy equivalent to S2X,. In general, one finds that

S‘”

e

b S"XoUC(S" YY) U uC'(Y,).

To describe the maps and homotopies needed to reconstruct $"X,, in this way
requires some technology.

Let § be the topological category whose objects are the integers Z, and whose
non-identity morphisms j — 1, when j > i, form a space J(j,i) which is the one-
point compactification of the space of sequences of real numbers { Ay } ez such
that

A >0, for all k, and

A = 0. unless 1 < k < J.
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There are no non-identity morphisms unless j > 7. Composition of morphisms is
the map J(k, j) x J(j,i) — J(k,i) induced by addition of sequences. Thus J(j. 1)
is a compact space of dimension j —i — 1, with oo as a distinguished base-point.
If j —i =1, then J(j,i) has just two points 0 and co: if j — i = 2, then J(j. 1) is
a closed interval [0, oc]. Indeed, if j —i > 2, then J(j,i) is homeomorphic (o a
disc of dimension j — i — 1. We shall also consider the full subcategory U or g
spanned by the objects a,a -+ 1,...,0.

There is a close relation between sequences of compact spaces
X = {Xn = Xgp1 — ... = Xl!}

and base-point-preserving covariant functors Z : $0 — 7, Here F, is the cal-
egory of compact spaces with basc-point, and a base-point-preserving functor is
one that maps oo in J(j,i) to the zero map (i.e. the constant map with value the
base-point) Z(j) — Z(i).

Let us assume for simplicity that the maps in X arc inclusions. Then, the
sequence X gives rise o a functor Z : ¢ — F, with

Z(i) = S" 1 (Xi/Xi1),

fori > a, and
Z(a) =S""(X}) = (R x X,)".

Here, if X is compact the notation X+ means X with a disjoint base-point, denoted
by oo, adjoined, and if X is not compact it means the onc-point compactification
of X.

We will give the construction of the functor Z later, but for the moment, let
us note two of its properties.

(i) The map Z(i 4 1) — Z(i) induced by the nontrivial morphism i -1 -+ i in
J is the (b —i — 1)-fold suspension of the map

Xipt/Xi = S(Xi/Xi-1)

obtained by applying the Puppe construction to the inclusion X;/X;_; —
Xiv1/Xiz1.
(i1) The functor Z gives a map

JU +2,i) x 8" T72(Xip2/Xigr) — SPU(Xi/Xiz).

The space of morphisms [(i + 2,7) is the closed interval [0, oc]. and this
map is given by the (b — i — 2)-fold suspension of a null-homotopy of the
composite

Xiva/Xivy = SXi1/Xi — S*Xi/Xi 1.
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In the other direction, a functor Z : 0 — 27, has a realization |Z] as a
compact space. This is constructed from the disjoint union

1T zG) Atti,a—1)

a<i<b

by identifying the image of Z(j) x J(j,i) x J(i,a = 1) in Z(j) AJ(j,a—1)
with its image in Z(i) AJ(i,a — 1) whenever a < i < j < b. Notice that

Z(i) N (iya = 1) = C'™™(Z(i))
1Z| = Z(a) UC(Z(a + 1)) U--- U CP~(Z(b)).

If Z is the functor defined by a sequence of spaces X, — --- — Xp, then
the comparison between this decomposition of |Z| and the decomposition of
St=1X, described above leads, very naturally, to the following result.

Proposition 5.1 (i) If Z is the functor associated to a sequence of compact spaces
X, then there is a canonical homotopy equivalence

|Z] = S*79(X,).
(it) For any functor Z : j’f; — T, the homology H,(|Z|) can be (:(1‘[(:illate(1 from
the double complex ‘

a<i<b

The prool of Proposition S.1 is straightforward, given the construction of the
functor 7, : ‘/f,’ — T4 from a sequence of compact spaces

X_:{Xu‘“’ atl —*”-*’Xl'}'

To construet Z we shall, as above, assume that the maps in X are inclusions. If
a i~ b, let Zi be the open subspace of X;, x RY“ consisting of all points
(X5 Agy ..oy Ap— ) such that:

-

(1) A >01ir >4, and
(i) i Ay >0 then x € X,.

We now show that the one-point compactification Z" is homotopy equivalent
to §* '(Xi/X; 1). First note that Z; is the product of a subset of X; x Rf.{__"
with the extra factor (0, rx))”' i The factor (0, -x))l' I accounts for the suspension,
and it is enough to consider Z,,’. This space is obtained from X, by attaching
acone CXy ) on Xyyyand then a cone on C(X,,2) € C(X,,1), and so on.
Contracting these cones in the standard way shows that Z,,' is homotopy cquivalent
1o X;,A/.\'[, |-
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If j > i then Zj is an open subset of Zj, so there is a natural map Zi' A
Let Wijj be the open subspace of Z; consisting of all points with A; > 0. Then
Zi C Wij C Zj, and so the map Zi+ — Z,-‘L factors through W,-}. Furthermore
there is a proper map R’ el Wij — Wij which simply adds the coordinates
labelled i + 1,i 4+ 2,....j — 1. This induces J(j, i) A Wij —» Wij, and hence
J(j, i) A Z)-" — Z' giving us the desired functor.

Our next task is to see that the compact smooth framed category which arises
in §3 from a Morse-Bott-Smale function gives rise to a functor Z P — Tx such
that ’

. _ cn—i/pEi
Z(i) = S"7H(F).

This is just a version of the Pontryagin-Thom construction. We have seen that the
manifold with corners F(j,i) embeds in the sphere bundle S(E;). with normal
bundle 7} E;. Let us map it further into E; with normal bundle 77E; R We
can choose a map F(j,i) — R", inducing the stratification of F(j,i). where k =
j —i— 1. This gives us an cmbedding of F(j,i) in Ej % RE, compatible with the
boundary structure, with normal bundle

’ vji = 7!';"=Ei ® Ri—i.
In other words, we have maps
RK x Ej — vji — Ei x RI™",

where the first is an open inclusion, and the second is proper. Passing to the
one-point compactifications, this gives

JGoi) AT — i = STTHES),

and, after applying G-i his is exactly what we nced to define a basc-point
preserving functor Z : J5 — T, with Z(i) = S”“i(FiE‘).

The method described above of reconstructing the manifold X from the dat
provided by the function f, is quite different from that used in [9]. It uses th
framings of the spaces F (/. i), and their compatibility under the composition lay
in ‘€ £, to recover the stable homotopy type of X. For example, in the case where
is 2 Morse-Smale function (that is one with isolated non-degenerate critical poin
whose gradient flow satisfies Smale’s transversality condition) the method amoun
to the following construction. Take a cell of dimension j for each critical poi
of index j; now one constructs & CW complex inductively, using the framings «
the spaces of flow lines to give the maps needed to attach appropriate suspension
of these cells to the lower skeleta. In this way we recover the stable homotoj
type of M. Thus, the construction is similar in spirit to the work ol Franks [1-
Note that the Morse-Smale chain complex simply uses the framings ol the z¢
dimensional spaces F(i + 1.1) to define the boundary map.
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Now let us consider what happens when we apply this method to the infinite
dimensional situations studied by Floer. Here we confine ourselves to summarising
the basic points; we will give a complete account in a future paper.

Clearly, the first step is to consider functors Z defined on the whole category
J. If we have a functor Z : § — I, then we get a functor Z! : ¥ — F_ and
a compact space |Z|? = |Zb| for each a < b. It is important to observe that, from
the construction of the realizations, there are maps

Stz -zl izl - szl

an a’
when o <a < b < V. Such a system of spaces and maps defines a pro-spectrum;
see the Appendix for a brief discussion of pro-spectra, and further references.
Thus, in the case of a functor Z : $ — T, the output is a pro-spectrum, rather
than a stable homotopy type.

If we have a compact smooth framed category with objects {F;};cz we do
not quite get a functor § — J,. The framing only provides us with «stable» or
«virtual» bundles E; instead of genuine finite dimensional vector bundles. The
space F,-E‘ is then an object in the «stable category» &, which is described in the

Appendix. Thus we get a functor Z : $ — &, with Z(i) = S‘i(PiEi) and such a
functor still defines a pro-spectrum.

What happens when we have a compact smooth category which is not framed?
The essential point is to understand how to extract some kind of stable map
S2MA — B from a diagram of compact manifolds

AL Cc B, (5.2)

where 7| is a fibration whose fibres are closed almost complex manifolds of (real)
dimension 2m. Evidently, we can lift 7| to an embedding C — A x C"*P for
some p. Let the normal bundle be ». Then we have

SZI}I+2}7(A+) SN C’I, C — B.

To proceed we must pass to a category in which C and C” are equivalent. If v
is trivialized, then C¥ = S?(C%), and the usual stable category will serve. In
general, we must do something more brutal, which we will digress to explain.

The stable category of compact spaces is described in the Appendix. In this
category, two compact spaces X and Y become homotopy equivalent if their
suspensions SPX and SPY are homotopy equivalent for large p. The notion of
a spectrun, a sequence of spaces K = {Kj} with maps S7K, — K, is also
described in the Appendix. We are concerned here with ring spectra, where there
are associative pairings K, A Ky — Kjy 4. The spheres themselves form a natural
example. For a ring spectrum K we can define the K-homotopy category: its
objects are compact spaces and its morphisms from X to Y are

Morg (X,Y) = lim [S''X, Ky nY].

P00

Thus if K, = SP this is the stable homotopy category.
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There is an optimal spectrum M with the property that, for any p-dimensional
complex vector bundle on a compact space C, the Thom space C" is canonically
. . ~9 - . . .
M-homotopy equivalent to the suspension S='(C1). For this choice o M. the
. . 2 - .
diagram (5.2) induces a map S*"(A'") — Bt in the M-homotopy category.

We can now carry out the Pontryagin-Thom construction for an arbitrary
compact smooth category, and we shall obtain an object |7l of the M-homotopy
category for cach pair of integers a < b, I a" < a < b << b’ there will be natural
M-maps

st'=bizb Szl zh — s zlb.

a

This system of spaces and maps again defines a pro-spectrum, and it is our desired
output.

For fixed a, the spaces |Z|! and M-maps sb'=biz|b 1Z|V" define an object
|Z|q of the M- homolopy Ldlq,oly of spectra. Furthermore, for the flow categorics
of Floer functions SY|Z|! and |Z|I’:‘; are M-homotopy equivalent, where d is the
periodicity of the virtual dimension, comparc §2. This gives a periodicity map
|Z|, — S%|Z|,. Therefore the pro-spectrum which is the output of the construction
is of a particularly simple kind; it is given by the inverse system of spectra

7 4__S-"dz — S-—?.:IZ — ..

where Z = |Z|; and the map $=9Z — Z is the periodicity map.

The spectrum M is traditionally called the MU-spectrum. The space My, is
the Thom space of the universal C¥ bundle on BGL,(C), and Mpp11 = SMyp. If
v is a CP-bundle on C the classifying map C — BGL,(C) extends to C” — My,
Putting this together with the projection v — C gives

C" — M2p A (C+)

which is an M-equivalence C” — S%(C™). This M-equivalence does not depend
on the choice of a classifying map for v, though it would take us too far afield
to explain that here: the point is the functoriality of the transformation “C — T
mentioned at the end of §3.

Spectra are the same things as generalized cohomology theorics. If we deline
WP (X; K) = Morg (X; SP) then /i*(—; K) is a cohomology theory, and the corre-
spondence K « h*(—;K) is one-to-one. The theory /I*(—; M), called complex
cobordism, is universal among so-called complex oriented theories [25], which
include ordinary cohomology and K-theory, and it determines them algebraically
So our construction gives us definitions of Floer cobordism and Floer K-theory.

as well as Floer cohomology.




