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Abstract

We consider reection of a pulse in a random medium with a strong reector. We show

that the wavefront of the reected wave observed in the frame moving with the random prop-

agation speed stabilizes to the deterministic waveform. The problem is studied using invariant

imbedding. The results of numerical experiments illustrating the theory are presented.
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1 Introduction

We study the evolution of the front of the wave in a layered random medium that has variations
on two scales. On the micro-scale comparable with the width of the incident pulse the properties
of the medium change rapidly with depth i.e. the direction of layering, but the amplitudes of the
uctuations in the medium-related parameters are small. On the macro-scale comparable with the
distances of propagation, the average properties of the medium are piece-wise constant functions.
The rapid uctuations on the micro-scale produce backscattering. Although weak, it accumulates
over long distances of propagation and causes signi�cant changes in the shape of the front of the
wave. However, each of the abrupt changes in the average properties of the medium on the macro-
scale initiates a strong reected signal at the moment the transmitted pulse reaches it. While the
evolution of the transmitted pulses in the undisturbed medium is fairly well understood by now
[5],[2],[3],[4] the evolution of the reected pulse was not investigated before.

The theory that originated with the work of O'Doherty and Anstey (OD-A) in [7] suggests that
if the front of a pulse traveling in a random medium is observed relative to a frame moving with
the random propagation speed, it stabilizes to a deterministic wave form, which is the convolution
of the initial pulse with a Gaussian whose variance is determined by the statistics of the uctuating
properties of the medium. This is based on the analysis of the evolution equation for the front of
the transmitted wave in the undisturbed medium. However, a similar evolution equation for the
front of the reected pulse is not closed, as it involves the interactions between the reected pulse
and the backscattering of the transmitted one. Consequently, the averaging principle used in the
papers cited above does not seem to apply.

We use here the approach based on invariant imbedding that was used successfully in [1]. One
expects that the interactions between the reected pulse and the backscattering of the transmitted
one do not change the evolution of the reected wavefront. Consequently, this evolution is like
the one for the transmitted pulse in the undisturbed medium that originates at the reector and
is traveling towards the surface. We prove that this is in fact true in the same limit in which the
transmitted pulse stabilizes: the size of the uctuations decreases to 0 while the distance traveled
increases to in�nity.

In section 2 we formulate the problem for the acoustic pulse in a one-dimensional random
medium with a single strong reector at the end. The variance of the reected pulse is expressed
in terms of the time harmonic reection coe�cient that satis�es a stochastic Riccati equation in
the depth variable. The transport equations for the moments of the time harmonic coe�cients and
their limit are analyzed in section 3. In section 4 we carry out the asymptotic evaluation of the
mean and variance of the reected pulse. Equation (48) giving the mean amplitude of the reected
pulse, along with showing that its variance is zero asymptotically (equation (24)), is the main result
of this paper. A comparison between the coordinate systems moving with the mean velocity and
with the random velocity is given in section 5. In section 6 we present a numerical experiment
illustrating the convergence of the observed reected pulse to its OD-A limit waveform.

2 Formulation of the problem

We are interested in the reection of acoustic waves by an one-dimensional random medium. The
momentum and mass conservation equations for the velocity u(z; t) and the pressure p(z; t) are

�ut + pz = 0
1

K
pt + uz = 0 (1)
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where � = �(z) is the density, K = K(z) is the bulk modulus. The local sound speed is given by

c(z) =

s
K(z)

�(z)
: (2)

We assume that a slab of thickness L, z 2 [�L; 0], contains the random medium, while the medium
above and below it is non-random and homogeneous. The constant acoustic parameters in the half
space z > 0 are denoted by �1;K1; c1. In the random regime the density is for simplicity constant
�(z) = �1 but the bulk modulus has the form

1

K(z)
=

1

K1

�
1 + ��(

z

�2
)

�
(3)

where �(�) is a zero-mean, bounded stationary random process with strong ergodic properties. The
parameter �2 is the ratio of a typical microscopic to a macroscopic length scales and is assumed to
be small. The random uctuations are rapidly varying but their amplitude is small. Note that the
mean acoustic parameters are the same for the homogeneous half space z > 0 and the random slab
[�L; 0]. Below the slab the constant parameters are �2;K2; c2. Summarizing:

�(z) =

8><
>:
�1 z > 0
�1 �L < z < 0
�2 z < �L

(4)

K�1(z) =

8><
>:
K�1

1 z > 0

K�1
1

�
1 + ��( z�2 )

�
�L < z < 0

K�1
2 z < �L

(5)

The initial and boundary conditions for equation (1) are provided by specifying the incident
pulse in the positive half space to be

u(z; t) = �(c1�1)
�1=2 1

�
f

�
t+ z=c1

�2

�

p(z; t) = (c1�1)
1=2 1

�
f

�
t+ z=c1

�2

�
(6)

where f is a smooth function with compact support in (0;+1). Note that the incident pulse is
scaled so that the total energy released is independent of �.

We analyze the pulse in the frequency domain. Let

f̂(!) =

Z
ei!t f(t) dz (7)

be the standard Fourier transform. Let

p̂(z; !) =

Z
ei!t=�

2

p(z; t) dz

û(z; !) =

Z
ei!t=�

2

u(z; t) dz (8)

be the Fourier transforms scaled relative to the width of the incident pulse (6).
Let �(z) be the random travel time de�ned by

�(z) =

Z z

0

ds

c(s)
(9)
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and let �(�) be its inverse. Note that � < 0 for z < 0. Let

�(z) = (�(z)K(z))1=2 (10)

be the acoustic impedance.
We de�ne the up- and down-going wave amplitudes A;B by

p̂ = �1=2
�
Aei!�=�

2

�Be�i!�=�
2
�

û = ��1=2
�
Aei!�=�

2

+Be�i!�=�
2
�
: (11)

Substituting (11) into the Fourier transformed equations (1) we �nd that A(z; !) and B(z; !) satisfy
a system of stochastic di�erential equations

dA

dz
=

d

dz

�
ln �1=2(z)

�
e�2i!�=�

2

B

dB

dz
=

d

dz

�
ln �1=2(z)

�
e2i!�=�

2

A (12)

Our analysis is based on the invariant imbedding representation of the time harmonic reection
coe�cient

�(z; !) =
A(z; !)

B(z; !)
: (13)

It satis�es the stochastic Riccati equation

d�

dz
=

d

dz

�
ln �1=2(z)

� h
e�2i!�(z)=�

2

� �2e2i!�(z)=�
2
i

(14)

in �L < z < 0. The initial condition for (14) i.e. �(�L) is found from the continuity of p̂; û across
the interface z = �L. In fact

�jz=�L = e�2i!�(�L)=�
2

��I(�L) (15)

where

��I(�L) =
�(�L+)� �(�L�)

�(�L+) + �(�L�)
=
�(�L+)� �2
�(�L+) + �2

: (16)

Note that when � ! 0 the interface reection coe�cient ��I(�L) converges to a �-independent
constant value

�I =
�1 � �2
�1 + �2

: (17)

The fact that lim�!0 �
�
I(z) is not zero at z = �L distinguishes the interface z = �L from all other

interfaces z = z0; z0 6= �L where this limit is zero. This is why we call z = �L a strong reector.
The quantity of interest is the reected pressure at z = 0. According to (8),(11) the total

pressure is given by

p(z; t) =
1

2��2

Z
�1=2(z)

�
A(z; !)ei!(��t)=�

2

�B(z; !)ei!(���t)=�
2
�
d!: (18)

Therefore, the reected pressure is represented in (18) by the component A i.e.

pre(0; t) =
1

2��2
�
1=2
1

Z
A(0; !)e�i!t=�

2

d!: (19)
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As we want to base our analysis of pre on the initial value problem (14),(15) for �, we use (13)

and (6),(11) to express A in terms of � and f̂ . In fact, we have

A(0; !) = ��f̂(!)�(0; !): (20)

Substituting (20) into (19) we obtain

pre(0; t) =
�1

2��
�
1=2
1

Z
e�i!t=�

2

�(0; !)f̂ (!) d!: (21)

The OD-A theory predicts that the pulse observed in the frame moving with the random
velocity stabilizes with probability one to a deterministic shape. We prove this claim by calculating
asymptotically as � ! 0 the variance of the reected pressure at the random time when the pulse
reaches the surface after being reected by the strong reector at z = �L. Therefore, we are
interested in the coherently reected �eld

hpre(0; t)i = Efpre(0; t)g (22)

and in the intensity function
hpre(0; t)

2i = Efpre(0; t)
2g (23)

Note that the time �2�(�L) is the time it takes the pulse to reach the reector at z = �L and
come back to the surface. Therefore, the OD-A theory is equivalent to

lim
�!0

hpre(0;�2�(�L))
2i � hpre(0;�2�(�L))i

2 = 0: (24)

which says that the uctuations in the reected pressure are negligible at the random arrival time.
In the analysis of the above expression, a generalization of (23), the two-point intensity function

I(t; �t) = lim
�!0

*
pre

 
0; t+

�2�t

2

!
pre

 
0; t�

�2�t

2

!+
: (25)

is very useful. Note that the o�set in time in (25) is of the order �2 which is the correlation range
of the random process �( ��2 ) of (3).

The asymptotic expression for the two-point intensity function I is found by multiplying two
expressions of the form (21) with integration variables !1; !2 and changing variables in the double
integral to

!1 = ! �
�2h

2
!2 = ! +

�2h

2
: (26)

We have

I(t; �t) =
1

2�
�1

Z
e�i!

�tjf̂(!)j2 ~W 11(0; t; !) d! (27)

where

~WNM(z; t; !) = lim
�!0

1

2�

Z
eiht

*
�N

 
z; ! �

�2h

2

!
��M

 
z; ! +

�2h

2

!+
dh: (28)

The intensity function I is thus given in terms of (28). However, the formulas (21) and (22) imply
that the asymptotic behavior of the coherently reected pressure is found from the knowledge of
lim�!0h�(0; !)i, which is also a special case (N = 1;M = 0) of ~WNM . In the next section we
obtain the equations that govern the behavior of ~WNM .
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3 Transport equations

We are interested in the reected pressure at the surface z = 0 for the time when the pulse emerges
from the random medium after being reected by the interface z = �L. For this purpose it is
convenient to consider the reected pressure as a function of �; t i.e. p(�(�); t). Let �(�), �(�; !)
stand for �(�(�));�(�(�); !). Then, the formula (21) expressing pre(0; t) in terms of � does not
change (as �(0) = 0) but � satis�es now

d�

d�
=

d

d�

�
ln �1=2(�)

� h
e�2i!�=�

2

� �2e2i!�=�
2
i

(29)

in �T < z < 0 where T is the random initial time de�ned by �T = �(�L). The initial condition
for (29) is found from (15) to be

�j�=�T = e�2i!(�T )=�
2

��I(�L) (30)

In the sequel, we denote the random coe�cient in the equation (29) by n i.e.

n �
d

d�

�
ln �1=2(�)

�
(31)

As a consequence of the change of variables in � from material coordinate z to travel time � the
dependence of n on the stochastic process �(�)(3) is no longer through �( ��2 ), but through �(

�(�)
�2 )

where �(�) is the inverse of the travel time.
We now return to the quantities of interest ~WNM . We want to �nd their behavior as functions

of �. For this purpose, we calculate the equations for the moments of � at two !-s using the Riccati
equation (29). Let

�NM (�; !; h) = �N
 
�; ! �

�2h

2

!
��M

 
�; ! +

�2h

2

!
: (32)

The �NM satisfy the following in�nite-dimensional system of linear equations:

d�NM

d�
= n

h
Ne�2i!�=�

2+ih��N�1;M �Ne2i!�=�
2�ih��N+1;M

+Me2i!�=�
2+ih��N;M�1 �Me�2i!�=�

2�ih��N;M+1
i

�NM j�=�T = e�2i!(N�M)(�T )=�2 e�ih(�T )(N+M) �NI ��MI : (33)

The initial condition in (33) takes into account that lim�!0 �
�
I(�L) = �I .

The expressions for ~WNM involve the Fourier transforms of �NM (cf.(28)). Therefore, we de�ne

~�NM (�; t+ (N +M)�; !) =
1

2�

Z
eiht�NM(�; !; h) dh: (34)

The o�set in the t variable enables us to get rid of the factors e�ih� appearing in the equations
(33) for �NM . In fact, by di�erentiating (34) with respect to � and using (33) we �nd that ~�NM

satis�es

@~�NM

@�
+ (N +M)

@~�NM

@t
= n

h
Ne�2i!�=�

2 ~�N�1;M �Ne2i!�=�
2 ~�N+1;M

+Me2i!�=�
2 ~�N;M�1 �Me�2i!�=�

2 ~�N;M+1
i

~�NM j�=�T = e�2i!(N�M)(�T )=�2 �NI
��MI �(t): (35)

6



Note that at � = 0 the shift in the t argument in the de�nition of ~�NM is 0 and therefore, the
asymptotic behavior of E~�NM (0; t; !) as �! 0 will give ~WNM (0; t; !) of (28).

The asymptotic behavior of systems like (35) is mathematically well understood. In fact, we
show in the Appendix that

~WNM(0; t; !) = e�2i!(N�M)(�T )=�2WNM(0; t; !) (36)

where WNM satis�es an in�nite-dimensional system of equations

@WNM

@�
+ (N +M)

@WNM

@t

= 2aRNM
h
WN�1;M�1 � 2WNM +WN+1;M+1

i
�2
�
(N �M)2aR + i(N �M)aI

�
WNM

WNM j�=�T = �NI
��MI �(t) (37)

in N;M � 0; �T < � < 0; t 2 R. The constants aR; aI are given by

aR =
c1
16

Z 1

0
r(s) cos(

2!s

c1
) ds aI =

c1
16

Z 1

0
r(s) sin(

2!s

c1
) ds (38)

where
r(z) = Ef� 0(�+ z)� 0(�)g: (39)

We observe that the diagonal part of WNM decouples and WN �WNN satis�es

@WN

@�
+ 2N

@WN

@t
= 2aRN

2
h
WN�1 � 2WN +WN+1

i
WN j�=�T = �2N

I �(t) (40)

in N � 0; �T < � < 0; t 2 R.

4 Reected pressure near the coherent arrival

The reected pressure is given by (21). Therefore, the mean reected pressure is

hpre(0; t)i =
�1

2��
�
1=2
1

Z
e�i!t=�

2

h�(0; !)if̂ (!) d!: (41)

According to (28) and (36)

h�(0; !)i '
Z
dt ~W 10(0; t; !) = e�2i!(�T )=�

2

Z
dtW 10(0; t; !): (42)

We take N = 1;M = 0 and integrate (37) over t. The equation reduces to the following equation
for w(�) =

R
dtW 10(�; t; !):

@w

@�
= �2(aR + iaI)w

wj�=�T = �I : (43)
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Combining (41),(42),(43) we have

hpre(0; t)i '
�1

2��
�
1=2
1 �I

Z
e�i!(t�2T )=�

2

e�2(aR+iaI )T f̂(!) d!: (44)

It is natural to express the coe�cients aR; aI in terms of the Fourier transform of the correlation
function of �(�):

R(z) = Ef�(�+ z)�(�)g: (45)

In fact, since r(z) = �R00(z),

aR = !2�R; aI = !2�I �
!

8
R(0) (46)

where

�R =
1

4c1

Z 1

0
R(s) cos(

2!s

c1
) ds; �I =

1

4c1

Z 1

0
R(s) sin(

2!s

c1
) ds: (47)

Then, formula (44) for the coherent reected pressure is

hpre(0; t)i '
�1

2��
�
1=2
1 �I

Z
e�i!(t�2T )=�

2

ei!R(0)2T=8�!
2(�R+i�I)2T f̂(!) d!: (48)

We now interpret formula (48), which is the main result of the OD-A theory. The mean pulse
emerges from the random medium convoluted with the complex Gaussian whose Fourier transform
is exp(�!2(�R+ i�I)2T ) and retarded by �2R(0)2T=8. As 2T is the travel time from the surface to
the reector and back to the surface, we conclude from (48) that the pulse travels in the medium
with retardation increasing linearly as a function of time. The shape of the pulse is convoluted by
a complex Gaussian whose spreading depends also linearly on the travel time. This description is
valid only in the immediate vicinity of the front i.e. for � � t of the order �2 and when �R; �I are
approximately constant over support of f̂ .

The OD-A theory, however, claims that the description (48) is true not only for the mean
reected pulse hpre(0; t)i but for the reected pulse pre(0; t) itself as well. This is seen by proving
(24). Using (48) we calculate asymptotically hpre(0; t)i

2 as follows. Multiply two expressions (48)
with integration variables !1; !2 and change the variables in the double integral according to

!1 = ! �
�2h

2
!2 = ! +

�2h

2
:

We get

hpre(0; t)i
2 '

1

2�
�1�

2
I

Z
jf̂(!)j2e�4!

2�RT d! �(t� 2T ): (49)

Now, we calculate asymptotically hp2re(0; t)i. According to (25) this is by de�nition I(t; 0) which,
by (28) and (36) is equal to

I(t; 0) =
1

2�
�1

Z
jf̂(!)j2 ~W 11(0; t; !) d!

=
1

2�
�1

Z
jf̂(!)j2W 1(0; t; !) d! (50)

where WN is the solution of the equation (40).
We need a closed formula for the solution of equation (40) if we want to apply (50) successfully

in our asymptotic analysis. However, as it was already noted in [1], the W -equation (40) allows for
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the probabilistic representation of its solution. This is because the operator in the right hand side
of W -equation (40)

(�W )N = 2aRN
2
h
WN�1 � 2WN +WN+1

i
(51)

is a in�nitesimal generator of a Markov chain N(�) with the state space consisting of all non-
negative integers N � 0. This chain is uniquely determined by the in�nitesimal generator � and
it is de�ned for all times �. (see section (3.5) of [1]). In terms of this canonical chain, the solution
of (40) is given by the Faynman-Kac formula:

WN(�; t) = ENf�
2N(�)
I �(t� 2

Z �

�T
N(s) ds)g (52)

where EN is the expectation over all trajectories of the Markov chain that start from N at the
moment � = �T .

We are interested in

W 1(0; t) = E1f�
2N(0)
I �(t � 2

Z 0

�T
N(s) ds)g (53)

for times t s.t. t�2T ! 0. There are two kinds of paths of the random chain N(�) that contribute
to (53): those that start form N = 1 and switch to 0 and those that start from N = 1 and do not
switch to 0. If we look for t� 2T small then only the path N(�) � 1 contributes in the second case.
For if the path switches to N > 1 it must return to N = 1 quickly or else the delta function will
be 0, but the probability of such paths tends to 0 as t� 2T ! 0. Therefore

E1f�
2N(0)
I �(t � 2

Z 0

�T
N(s) ds)g ' P1fN(�) � 1;�T � � � 0g�2

I�(t� 2T )

+ E1f�
2N(0)
I �(t� 2

Z 0

�T
N(s) ds); z?T � 0g (54)

where z?T = inff� � �T : N(�) = 0g. It is shown in [1] that the conditional law of the second line
in (54) has continuous density. The probability that N(�) � 1 for �T � � � 0 given N(�T ) = 1
is found from (51) to be

e�2aR2T = e�4!
2�RT (55)

Combining (48),(54),(55) we �nd that the intensity function for t� 2T small is given by

I(t; 0) =
1

2�
�1

Z
jf̂(!)j2�2

Ie
�4!2�RT d!�(t� 2T ): (56)

Note now that (56) and (49) are the same. It proves the asymptotic equivalence of hpre(0; t)i
2

and hp2re(0; t)i for t = �2�(�L) and therefore it concludes the proof of the OD-A theory.

5 Pulse in the mean velocity frame

The stabilization of the pulse predicted by the OD-A theory is speci�c to the frame moving with
the random velocity. In the frame moving with the mean velocity, however, both the time of the
arrival of the pulse at the surface and the shape of the pulse uctuate randomly. In this section
we analyze the mean shape of the pulse and its variance for times near the mean arrival time. We
�nd that the uctuations in the shape of the pulse do not die out asymptotically as it was the case
for the pulse observed in the random velocity frame. We show however that these uctuations are
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solely produced by the uctuations of the two-way travel time, recon�rming therefore the OD-A
theory.

The analysis of the pulse in the mean velocity frame is very similar to that of pulse in the random
velocity frame, so we will only summarize it here. The scaled Fourier transforms p̂(z; !); û(z; !) are
de�ned again by (8) but the up- and down-going wave amplitudes A and B are de�ned in relation
to the mean travel time

� =
z

c1
(57)

and the mean impedance
�1 = (�1K1)

1=2 (58)

by

p̂ = �
1=2
1

�
Aei!�=�

2

�Be�i!�=�
2
�

û = �
�1=2
1

�
Aei!�=�

2

+Be�i!�=�
2
�
: (59)

The time harmonic reection coe�cient � = A=B satis�es the stochastic Riccati equation

d�

dz
= �

i!n

�

h
e�2i!�(z)=�

2

� 2� + �2e2i!�(z)=�
2
i

(60)

in �L < z < 0 where

n(
z

�2
) �

1

2c1
�(
z

�2
): (61)

The initial condition for (60) is found from the continuity of p̂; û across the interface z = �L:

�jz=�L = e�2i!�(�L)=�
2

�I (62)

where �I is de�ned by (17). The reected pressure at z = 0 which is the quantity of interest has
the integral representation analogous to (21):

p?re(0; t) =
�1

2��
�
1=2
1

Z
e�i!t=�

2

�(0; !)f̂ (!) d!: (63)

The superscript ? will serve to distinguish the formulas of this section from the ones of sections 2-4.
Note however that the reected pressure de�ned by formulas (63) and (21) is the same quantity.

The two-point intensity function I is de�ned again by (25). While its relation (27) with the
quantity ~W 11 of (28) holds in the same form, the asymptotic behavior of ~WNM is found now from
the Riccati equation (60). In fact, we �nd that the analog of (34) i.e.

~�NM (z; t+ (N +M)�(z); !) =
1

2�

Z
eiht�N (z; ! �

�2h

2
; h)��M (z; ! +

�2h

2
; h) dh (64)

satis�es the equation

@~�NM

@z
+

(N +M)

c1

@~�NM

@t
=

i!n

�

h
�Ne�2i!�=�

2 ~�N�1;M �Ne2i!�=�
2 ~�N+1;M

+Me2i!�=�
2 ~�N;M�1 +Me�2i!�=�

2 ~�N;M+1

+2(N �M)~�NM
i

~�NM jz=�L = e�2i!(N�M)�(�L)=�2 �NI
��MI �(t): (65)
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The asymptotic behavior of E~�NM (0; t; !) as �! 0 will give the quantity of interest ~WNM(0; t; !).
The calculation similar to the one in the Appendix yields that

~WNM(0; t; !) = e�2i!(N�M)�(�L)=�2WNM (0; t; !) (66)

where WNM satis�es an in�nite-dimensional system of equations

@WNM

@z
+

(N +M)

c1

@WNM

@t

=
2!2�R
c1

NM
h
WN�1;M�1 � 2WNM +WN+1;M+1

i

�
2!2

c1

�
(N �M)2(�R + 2�0) + i(N �M)�I

�
WNM

WNM jz=�L = �NI ��
M
I �(t) (67)

in N;M � 0; �L < z < 0; t 2 R. The constants �R; �I are given by (47) and

�0 =
1

4c1

Z 1

0
R(s) ds (68)

where R(�) is the correlation function (45).
The mean reected pressure is found in the same way as (48) in section 4. We have

hp?re(0; t)i '
�1

2��
�
1=2
1 �I

Z
e
�i!(t� 2L

c1
)=�2

e
�!2(�R+i�I+2�0)

2L

c1 f̂(!) d!: (69)

Let us compare the formulas (48) and (69) for the mean reected pressure. Note that the two-
way travel time 2T of (48) is random and consequently it is the mean of (48) with respect to the
distribution of T that must be equal to (69). The distribution of T is easy to �nd. In fact, it is

T �
L

c1
+ �2N (�

L

c1
R(0)=8;

2L

c1
�0) (70)

where N (m;�2) is a Gaussian random variable with mean m and variance �2. Let us denote
the expectation with respect to the distribution of T by ET . Then a standard formula Eei!N =
ei!m�!

2�2=2 yields

ET hpre(0; t)i '
�1

2��
�
1=2
1 �I

Z
e
�i!(t� 2L

c1
)=�2

e
�!2(�R+i�I+2�0)

2L

c1 f̂(!) d! (71)

which is exactly (69). Thus, both the random velocity frame approach of sections 2-4 and the
mean velocity frame approach of this section yield the same formula for the mean pulse. The above
calculation shows also that 2�0

2L
c1

part of the variance of the Gaussian convoluted with the initial
pulse in (69) comes form the variance of the random travel time T .

�nally, we �nd the variance of the reected pulse in the mean velocity frame. >From (69) we
obtain, similarly to (49), that

hp?re(0; t)i
2 '

1

2�
�1�

2
I

Z
jf̂(!)j2e

�!22[�R+2�0]
2L

c1 d! �(t�
2L

c1
): (72)

Using the W -equation (67) for N =M , as in (56), we �nd that

hp?re(0; t)
2i '

1

2�
�1�

2
I

Z
jf̂(!)j2e

�!22[�R]
2L

c1 d! �(t �
2L

c1
): (73)
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Therefore, because the exponentials in (72) and (73) are di�erent, the factors standing by the delta
functions are di�erent. As a result, unlike the OD-A theory situation, and in agreement with our
expectations, the uctuations in the shape of the pulse observed in the mean velocity frame do not

die out. Note however, that the discrepancy between (72) and (73) is in the term e
�!22[2�0]

2L

c1 which
we found above to be solely related to the variance of the random travel time T . This fact con�rms
again that the shape of the pulse stabilizes when observed in the proper i.e. random velocity frame.

6 Numerical experiments

We conducted a series of numerical simulations to illustrate the accuracy of the approximation
given by the OD-A limit shape formula (48). We considered a Goupillaud medium that consists
of a stack of layers with the same travel time across each one and with impedance � constant
within each one. The number of layers in the slab, which is now parameterized by the travel time
� 2 [�T; 0], is assumed to be N = ��2. We denote the constant value of the impedance within
the k-th layer by �k. In the Goupillaud medium equations (1) become a di�erence equation for the
amplitudes of down- and up-going waves at mesh points midway between interfaces. A detailed
description of the di�erence equation is found in [5]. The coe�cients of this equation are expressed
in terms of a sequence of characteristic impedances f�kg

1
k=0 de�ning a particular realization of the

Goupillaud medium. We used for f�kg
1
k=0 a single realization of a certain Markov chain described

below.
In the experiment we observe the shape of the pulse not only when it strikes the surface but in

its whole passage through the random medium. The passage has two phases: in the �rst the pulse
is traveling in the direction of the reector and in the second it is returning back to surface. The
�rst phase i.e. the behavior of the transmitted pulse was investigated fully in [5]. In the �gures
below, we include the pictures of the transmitted pulse and its OD-A limit shape to illustrate that
the rates of convergence in both phases of the passage through the medium are similar.

In the transmission phase the wavefront travels along the curve f(�(�t); t) : t 2 [0; T ]g where
T is the time at which the pulse reaches the reector i.e. T = ��(�L). In the reection phase the
wavefront travels along the curve f(�(�2T + t); t) : t 2 [T; 2T ]g. In the pictures we rescale the time
axis so that T = 1.
For travel time t up to 1.0 (the transmission) we plot the values of

fp(�(�t); t+ �2j) : j = 0; : : : ; wg

as a histogram curve, and the corresponding values of the OD-A limit shape as a continuous curve.
Similarly, for travel time t after to 1.0 (the reection) we plot the values of

fpre(�(�2T + t); t+ �2j) : j = 0; : : : ; wg

as a histogram curve, and the corresponding values of the OD-A limit shape as a continuous curve.
The number w describes how far away after the �rst arrival time we observe the pulse. It is of
order O(1) compared to the number of layers N of order O(��2).

The Markov chain generating the sequence of impedances f�kg
1
k=0 is de�ned as follows. Let

�(x)dx be a �xed probability distribution. Let p; q be �xed positive numbers s.t. p+ q = 1. The
initial value �0 is drawn form the distribution �(x)dx. Assume that �n is de�ned. Then, �n+1

is equal to �n with probability p (no real interface between the layers) and it is drawn from the
distribution �(x)dx with probability q. This type of random Goupillaud medium was �rst studied
in [8]. In our experiment we took the �(x) dx distribution to be Gaussian with mean 0 and variance
4:0. The parameter p, which is the probability of change in the characteristic impedance on the

12



interface, is 1 for Figures 1 and 2 and it is 0.5 for Figures 3 and 4. The width w is usually 50. The
number of layers, N , is given at each plot separately. Each plot consist of 5 pairs of functions. Each
pair is indexed by the time of arrival (marked on the vertical axis): 0:0; 0:3; : : : ; 2:0. The pairs are
positioned in the picture so to make them more readable: it is only the position of one function in
a pair with respect to the other function in the same pair which matters. We shifted the pairs to
the right, but in fact all pairs have the �rst non-zero value at the �rst observed position.

The number in parentheses below time of the arrival is the relative error between functions in
each pair i.e. the L2 norm of the di�erence divided by the L2 norm of the OD-A limit waveform.
As we see, the errors for the reected pulse are bigger than the errors for the transmitted pulse.
This is due to the interactions between the reected pulse and the backscatters produced by the
transmitted pulse in its passage to the reector. Note however that while N increases, the error
decreases and eventually the errors for times up to 1:0 are not much smaller than the ones for times
after 1:0.

While we present here only plots for p = 1; 0:5 and �(x) dx Gaussian, we conducted the exper-
iment for many di�erent values of p and di�erent densities �(x) dx. All the results share the same
properties as the ones presented above.
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A Appendix

We analyze here the asymptotic behavior of the solution of the ~�-equation (35) when �! 0. The
random coe�cient n in (35) allows for the �-expansion of the form

n =
1

�
�0(

�(�)

�2
) + �1(

�(�)

�2
) + �e�(�(

�(�)

�2
); �) (74)

where

�0(z) = �
c1
4

d�(z)

dz
�1(z) =

3c1
8
�(z)

d�(z)

dz
(75)

and e�(y; �) is the 2-nd order error term from the Taylor expansion of the function f(y) = (1 +
�y)�3=2.
Let q(z) be an R3-valued random process de�ned by

q(�) = (�0(�); �1(�); �(�)); � < 0: (76)

The randomness enters the equation (35) only through process q. We assume that it is a stationary
ergodic Markov process with in�nitesimal generator Q and an invariant measure P ?(dq) de�ned on
R3 that satis�es Z

(Q�)(q)P ?(dq) = 0 (77)

for any test function �. We de�ne the expectation with respect to P ? by

E?� =
Z
�P ?(dq): (78)
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Now, using the expansion (74) of n, we can rewrite equation (35) in the concise form, exhibiting
the inuence of � openly. Let X be the space of double index sequences taking values in S(R), the
space of rapidly decreasing functions, i.e.

X = f� = [�NM ]1N;M=0; �
N;M = �N;M(t) 2 S(R)g:

Let A(l); l 2 R; D be linear operators de�ned on X by

(A(l)�)N;M =
h
Ne�2i!l�N�1;M �Ne2i!l�N+1;M

+Me2i!l�N;M�1 �Me�2i!l�N;M+1
i

(D�)N;M = (N +M)
@

@t
�N;M : (79)

Note that the dependence of A on l is periodic, with the period �=!. Let Fi; i = 0; 1; 2 be X-valued
functions de�ned on on X by

F0(l; q;�) = �0A(l)�

F1(l; q;�) = �1A(l)� +D�

F �
2 (l; q;�) = e�(�; �)A(l)� (80)

where l 2 R; q = (�0; �1; �) 2 R3. We suppress the superindex � in F2 in what follows.
Then the equation (35) is given by

d

d�
�� =

1

�

2X
i=0

�iFi

�
�

�2
; q(

�(�)

�2
);��

�
(81)

where we explicate mark the �-dependence of the solution by the superindex.
The �rst coordinate �0 of the stationary process q has mean 0 with respect to the invariant

measure P ? , because it is a derivative of the stationary process �(�). As a result, for any l 2 R; � <
0;� 2 X

E?F0(l; q(�);�) = 0: (82)

We study the behavior of equation (81) by investigating the augmented Markov process (q�(�); l�(�);��(�))
where

q�(�) = q(
�(�)

�2
) l�(�) =

�

�2
mod �=! (83)

for � < 0. The state space of the augmented process is R3�S!�X where S! is the circle identi�ed
with the interval [0; �=!].

To �nd the in�nitesimal generator of the augmented process (q�; l�;��) we have to analyze the
equation satis�ed by the inverse of the travel time �(�). In fact, (cf (9))

d

d�
�(�) = c(�(�)) = c1(1� �

�

2
+ �2

3

8
�2 + �3e�(�; �))j�=�(�(�)=�2) (84)

where e�(y; �) is the 3-rd order error term from the Taylor expansion of the function f(y) =
(1 + �y)�1=2.

The generator of the augmented process (q�; l�;��) is given by

L� =
1

�2
c1

�
1� �

�

2
+ �2

3

8
�2 + �3e�(�; �)

�
Q+

1

�

2X
i=0

�iFi � r� +
1

�2
@l: (85)
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and the backward Kolmogorov equation for the augmented process is

(@� + L�)V � = 0; � < 0: (86)

As we are interested in the slowly changing ,i.e. l; q-independent, part of the solution V �, we impose
the �nal condition for (86) in the form

Y �(�; q; l;�)j�=0 = v(�):

We solve the equation (86) asymptotically, as �! 0 by the multiply scale expansion:

V � =
1X
i=0

�iV i(�; q; l;�): (87)

We are interested in the solution V � with the main term V 0 that is slowly changing i.e. we assume
that

V 0 = V 0(�;�): (88)

Substituting (87) into (86) yields a hierarchy of equations for V i. We write the �rst three:

(c1Q+ @l)V
0 = 0 (89)

(c1Q+ @l)V
1 + (F0 � r� � c1

�

2
Q)V 0 = 0 (90)

(c1Q+ @l)V
2 + (F0 � r� � c1

�

2
Q)V 1 + (F1 � r� + c1

3

8
�2Q+ @�)V

0 = 0 (91)

Note that the operator ~Q = (c1Q+ @l) is an in�nitesimal generator of a process (q(c1�); �); � < 0
with the state space R3 � S!. The invariant measure of this process is P ? 
 �dl where �dl is the
Lebesgue measure on S! normalized to mass 1. By ergodicity of the process q(�), the kernel of Q
consists of functions that do not depend on q. This fact and the l-independence of V 0 implies that
the equation (89) is clearly satis�ed. Moreover, we see that the terms �c1

�
2QV

0 and c1
3
8�

2QV 0 in
equations (90) and (91), respectively, vanish.

By the Fredholm alternative, which we assume to hold for the process (q(c1�); �), the operator
~Q has an inverse on the space of functions with mean 0 with respect to the measure P ? 
 �dl. The
particular inverse with the range consisting of functions with vanishing mean is given by

� ~Q�1 =

Z 1

0
e�

~Q d� (92)

where e�
~Q = ec1�Q � Tr(�) and ec1�Q is the semigroup of the process q(c1�) acting on a trial

function �(q) by
(ec1�Q�)(q) = Ef�(q(c1�))jq(0) = qg (93)

while Tr(�) is the translation semigroup acting on the trial function  (l) by

(Tr(�) )(l) =  (l + �): (94)

Now, we can solve (90) for V 1:

V 1 = � ~Q�1F0 � r�V
0: (95)

We use this formula to obtain the limit equation for V 0 as follows. We take the expectation of
(91) with respect to the measure P ? 
 �dl. The �rst term of (91) vanishes, due to (77) and the
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l-periodicity of V 2. However, using (95) we see that the contribution from Q in the second term of
(91) involving V 1 also disappears:Z I

P ?(dq)
 �dl �c1Q(� ~Q�1F0)

=

Z I
P ?(dq)
 �dl �c1Q

Z 1

0
d� e�c1QTr(�)F0

= �
Z
P ?(dq) �

Z 1

0
d� e�Q(Tr(�)F0)j

l=�=!
l=0 +

I
�dl

Z
P ?(dq) �F0

= 0: (96)

The passage from the 2-nd line to the 3-rd line in (96) is due to the integration by parts formula.
The �rst integral is 0 because F0 is a periodic function in l (cf (80)). The second integral is 0,

too , because ��0 = � c1
8
d(�(z)2)

dz is a derivative of a stationary quantity, and such expressions have
always mean 0.

Therefore, the limit equation for V 0 is

@�V
0 + LV 0 = 0 (97)

where

L =

Z I
P ?(dq)
 �dl

�
F0(l; q;�) � r�[

Z 1

0
F0(l + �; q(c1�);�) � r� d�]

+F1(l; q;�) � r�g (98)

The equation (97) is the backward Kolmogorov equation. The limit of the mean of �� i.e. W ,
which is the main object of our interest in section 3, satis�es the equation (cf [6])

@�W = FF 0W (99)

where

FF =

Z I
P ?(dq)
 �dl

�Z 1

0
G0(l + �; q(c1�))G0(l; q) d� +G1(l; q)

�
(100)

and Gi is the linear operator on X de�ned by Fi(l; q;�) = Gi�.
The application of (100) for the speci�c Fi de�ned by (80) yields the W -equation (37) of section

3.
We remark �nally that the above calculation was based solely on the mean zero properties of

F0(q; l) and �F0(q; l) with respect to P ?(dq) and the l-periodicity of F0(q; l).
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