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Abstract

We consider reflection of a pulse in a random medium with a strong reflector. We show
that the wavefront of the reflected wave observed in the frame moving with the random prop-
agation speed stabilizes to the deterministic waveform. The problem is studied using invariant
imbedding. The results of numerical experiments illustrating the theory are presented.
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1 Introduction

We study the evolution of the front of the wave in a layered random medium that has variations
on two scales. On the micro-scale comparable with the width of the incident pulse the properties
of the medium change rapidly with depth i.e. the direction of layering, but the amplitudes of the
fluctuations in the medium-related parameters are small. On the macro-scale comparable with the
distances of propagation, the average properties of the medium are piece-wise constant functions.
The rapid fluctuations on the micro-scale produce backscattering. Although weak, it accumulates
over long distances of propagation and causes significant changes in the shape of the front of the
wave. However, each of the abrupt changes in the average properties of the medium on the macro-
scale initiates a strong reflected signal at the moment the transmitted pulse reaches it. While the
evolution of the transmitted pulses in the undisturbed medium is fairly well understood by now
[5],[2],[3],[4] the evolution of the reflected pulse was not investigated before.

The theory that originated with the work of O’Doherty and Anstey (OD-A) in [7] suggests that
if the front of a pulse traveling in a random medium is observed relative to a frame moving with
the random propagation speed, it stabilizes to a deterministic wave form, which is the convolution
of the initial pulse with a Gaussian whose variance is determined by the statistics of the fluctuating
properties of the medium. This is based on the analysis of the evolution equation for the front of
the transmitted wave in the undisturbed medium. However, a similar evolution equation for the
front of the reflected pulse is not closed, as it involves the interactions between the reflected pulse
and the backscattering of the transmitted one. Consequently, the averaging principle used in the
papers cited above does not seem to apply.

We use here the approach based on invariant imbedding that was used successfully in [1]. One
expects that the interactions between the reflected pulse and the backscattering of the transmitted
one do not change the evolution of the reflected wavefront. Consequently, this evolution is like
the one for the transmitted pulse in the undisturbed medium that originates at the reflector and
is traveling towards the surface. We prove that this is in fact true in the same limit in which the
transmitted pulse stabilizes: the size of the fluctuations decreases to 0 while the distance traveled
increases to infinity.

In section 2 we formulate the problem for the acoustic pulse in a one-dimensional random
medium with a single strong reflector at the end. The variance of the reflected pulse is expressed
in terms of the time harmonic reflection coefficient that satisfies a stochastic Riccati equation in
the depth variable. The transport equations for the moments of the time harmonic coefficients and
their limit are analyzed in section 3. In section 4 we carry out the asymptotic evaluation of the
mean and variance of the reflected pulse. Equation (48) giving the mean amplitude of the reflected
pulse, along with showing that its variance is zero asymptotically (equation (24)), is the main result
of this paper. A comparison between the coordinate systems moving with the mean velocity and
with the random velocity is given in section 5. In section 6 we present a numerical experiment
illustrating the convergence of the observed reflected pulse to its OD-A limit waveform.

2 Formulation of the problem

We are interested in the reflection of acoustic waves by an one-dimensional random medium. The
momentum and mass conservation equations for the velocity u(z,t) and the pressure p(z,t) are
put+p, =0
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where p = p(z) is the density, K = K(z) is the bulk modulus. The local sound speed is given by

K(2)

=\ 20

(2)

We assume that a slab of thickness L, z € [—L, 0], contains the random medium, while the medium
above and below it is non-random and homogeneous. The constant acoustic parameters in the half
space z > 0 are denoted by p1, K1, c;. In the random regime the density is for simplicity constant
p(z) = p1 but the bulk modulus has the form

where v(+) is a zero-mean, bounded stationary random process with strong ergodic properties. The
parameter €2 is the ratio of a typical microscopic to a macroscopic length scales and is assumed to
be small. The random fluctuations are rapidly varying but their amplitude is small. Note that the
mean acoustic parameters are the same for the homogeneous half space z > 0 and the random slab
[—L,0]. Below the slab the constant parameters are po, K3, co. Summarizing:

pr z>0
p(z) =12 pp —-L<z<0 (4)
p2 z<—L
Kt z>0
Kz ={ Ki'(1+ev(3) -L<z<0 (5)
K1 z< —L

The initial and boundary conditions for equation (1) are provided by specifying the incident
pulse in the positive half space to be

u(z,t) = —<clp1)—1/2§ f (&)

€

pet) = (epn) 2y (L2212 ©)

€

where f is a smooth function with compact support in (0,400). Note that the incident pulse is
scaled so that the total energy released is independent of e.
We analyze the pulse in the frequency domain. Let

~

fw) = [ ity dz (™
be the standard Fourier transform. Let

pew) = [ €0 pla,t) dz

iz, w) = / M (2, 1) dz (8)

be the Fourier transforms scaled relative to the width of the incident pulse (6).
Let 7(z) be the random travel time defined by

Z ds
=] 5 0



and let x(7) be its inverse. Note that 7 < 0 for z < 0. Let

((2) = (p(2) K (2))"/? (10)

be the acoustic impedance.
We define the up- and down-going wave amplitudes A, B by

p= CI/Z (Aei“"r/f2 _ Be*i“"r/fz)
i = C—1/2 (Aei(.UT/€2 + Be_i"”'/fz) . )

Substituting (11) into the Fourier transformed equations (1) we find that A(z,w) and B(z, w) satisfy
a system of stochastic differential equations

dA . d 1/2 — 24w /€2

== (mc (z)) e B

dB _ d 1/2 24w /€2

Pl (lnC (z)) e A (12)

Our analysis is based on the invariant imbedding representation of the time harmonic reflection
coefficient

A(z,w)
= ) 1
() = 5 (13)
It satisfies the stochastic Riccati equation
d, _ d 1/2 —2iwT(2)/€2 2 2iwt(z)/e
= =5 (lnC (z)) [e —, e } (14)

in —L < z < 0. The initial condition for (14) i.e. , (—L) is found from the continuity of p, & across
the interface z = —L. In fact _ ,

: |z:—L — ef2zwr(fL)/e ’ 5(—L) (15)
where
C-LH) = ¢(-L7) _ (=L =&
(L) +¢(=L7) (=L + G
Note that when ¢ — 0 the interface reflection coefficient , $(—L) converges to a e-independent
constant value

G—C

(L) = (16)

y I = . 17
G+ G2 (17)

The fact that lim._,9, $(2) is not zero at z = —L distinguishes the interface z = —L from all other

interfaces z = zp, 29 # —L where this limit is zero. This is why we call z = —L a strong reflector.

The quantity of interest is the reflected pressure at z = 0. According to (8),(11) the total
pressure is given by
1

52 /Cl/Q(z) (A(z,u))ei“’(T*t)/62 - B(z,w)eiw(q*t)/g) dw. (18)

p(z,t) =

Therefore, the reflected pressure is represented in (18) by the component A i.e.

1 —iwt/e
Pref(0,1) = WC%/Q/A(O,w)e Ve . (19)



As we want to base our analysis of p..q on the initial value problem (14),(15) for , , we use (13)
and (6),(11) to express A in terms of , and f. In fact, we have

~

A(0,w) = —ef (W), (0,w). (20)

Substituting (20) into (19) we obtain

-1 . A
Pren(0:8) = 5—-G1/? [ 1/, (0,0)f () dw (21)

The OD-A theory predicts that the pulse observed in the frame moving with the random
velocity stabilizes with probability one to a deterministic shape. We prove this claim by calculating
asymptotically as € — 0 the variance of the reflected pressure at the random time when the pulse
reaches the surface after being reflected by the strong reflector at z = —L. Therefore, we are
interested in the coherently reflected field

(Prefi(0,1)) = E{pren (0, 1)} (22)

and in the intensity function
(Pref (0:1)*) = E{preq (0,1)°} (23)

Note that the time —27(—L) is the time it takes the pulse to reach the reflector at z = —L and
come back to the surface. Therefore, the OD-A theory is equivalent to

lim (prog (0, —27(=L))*) = (pre (0, —27(~L)))* = 0. (24)

which says that the fluctuations in the reflected pressure are negligible at the random arrival time.
In the analysis of the above expression, a generalization of (23), the two-point intensity function

) e’ e’
I(t,t) :lg% Drefl O,t-l-? Drefl 0,t—7 . (25)

is very useful. Note that the offset in time in (25) is of the order €2 which is the correlation range
of the random process v(Z5) of (3).

The asymptotic expression for the two-point intensity function [ is found by multiplying two
expressions of the form (21) with integration variables wy,ws and changing variables in the double
integral to

e2h e2h
We have 1
16.0) = 5-G1 [ eI @) P 0,4,0) do (21)
T
where

. 1 , 2h\ - 2h
WM (2 ¢, w) zlmg/elht<, N (z,w—%) M (z,w+€7>> dh. (28)

The intensity function I is thus given in terms of (28). However, the formulas (21) and (22) imply
that the asymptotic behavior of the coherently reflected pressure is found from the knowledge of
lim,_0(, (0,w)), which is also a special case (N = 1, M = 0) of W¥M. In the next section we
obtain the equations that govern the behavior of WM,



3 Transport equations

We are interested in the reflected pressure at the surface z = 0 for the time when the pulse emerges
from the random medium after being reflected by the interface z = —L. For this purpose it is
convenient to consider the reflected pressure as a function of 7,¢ i.e. p(x(7),t). Let {(7), , (T,w)
stand for {(x(7)),, (x(7),w). Then, the formula (21) expressing pyeq(0,t) in terms of , does not
change (as x(0) = 0) but , satisfies now

d, d

dr = g (€ VH) [e7 2 = ettt @)

in —T < z < 0 where T is the random initial time defined by —T = 7(—L). The initial condition
for (29) is found from (15) to be

Nom = 72 ET/E ) (30)

In the sequel, we denote the random coefficient in the equation (29) by n i.e.

n= di (1n¢1/2(g)) (31)

o

As a consequence of the change of variables in ¢ from material coordinate z to travel time 7 the
dependence of n on the stochastic process v/(-)(3) is no longer through v (%), but through V(@)
where x(-) is the inverse of the travel time. .

We now return to the quantities of interest WM. We want to find their behavior as functions

of 0. For this purpose, we calculate the equations for the moments of , at two w-s using the Riccati

equation (29). Let
2 2
,NM(o,w,h):,N<a,w—%> , M (U,w—k%). (32)

The , ¥M satisfy the following infinite-dimensional system of linear equations:

d, "M [ —2iwo /2 +iha N—1,M 2iwo /e —iha N+1,M
—n |Ne o/e*+i 7 M _ Ne iwo [e* —i 7 +1,
do
s a I
+ MeZsz/e +Zh0" NM-1 Me 2iwo /e zh(r’ N,M+1]
i (N— MY —T) /e  —ih(— -
: NM|0—:—T — o 2w(N-M)(-T)/€ ,~ih( T)(N+M), %\7, ;\4 (33)
The initial condition in (33) takes into account that lim. o, $(—L) =, 1.

The expressions for WM involve the Fourier transforms of , ¥ (cf.(28)). Therefore, we define

INM (gt 4 (N + M)o,w) = 2i / et NM (o o ) dh. (34)

™

The offset in the ¢ variable enables us to get rid of the factors et appearing in the equations

(33) for , M In fact, by differentiating (34) with respect to o and using (33) we find that , ¥/
satisfies

aNNM 8~NM ) . - L
78 + (N—|- M) 7at -n |:N6727,wa/5 : N-1,M Ne2zw(r/e ’ N+1,M
g
+ Me?iwa/62 “N.M-1 Me—2iwa/e2 ~N,M+1]
TNMY L NI N M (35)



Note that at ¢ = 0 the shift in the ¢ argument in the definition of , ™ is 0 and therefore, the

asymptotic behavior of E, YM(0,t,w) as € — 0 will give WM (0,t,w) of (28).

The asymptotic behavior of systems like (35) is mathematically well understood. In fact, we

show in the Appendix that
WNM(O, t, w) _ ef2z'uJ(N7M)(7T)/e2 WNM (0’ ¢, w)
where WNM gatisfies an infinite-dimensional system of equations

5 + (N + M) 5

=2arNM [WN—I,M—I _ 2WNM + WN+1’M+1]

=2 ((N = M)?ag +i(N = M)a;) WM

AR PSS 10
in NNM >0, =T <0 <0, t€ R. The constants ar,a; are given by

2ws

Yds ar = % /Ooor(s)sin(—)ds

c1 [ 2ws
C1 C1

aR = 1¢ ; r(s) cos(

where
r(z) =E{/ (- +2)V/()}.
We observe that the diagonal part of WM decouples and W = WV satisfies
ownN ownN

OIN—— =2aqxr N2 |[WN-1 _owN 4 whN+1
9o AN T TAeR [ +

WN|(T=—T ) %Na(t)

inN>0,-T<o0o<0,t€R.

4 Reflected pressure near the coherent arrival

The reflected pressure is given by (21). Therefore, the mean reflected pressure is

re(00) = 5 [ 2 0.0 f(w) do

According to (28) and (36)

( (0,w)) = / dEW10(0,4,w) = e 2w(-T)/e / At W0(0, 1, w).

(36)

(40)

(41)

(42)

We take N = 1, M = 0 and integrate (37) over ¢. The equation reduces to the following equation

for w(o) = [dt W(o,t,w):

0
B_Z = —2(ag + tar)w
w|0’=—T = 1I-

(43)



Combining (41),(42),(43) we have

(Pref1 (0, 1)) ~ C 2 / —iw(t=21)/€ o ~2ar+ianT f (1) d. (44)

It is natural to express the coeflicients ar,ar in terms of the Fourier transform of the correlation
function of v(-):

R(z) = E{v(- + 2)v())}. (45)
In fact, since r(z) = —R"(z2),
ar = wlag; ar = wla — %R(O) (46)
where 5 5
aR = / R(s) cos( ws) ds; af = / R(s) sin( ws) ds. (47)
4:61 C1 4Cl

Then, formula (44) for the coherent reflected pressure is
(ret(0,1)) = 5112, [ m = RO S i) ), (48)

We now interpret formula (48), which is the main result of the OD-A theory. The mean pulse
emerges from the random medium convoluted with the complex Gaussian whose Fourier transform
is exp(—w?(ag +iar)2T) and retarded by €2R(0)27/8. As 2T is the travel time from the surface to
the reflector and back to the surface, we conclude from (48) that the pulse travels in the medium
with retardation increasing linearly as a function of time. The shape of the pulse is convoluted by
a complex Gaussian whose spreading depends also linearly on the travel time. This description is
valid only in the immediate vicinity of the front i.e. for 7 — ¢ of the order €? and when ag, ar are
approximately constant over support of f .

The OD-A theory, however, claims that the description (48) is true not only for the mean
reflected pulse (pye(0,t)) but for the reflected pulse p..q(0, t) itself as well. This is seen by proving
(24). Using (48) we calculate asymptotically (p,eq(0,t))? as follows. Multiply two expressions (48)
with integration variables w;,ws and change the variables in the double integral according to

W] =w— EZ—h wy =w+ 62—h
b 2 T 2
We get
1 .
Pren0,0))” = 51, % [ 1f(@)Pe T duwi(t - 27). (19)

Now, we calculate asymptotically (p% o(0,7)). According to (25) this is by definition I(¢,0) which,
by (28) and (36) is equal to

1 . .
1,0) = 5-G1 [P0, w) do
™
1 A
= 5-61 [ 1 @)W (0, ) do (50)
where W is the solution of the equation (40).

We need a closed formula for the solution of equation (40) if we want to apply (50) successfully
in our asymptotic analysis. However, as it was already noted in [1], the W-equation (40) allows for



the probabilistic representation of its solution. This is because the operator in the right hand side
of W-equation (40)
(AW)N = 20z N? [WN=1 — 2N 4 N (51)

is a infinitesimal generator of a Markov chain N (o) with the state space consisting of all non-
negative integers N > 0. This chain is uniquely determined by the infinitesimal generator A and
it is defined for all times o. (see section (3.5) of [1]). In terms of this canonical chain, the solution
of (40) is given by the Faynman-Kac formula:

WN (0, 1) = Bx{, X5t — 2 / " N(s)ds)} (52)
-T

where Ey is the expectation over all trajectories of the Markov chain that start from N at the
moment o = —T.
We are interested in

who,t) =B {, Vst —2 / ' N(s)ds)} (53)
-T

for times ¢ s.t. t—2T — 0. There are two kinds of paths of the random chain N (o) that contribute
to (53): those that start form N =1 and switch to 0 and those that start from N =1 and do not
switch to 0. If we look for ¢ — 27" small then only the path N(-) = 1 contributes in the second case.
For if the path switches to N > 1 it must return to NV = 1 quickly or else the delta function will
be 0, but the probability of such paths tends to 0 as t — 27" — 0. Therefore

Eif, N O5t - 2/0T N(s)ds)} ~D1{N(0) = 1;-T < o < 0}, 25(t — 2T
+ B, O -2 /_ OT N(s)ds), 2% < 0} (54)

where zf, = inf{c > —T': N(0) = 0}. It is shown in [1] that the conditional law of the second line
in (54) has continuous density. The probability that N(o) =1 for =T < o < 0 given N(-T) =1
is found from (51) to be

6*20R2T — ef4w2aRT (55)

Combining (48),(54),(55) we find that the intensity function for ¢ — 27" small is given by

1 o
1,0) = 5-G1 [ IF@I?, e " onT dws(t - 21). (56)
s
Note now that (56) and (49) are the same. It proves the asymptotic equivalence of (p,eq(0,1))?
and (p2eﬁ(0, t)) for t = —27(—L) and therefore it concludes the proof of the OD-A theory.

r

5 Pulse in the mean velocity frame

The stabilization of the pulse predicted by the OD-A theory is specific to the frame moving with
the random velocity. In the frame moving with the mean velocity, however, both the time of the
arrival of the pulse at the surface and the shape of the pulse fluctuate randomly. In this section
we analyze the mean shape of the pulse and its variance for times near the mean arrival time. We
find that the fluctuations in the shape of the pulse do not die out asymptotically as it was the case
for the pulse observed in the random velocity frame. We show however that these fluctuations are



solely produced by the fluctuations of the two-way travel time, reconfirming therefore the OD-A
theory.

The analysis of the pulse in the mean velocity frame is very similar to that of pulse in the random
velocity frame, so we will only summarize it here. The scaled Fourier transforms p(z, w), 4(z,w) are
defined again by (8) but the up- and down-going wave amplitudes A and B are defined in relation
to the mean travel time

z
= — 57
r== (57)
and the mean impedance
(1= (p K2 (58)
by
P = C11/2 (Aeiw'r/e2 _ Befz'w'r/e2)
0 = C;1/2 (Aeiu.n'/62 + Be—iwﬂ'/eQ) . (59)
The time harmonic reflection coefficient , = A/B satisfies the stochastic Riccati equation
d_, _ _'L.w_n [672iw7(z)/52 —92, +, 2e2iw‘r(z)/52:| (60)
dz €
in —L < z < 0 where )
z z
=)= —v(=). 61
n(5) =55 (61)
The initial condition for (60) is found from the continuity of p, 4 across the interface z = —L:
: |z:—L — e—2iw7'(—L)/E2’ ; (62)

where , 1 is defined by (17). The reflected pressure at z = 0 which is the quantity of interest has
the integral representation analogous to (21):
—1 1,2 it/ e? -
Pren(0:8) = 5—-6i/? [ 1/, (0,0)f () dw (63)

2me

The superscript x will serve to distinguish the formulas of this section from the ones of sections 2-4.
Note however that the reflected pressure defined by formulas (63) and (21) is the same quantity.

The two-point intensity function I is defined again by (25). While its relation (27) with the
quantity W' of (28) holds in the same form, the asymptotic behavior of WM is found now from
the Riccati equation (60). In fact, we find that the analog of (34) i.e.

“NM 1 iht N h - e’h
VMGt (N 4 M)r(@)w) = 5 [ 6 Y o = 0 M w+ S dn (64)
™
satisfies the equation
9, NM N (N + M) 9, "M
0z cy ot

1wn o 2~ . 9~
[—Ne 2iwT [€ ’ N-1,M _ Ne2zw7—/e ’ N+1,M

€
. 2~ _ _ 95 2~
A[eQZwT/E , N,M-1 Me 2iwT € , N,M+1

+2(N—M),~NM}

JNM| = e 2w(N=M)T(=1)/e N Mgy (65)

10



The asymptotic behavior of E, Y™ (0, ¢, w) as € — 0 will give the quantity of interest WM (0, ¢, w).
The calculation similar to the one in the Appendix yields that

WNM(O,t’w) _ e—Ziw(N—M)T(—L)/eszM(O,t’w) (66)
where WNM gatisfies an infinite-dimensional system of equations

OWNM (N + M) oW M

0z c1 ot
_ QWEQRNM [WNA,MA _ 9 NM | WN+1,M+1]
1
2 2
_% ((V = M) (g + 200) +i(N — M)ag) WM
WM = N V() (67)

in NNM >0, —L < z<0,t€ R. The constants ag, «a; are given by (47) and

1 [ d
=— R 68
o= [ B ds (68)
where R(-) is the correlation function (45).
The mean reflected pressure is found in the same way as (48) in section 4. We have

2L

72&] —_ = 62 —Ww « (107 « A
<p§eﬂ(0,t)>~—c”2, / (10 e lomtior £200) 8 £ gy (69)

Let us compare the formulas (48) and (69) for the mean reflected pressure. Note that the two-
way travel time 27" of (48) is random and consequently it is the mean of (48) with respect to the
distribution of T' that must be equal to (69). The distribution of T is easy to find. In fact, it is

7~ LN ERo)s, 2ap) (70)
C1 C1 C1

where N'(m,0?) is a Gaussian random variable with mean m and variance o2. Let us denote

the expectation with respect to the distribution of T' by Ep. Then a standard formula EewN =
eiwm7w2(r2/2 yields

Br(pren (0,1)) = (1%, 1 [ W B)/E e Honrierenit f) g, (71)

which is exactly (69). Thus, both the random velocity frame approach of sections 2-4 and the
mean velocity frame approach of this section yield the same formula for the mean pulse. The above
calculation shows also that 2a0 o part of the variance of the Gaussian convoluted with the initial
pulse in (69) comes form the varlance of the random travel time T

finally, we find the variance of the reflected pulse in the mean velocity frame. ;From (69) we
obtain, similarly to (49), that

—w?22[ar+2a }C 2L
(0,00 = 521, 7 [ 1fe Y (72)
Using the W-equation (67) for N = M, as in (56), we find that

" 1 A —w22lan] 2L 2L
Ohen 0.8 ~ 5§ [ 17 e s a2, 73

C1
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Therefore, because the exponentials in (72) and (73) are different, the factors standing by the delta
functions are different. As a result, unlike the OD-A theory situation, and in agreement with our
expectations, the fluctuations in the shape of the pulse observed in the mean velocity frame do not

Cw? 2L
die out. Note however, that the discrepancy between (72) and (73) is in the term e 220013 Which
we found above to be solely related to the variance of the random travel time 7'. This fact confirms
again that the shape of the pulse stabilizes when observed in the proper i.e. random velocity frame.

6 Numerical experiments

We conducted a series of numerical simulations to illustrate the accuracy of the approximation
given by the OD-A limit shape formula (48). We considered a Goupillaud medium that consists
of a stack of layers with the same travel time across each one and with impedance ( constant
within each one. The number of layers in the slab, which is now parameterized by the travel time
7 € [-T,0], is assumed to be N = ¢2. We denote the constant value of the impedance within
the k-th layer by (. In the Goupillaud medium equations (1) become a difference equation for the
amplitudes of down- and up-going waves at mesh points midway between interfaces. A detailed
description of the difference equation is found in [5]. The coefficients of this equation are expressed
in terms of a sequence of characteristic impedances {(;}7°, defining a particular realization of the
Goupillaud medium. We used for {(;}32, a single realization of a certain Markov chain described
below.

In the experiment we observe the shape of the pulse not only when it strikes the surface but in
its whole passage through the random medium. The passage has two phases: in the first the pulse
is traveling in the direction of the reflector and in the second it is returning back to surface. The
first phase i.e. the behavior of the transmitted pulse was investigated fully in [5]. In the figures
below, we include the pictures of the transmitted pulse and its OD-A limit shape to illustrate that
the rates of convergence in both phases of the passage through the medium are similar.

In the transmission phase the wavefront travels along the curve {(x(—t),t) : t € [0,T]} where
T is the time at which the pulse reaches the reflector i.e. T'= —7(—L). In the reflection phase the
wavefront travels along the curve {(x(—27T +t),t) : t € [T, 2T]}. In the pictures we rescale the time
axis so that T' = 1.

For travel time ¢ up to 1.0 (the transmission) we plot the values of

{p(X(—t),t+62j) 17 =0,...,w}

as a histogram curve, and the corresponding values of the OD-A limit shape as a continuous curve.
Similarly, for travel time ¢ after to 1.0 (the reflection) we plot the values of

{Prefi(x(—2T +t),t +€%5) : j =0,...,w}

as a histogram curve, and the corresponding values of the OD-A limit shape as a continuous curve.
The number w describes how far away after the first arrival time we observe the pulse. It is of
order O(1) compared to the number of layers N of order O(e 2).

The Markov chain generating the sequence of impedances {(j}7°, is defined as follows. Let
a(z)dz be a fixed probability distribution. Let p,q be fixed positive numbers s.t. p+ ¢ = 1. The
initial value (y is drawn form the distribution a(z)dz. Assume that (, is defined. Then, ;1
is equal to ¢, with probability p (no real interface between the layers) and it is drawn from the
distribution a(z)dz with probability ¢. This type of random Goupillaud medium was first studied
in [8]. In our experiment we took the «(z) dz distribution to be Gaussian with mean 0 and variance
4.0. The parameter p, which is the probability of change in the characteristic impedance on the
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interface, is 1 for Figures 1 and 2 and it is 0.5 for Figures 3 and 4. The width w is usually 50. The
number of layers, N, is given at each plot separately. Each plot consist of 5 pairs of functions. Each
pair is indexed by the time of arrival (marked on the vertical axis): 0.0, 0.3, ..., 2.0. The pairs are
positioned in the picture so to make them more readable: it is only the position of one function in
a pair with respect to the other function in the same pair which matters. We shifted the pairs to
the right, but in fact all pairs have the first non-zero value at the first observed position.

The number in parentheses below time of the arrival is the relative error between functions in
each pair i.e. the Lo norm of the difference divided by the Ly norm of the OD-A limit waveform.
As we see, the errors for the reflected pulse are bigger than the errors for the transmitted pulse.
This is due to the interactions between the reflected pulse and the backscatters produced by the
transmitted pulse in its passage to the reflector. Note however that while N increases, the error
decreases and eventually the errors for times up to 1.0 are not much smaller than the ones for times
after 1.0.

While we present here only plots for p = 1,0.5 and «(z) dz Gaussian, we conducted the exper-
iment for many different values of p and different densities a(z) dz. All the results share the same
properties as the ones presented above.
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A Appendix

We analyze here the asymptotic behavior of the solution of the ,~ -equation (35) when ¢ — 0. The
random coefficient n in (35) allows for the e-expansion of the form

n= L0y £ () 1 e, X 0 (74
where y 5 J
pofe) = - LB ) = 30, 2) (79

and e, (y, €) is the 2-nd order error term from the Taylor expansion of the function f(y) = (1 +
ey) 32
Let ¢(z) be an R3-valued random process defined by

q(0) = (no(9), p1(0),¥(0)), o <0. (76)

The randomness enters the equation (35) only through process q. We assume that it is a stationary
ergodic Markov process with infinitesimal generator (Q and an invariant measure P*(dq) defined on
R3 that satisfies

[ (@@)ia) P*(da) = 0 (77)

for any test function ¢. We define the expectation with respect to P* by

B — / -P*(dg). (78)
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Now, using the expansion (74) of n, we can rewrite equation (35) in the concise form, exhibiting
the influence of € openly. Let X be the space of double index sequences taking values in S(R), the
space of rapidly decreasing functions, i.e.

X = {7 = [7 NM]?VO,M:(]a ) MM ) NyM(t) € S(R)}
Let A(l),l € R; D be linear operators defined on X by
(A(l) )N,M _ [Ne*Zi“’l N-1LM _ po2iwl N+1,M

+ Me2wl N.M=1_ pro—2iwl N,M-}-l]
0
(D, )" = (N + M), T (79)
Note that the dependence of A on [ is periodic, with the period m/w. Let F;,i = 0,1,2 be X-valued
functions defined on on X by

FO(laQH ) = IJ'OA(l)a
Fl(l7q77 ) = ﬂ’lA(l)v + D,
E5(lq,,) = eu(v, €)A(lD), (80)

where | € R, q¢ = (o, pt1,7) € R3. We suppress the superindex € in F5 in what follows.
Then the equation (35) is given by

o :_ZezF< (U))He> (81)

where we explicate mark the e-dependence of the solution by the superindex.

The first coordinate o of the stationary process ¢ has mean 0 with respect to the invariant
measure P* | because it is a derivative of the stationary process v(-). As a result, for any [ € R, 0 <
0,, €X

E*FO(la Q(U)v ) ) =0. (82)

We study the behavior of equation (81) by investigating the augmented Markov process (¢(+),¢(-),, €(+))
where

x (o o
¢0) =02 1) = & mod /e (83)
for o < 0. The state space of the augmented process is R x S, x X where S, is the circle identified
with the interval [0, 7/w].

To find the infinitesimal generator of the augmented process (¢¢,[¢,, €) we have to analyze the
equation satisfied by the inverse of the travel time x(7). In fact, (cf (9))

d

v 3
%X(U) = C(X(U)) = Cl(]- - 65 + €2§V2 + 636){(7/7 6))|I/:I/(X(U)/€2) (84)

where e, (y,€) is the 3-rd order error term from the Taylor expansion of the function f(y) =
(1 +ey)~ /2.
The generator of the augmented process (¢, 1¢,, ©) is given by

1 v 3 1 & 1
L6 = widl (1 —e5 62§I/2 + ey (v, 6)) Q@+ - ; eF;-Vr+ 6—231- (85)
1=
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and the backward Kolmogorov equation for the augmented process is
(0, + LYV =0, o <0. (86)

As we are interested in the slowly changing .i.e. I, g-independent, part of the solution V¢, we impose
the final condition for (86) in the form

Ye(UaQalaa )|0’=0 = U(a )

We solve the equation (86) asymptotically, as € — 0 by the multiply scale expansion:
w . .
Ve = Zelvz(g, q’l” )' (87)
i=0

We are interested in the solution V¢ with the main term V° that is slowly changing i.e. we assume
that

VO =V'0,,). (88)
Substituting (87) into (86) yields a hierarchy of equations for V?. We write the first three:
(1Q+ )V’ =0 (89)
(Q+ )V +(Fy- Vi =15V =0 (90)
3
(c1Q+0)V? + (Fy - Vi — cng)Vl + (Fy -V + 01§V2Q +9,)V° =0 (91)

Note that the operator @ = (¢1@ + 0;) is an infinitesimal generator of a process (¢(c10),0),0 <0
with the state space R? x S,. The invariant measure of this process is P* ® dl where dI is the
Lebesgue measure on S, normalized to mass 1. By ergodicity of the process ¢(-), the kernel of @
consists of functions that do not depend on ¢. This fact and the I-independence of V? implies that
the equation (89) is clearly satisfied. Moreover, we see that the terms —cngV0 and 01%V2QV0 in
equations (90) and (91), respectively, vanish.

By the Fredholm alternative, which we assume to hold for the process (¢(ci10), ), the operator
Q has an inverse on the space of functions with mean 0 with respect to the measure P* ® dl. The

particular inverse with the range consisting of functions with vanishing mean is given by
~ o0 =4
—Q! :/ e’? do (92)
0

where €7@ = ¢219@Q o Tr(o) and €9 is the semigroup of the process ¢(cio) acting on a trial
function ¢(q) by

(e27%9)(q) = E{¢(q(c10))la(0) = q} (93)
while T'r(o) is the translation semigroup acting on the trial function () by
(Tr(o)p) (1) = ¢ + o). (94)

Now, we can solve (90) for V'!:
Vi=—Q7'Fy- vV (95)

We use this formula to obtain the limit equation for V0 as follows. We take the expectation of
(91) with respect to the measure P* ® dl. The first term of (91) vanishes, due to (77) and the

15



I-periodicity of V2. However, using (95) we see that the contribution from @ in the second term of
(91) involving V! also disappears:

/?{P*(dQ) ® dlve,Q(—Q ' Fy)

= /%P*(dq) RdlveQ /Ooo do e“lQTr(U)FO

= —/P*(dq) V/OOO do e”Q(Tr(U)F0)|Eg/w + ?{Jl/P*(dq) vFy

= 0. (96)

The passage from the 2-nd line to the 3-rd line in (96) is due to the integration by parts formula.

The first integral is 0 because Fj is a periodic function in [ (cf (80)). The second integral is 0,

2
too , because vug = —%% is a derivative of a stationary quantity, and such expressions have

always mean 0.
Therefore, the limit equation for V0 is

O VO + LV =0 (97)

where

E:/%P*(dq)@dl{ﬁb(l,q,,)-VF[/OOOFU(l—i-U,q(Cla),,)-Vpda]
+F1(l7q77 ) VF} (98)

The equation (97) is the backward Kolmogorov equation. The limit of the mean of , € i.e. W,
which is the main object of our interest in section 3, satisfies the equation (cf [6])

0, W = FF\W (99)
where
FF = / f P*(dg) ® di { /0 Go(l +0,q(c10))Go(l, q) do + Gy(l, q>} (100)

and G; is the linear operator on X defined by F;(l,q,, ) = G;, .

The application of (100) for the specific F; defined by (80) yields the W-equation (37) of section
3.

We remark finally that the above calculation was based solely on the mean zero properties of
Fy(q,1) and vFy(q,l) with respect to P*(dq) and the [-periodicity of Fy(q,1).
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