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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

We shall introduce the problem under consideration and its analysis in
an-informal way at first. The detailed mathematical formulation begins in
the next section and the main theorem is stated in Section 3. Another ver-
sion of this theorem is given in Section 5 and a probabilistic one in Sec-
tion 8.

Consider a conductor occupying a region ¢ in R3 and suppose that
the conducting material is inhomogeneous as for example in the case of a
composite or a mixture of several materials with different conductivities.
We shall model the material with a conductivity that is a random func-
tion of position changing rapidly as x varies over lengths comparable to
the size of the region ¢. To articulate this last feature we introduce a
parameter e€> 0 which is the ratio of a typical length scale associated
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with the region @ to a typical length scale associated with the variations
in conductivity. We take then the conductivity to be a random function of
the form a (—)e-c-] where a(x) is a given stationary random function that is

+ strictly positive and bounded. The temperature u®(x) satisfies the sto-
chastic heat equation

LD V- (eF)Vur®) = fx)  (xe0),

and we assume for sirﬁ_plicity here that u€(x)=0 for x€ 00, the
boundary of @. The function f(x) is a given deterministic (for simplicity)
function which represents the density of heat sourcesin .

The problem now is to analyze the behaviour of the random tempera-
ture distribution #€(x) as e— 0. It is found that when the random con-

ductivity is strictly stationary and ergodic (cf. Section 2), there exist con--

stants 4 (i,j=1,2,3) such that if u(x) is the solution of the deter-
ministic heat equation

3 2
a2 - 2 MY _fx)  (xe0, ux)=0, x € 0),
i,j= i 9%

then

(1.3) S EJusG) —u()?ydx >0 as e~ 0,

where FE{-} denotes expectation value. The tensor g = (ql.].) is called the
effective conductivity tensor and can be computed by solving certain
auxiliary problems (cf. Section 3).

This result shows that the randomly inhomogeneous conducting
medium will behave like a homogeneous deterministic medium with con-
ductivity tensor ¢ when e is small. When the conductivity a(x) isa
periodic function the above convergence result, considered from a variety
of viewpoints and in several more general or refined forms, has been
obtained and discussed by several authors [1]{10]. When a(x) is al-
most periodic the result was obtained by Kozlov [11]. In the sto-
chastic case (1.3) was obtained by Jurinskii [12] assuming that the
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random conductivity a(x) satisfies a mixing condition, and in general by
Kozlov [13].%

Our purpose here is to review the problem and formulate it ina suita-
ble analytical framework, which is described in Section 2, in which one can
obtain (1.3) and related facts with just stationarity, ergodicity and uniform
ellipticity assumptions on a(x). Thus the periodic, almost periodic and
random cases come out of the same theorem in a unified way.

In the remainder of this section we shall describe briefly the calcula-
tions that enter in obtaining (1.3) and in determining the effective con-
ductivity tensor (ql.].).

Let (S, #,P) be a probability space with w€ Q labeling the
realization of the medium (a(x) = a(x, w)). It is natural to attempt to
expand the temperature u®(x) = u¢(x, w) in the form.

= X 2 ;X
(1.4) u€(x, w) = u(x) + ey, (x,g, w) + elu, (x, = w] +...
which is the usual formalism of multiple scales used in [10] and in many

other situations. Nothing that if v€(x) = v(x, 2;—) , then

(1.5) Vre(x) = [V, v0e, ) + % Vyv(x,y)]y: )

o |

we insert (1.4) into (1.1), use (1.5) and equate coefficients of powers of

e. This gives the following sequence of problems in which y = %

(1.6) ~V, @y, )V, ux) =0
~V, - @y, wVyu .y, W)~V + (@@, )V, ulx) -

-V, - (a(y, w)Vyu(x))= 0

(1.7)

*The authors obtained the results given here after seeing that Jurinskii’s analysis did not re-
quire mixing. Kozlov’s work than came to our attention wherein similar results and methods of
analysis as here are given.
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- vy * (d()), w)vyuz(x: Yy, 0))) - vy * (a(.y: (")) vxul(x: Y, w)) -
(1.8) =V, 2 @0, )V uy Gy, w)) =V, (a(y, W)V u(x)) =
= f(x), |
and similarly for the higher order terms.

Clearly (1.6) is satisfied since u was taken as a function of x only.
The function u(x) is usually determined from solvability conditions in
the equations for u; or u,, etc. We consider (1.7) and note that if we let

dux)

(19)  u(x,p, @)= e

d
2 X, w)
k=1

then (1.7) will be satisfied if x*(y, w) solves the problem

(110)  —V, - @0, D)V %0, )=V, - (aly, wle,) (k= 1,2,3),

where €, is the column vector with components (Sik). Once (1.10) has
been solved in a suitable sense, (1.9) is inserted into (1.8) which becomes
another equation of the form (1.10) with a different right-hand side. The
condition that this form of (1.8) have a suitable solution leads to the equa-
tion (1.2) that determines wu(x).

The problem then reduces effectively to the analysis of the stochastic
partial differential equation (1.10) which we rewrite as

(L1 =V, - @@, o)V X0, ) = h(y,w) (¥ €R?),

with a(y, w) and A(y, w) given stationary stochastic processes. In the
periodic case, that is when for each w € Q, a(y,w) and h(y, w) are
periodic of period one in Yy{,¥, and ¥ with y = 0,7, »¥4), problem
(1.11) is elementary. If a(y, w) is strictly positive and bounded, uniformly
in y and w, (1.11) interpreted in a weak or variational form has a unique
periodic solution x(y, w) if and only if the integral of % over the period
cell vanishes. For uniqueness we require that the integral of x over the
period cell also vanishes. In the almost periodic and stationary random case
it is not possible in general to find almost periodic or stationary solutions
X(¥, w) even when A has mean zero. We show in Theorem 2 below that
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(1.11) always has a solution x(y, w) that is not stationary but its gradient
Vx(y, w) is stationary. Furthermore when a and A are ergodic and A
has mean zero then x(y, w) increases slower than |y| in mean square as

]yl - o0,
Returning to (1.10) and (1.9) we see that this is sufficient to make
some -sense out of (1.4) because then eu, (x, 2;—, w) is truly small in mean

square as €~ 0. We also see that the solvability condition for (1.8) leads
to (1.2) where, if we let a4 e, w) = alx, w)cSij, we have

112 —5{23 (5, + 2@ i=1,2,3

(L12) gy =Ey, < % X0y ax, )} Gi=1L2.3).

Note that the effective conductivity g = (qij) is indeed constant, inde-
pendent of x, since Vx¥(x, w) is stationary. Formula (1.12) is exactly
the one that holds in the periodic case and had been obtained previously.
We show here that it holds also in the almost periodic and stationary
random case when the solution xk of (1.10) is interpreted suitably.

In the method of averaging for ordinary differential equations one
encounters a similar but simpler problem with the one encountered here
namely that integrals of almost periodic functions with mean zero are not
in general almost periodic but grow more slowly than linearly as their
argument tends to infinity. It is also encountered in the analysis of sto-
chastic ordinary differential equations by multiscaling which is frequently
similar to averaging (cf. [14] and references therein).

Let us give a physical interpretation for the formula (1.12) defining
the effective conductivity (ql.].). Conductivity is by Fourier’s law heat
flow per unit temperature gradient. This is, of course, already a macro-
scopic concept but we take it to hold microscopically here while allowing
for very rapid irregular fluctuations. If the temperature distribution u€(x)
stabilizes when €, the scale of fluctuations, is small, then locally the con-
ductor sees a uniform temperature gradient impressed on it. Consider now
the conductor in this local picture and suppose unit temperature gradient
is impressed in the Y direction. Compute the resulting temperature dis-
tribution i + x/(y, w) (this is the meaning of (1.10)) and the heat flux

- 839 -




oot S

J .].(y, w) in the y; direction due to the impressed temperature gradient

in the Y direction

(ya w))

3
X0, w)
kgjl a"k(y’w)(é ’ 0y,

(1.13) Jl.j(y,w)=
Then average the result over realizations. This gives the effective conductiv-
ity (q; ) in (1.12) as average local heat flux per unit local temperature gra-
dient. Note finally that if w Ky, w) = yk + x*(y, w) is the temperature
distribution in the local picture so that (ank) = 0, whichis(1.10),
then the statement that unit temperature gradient is impressed in the y,
direction is interpreted properly by the statement that wk(y, w) — Vi =
= xk(y, w) = o(ly]) (in mean square) as |y | » « which is what is shown

below.

2. THE ABSTRACT FRAMEWORK

We begin with a precise formulation of (1.1). Let (2, #,P) bea
probability space and let (a ,w) Gji=12,. ,d) be a strictly
stationary matrix-valued random field with y € Rd It is assumed through-
out that there is a positive constant 4, such that

d

Q1) qylEP < ,-,,51 0,0, W) <ag HEP

£,). Strict stationarity means
and any points

for all y€R?, we and &= (&, .-,
that for any heR?, any integer n=1,2,.
Vs VsV in R? the joint distribution of a;, (y1 , W), az;()’2= w), .
3 (yn,w) 1sthesameasthatofa(yl+h (,o) a(y + h, w)
i,j= 1 2,...,d). The processes a; (y, w) are assumed to be stochas-

tically continuous.
(2.2) lim P{ Z |2, + B, @) = a4y, )| > 8} =0,
th1y0  hi=1

for all §>0 and ye€ R?. On account of this assumption the process
can be taken to be separable (with separating set the rationals in R%)
and jointly measurable in (v, w) € R9x § (R? taken with its Lebesgue
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measurable sets and the Lebesgue measure). We take & to be countably

generated.

We shall now introduce some notation that will be used throughout.
Let #= L%*(Q, #,P) be the Hilbert space of square integrable functions
on §2 with inner product

(23)  Ef{gh}= S{P(dw)g(w)h(w)

L
and norm EZ2{|g|*}. . isseparable since & is countably generated.

Let ®C R? be an open set. Denote by H = L2(0; #)= L*(0X Q) the
Hilbert space of square integrable functions on ¢ with values in 2 and
with inner product

24w v) = dxEuG)ve)} = [dx [ Pdw)utx, w)v(x, w).
[ @ Q

We denote by H! = H1(0; #) the Hilbert space of # valued functions
whose distribution derivatives are square integrable over ¢ and with inner
product

d
(w,v); = (u,v) + Z (a;‘ ;;]—

2.5)

= [dx [Pdw)+ 2 [ dx / P(do )au(x w) av(ax W)
4 Q X .

i=1 t i

We denote by H§ = Hj(0; #) the Hilbert space of # valued func-
tions u with square integrable distribution derivatives and such that u = 0
on 90.
Let {en(w)} be an orthonormal basis in #. Then u € H1(0; #) if
and only if u_(x)= E{u(x)e,} isin H'(6;R") and
2 lu, 12 < oo

n=1 " HUGRY

We shall denote by @(0; #) or Cj(0; &) the space of infinitely dif-
ferentiable ~#-valued functions that vanish outside a compact subset of 0.
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If u n'(x) are the coordinates of u relative to the basis {e, }, then ue
€ 2(0; ) if and only if the u, are infinitely differentiable, vanish out-
side a fixed compact subset of ¢ and

S 3 k1 9 \*a 2
2 %dx‘(a—] () u, ()| <o

for all multiindices k=(k1,k2,...,kd) with [k|=1,2,... .

Let V be a closed subset of H!(0; #) containing H(} 0, #) ie.,
H} S VS H'. The precise meaning of the problem under considerating
(1.1) with general homogeneous variational boundary conditions is this.
Find u¢(x, w) € V such that

g X out(x, w) dplx, w)
@fdx S{P(dw) i,gl i (E’ w) ox; ax; *

(2.6) + o [dx [ P(dw)us(x, w)o(x, w) =
[ Q

= [dx [ P(dw)fx)e(x, w),
o 9]

for all ¢(x, w)€ V. Here o> 0 isa fixed constant and flx) € L%(0;RY)
is given. In view of (2.1) this problem has a unique solution for each
e>0 by the Lax — Milgram lemma [15]. By letting ¢=u® in (2.6)
and using (2.1) we obtain the bound

Q7D @ u®), <C [dx|fix)P

which C a constant independent of e. The case V = Hé corresponds to
the Dirichlet problem while V =H 1 to the generalized Neumann problem.
For additional information regarding boundary value problems in varia-
tional form we refer to [15].

Before going to the theorem regarding the behavior of u€ as e~ 0
in the following sections we shall consider more closely the implications of
stationarity and stochastic continuity of the coefficients (ai].).

We may take the probability space (§2, #,P) to be as follows. The
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set £ is the set of Lebesgue measurable d X d matrix-valued functions
on RY. Thevalue of we§ at y<€R? is defined almost everywhere
and is denoted by wi].(y, w). Thus £ is the set of all coefficients for
(2.6). We take for the o-algebra £ the one generated by cylinder sets
with base points that have rational coordinated in R? and range sets that

are spheres in R? ? with rational centers and rational radii so that & is
countably generated. The probability measure P is defined on (§2, &)
and invariant with respect to the translation group 7.: £ > §2 defined by

28 (1, = w@ —x) (x,y €RY).

The translation group 7, will also be assumed to be ergodic: the only sets
A in % that are invariant, i.e. rxA C A4, have P(4)= 0 or 1. We note
that the mapping (x, w)~> 7, w is jointly measurable in (x, w) with re-
spect to LRUYX F  with Z(R?) the og-algebra of Lebesgue measur-
able setsin RY.

Let fe # =L%(Q, #,P). Foralmostall w we let
(29 (T Hw=fr_ w) (xR

and note that the operators 7, form a unitary group on . This group
is strongly continuous. To see this we note that any f in 4 can be ap-
proximated by a function in # that is measurable with respect to the
algebra of cylinder sets and therefore depends on the value of w ata
finite number of points y € R?. But for such functions the strong con-
tinuity of Tx follows from the stochastic continuity (2.2) (the a; (x, w)
is identified with wl.j.(x, w) below).

With any f in # we may associate the stationary process
(2.10)  flx, w) = (T, H(w) = fiT_ w).

We shall use the tilde notation exclusively for associating a function with its
translates that form the stationary process. In particular we define

2.11) gy =w;(0,w)  Gj=12,...,d)

for P almost all «w so that
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2.12)  a,(x, @)= (T,a)(w) = @ ;(1_ W) = w;(x, w).

Thus the stationary random coefficients in (2.6) are the sample points
themselves. Note that the functions c;;j (w) satisfy (2.1) which can also
be expressed by saying that the support of P isall d X d matrix func-
tions that satisfy (2.1).

When one coordinate variable of x = Gepsenns x,) varies at a time
in the group T,, we obtain d one-parameter strongly continuous unitary
groups in s that commuté‘ with each other. Let D,,D,,...,D, denote
the infinitesimal generators of these groups. They are closed and densely de-
fined linear operators with domains % (Di) in #. For f€& Q(Di) we have

213) O =2 T, s

where the differentiation is in the # = L2(Q, &%,P) sense. Since T, is
a unitary group, the generators are skew adjoint

(2.14)  E{gD,f} = — E{fD,g}

for all EgN in 2(D,).

The hypothesis that the action of the translation group 7 is ergodic
on £ takes the following form in #: the only functions in J that are
invariant under T, are the constant functions.

The linear subspace
d
(2.15) #1 = .ﬂl 2(D;)
i=

is a dense subset of #. Equipped with the inner product

~

d
E{fg}+ ,-;1 E{D,fD,g},

a1 is a Hilbert space since the D, are closed. Let H (RY; #) be the

loc
space of functions from R? to # with inner product
[ axE{f(x)g(x)} = vol (0)E{f g}
[
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and finite norm for every bounded open set ¢. Here f(x,w)= f(r L)
and g(x, w)= gN('r w) and we have used the translation invariance of P.
Let Hy (RY; ) be the space of all stationary random processes on R4
Clearly Hg isin-one-to-one correspondence with # since it is simply the
space of all translates\of H. Hs is also a closed subset of Hloc (Rd 3 H)
that is invariant under 7, . The group T, actson Hloc(Rd ; #) inthe
manner f(x, w)~> flx, 7_, w).

We may similarly identify & 1 with the set of mean square differen-
tiable, stationary processes H I(Rd #). Clearly H I(Rd H#) isa closed
subset of HIOC(R" ) i.e. the set of all s valued functions on RY that
have square integrable distribution derivatives over every bounded open set
0. We note that if f€ HY, then its x derivatives form stationary proc-

esses and
of(x, w) _
axi - le(xs (-‘J)
with equality holding u X P almost everywhere (u = Lebesgue measure
on RY).

The unitary group of operators T, isergodicon # since the action
T, is ergodic on 2. Let By, be the cube of side 2N in R? centered at
the origin. By the mean ergod1c theorem, for any f e,

(2.16) J (T D (w)dx ~ E{f}

(md

in # as N- . We also have the individual ergodic theorem [16] which
says that (2.16) is valid for P almost all w when f€ L1(Q, #,P). We
note finally thet the spectral resolution of 7 is

17 T,= [e™U@n
Rd

where U(dM\) is the associated f)rojection valued measure.

Periodic and almost periodic coefficients (ai].) can be considered
within the above framework in the following manner.
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Consider the periodic case first. Let ((;;/. (x)) be the given Lebesgue
measurable periodic functions of period one in each coordinate and satis-
fying (2.1). Let T9 be the unit d-dimensional torus. We take £ =
= {a,(- + @) with w€ T9} so that in fact Q is identical with 7% in
this case and is a much smaller space than it can be in general. Let &% be
the o-algebra of Lebesgue measurable sets and P Lebesgue measure on
T which is invariant under translation 7, w=w—Xx (mod 1). The ac-
tion of 7, on § isergodic and the infinitesimal generators of the unitary
group Tx are now the usual partial derivatives

D.=5(%— (w=(wy,--., W)

i .
i

The coefficients a; are given by a; (x, w) = Zz\;j (x + w).

The periodic case is thus put into the present abstract framework
by the essentially trivial process of letting the center of the period cell be
a random variable that is uniformly distributed over the unit torus.

In the almost periodic case we shall only consider coefficients (al.].)
that are continuous as follows.

Consider R? as a locally compact abelian group. There exists [17]
a compact abelian group G, the Bohr compactification of R¢, containing
R9 asa dense subgroup and such that the continuous almost periodic func-
tions on R? are precisely the continuous functions on G, C(G), re-
stricted to R9. Let (c?;j(x)) be the given continuous almost periodic
coefficients satisfying (2.1). These functions are restrictions to R? of
functions (Ez;j (g)) in C(G) which are uniquely defined by continuity
and density of R? in G. Let T, be the group action on G which on
R4 reduces to the usual translation. We take for § the subset of all con-
tinuous functions on G with values d X d matrices that consists of the
given functions (&;j (x)) and all their translates by Te» that is

Q= {a,(r_,x), g€ G}.

Thus the set £ may be identified with G. For % we take the o-al-
gebra generated by ’rational” cylinder sets in £ as above. This & is
countably generated and it is a sub o-algebra of the one relative to which
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all continuous d X d matrix functions on G are measurable (this one is
not countably generated). We take for P the Haar measure which is in-
variant under Ty . Moreover, the action T, isergodicon 2.

3. WEAK CONVERGENCE THEOREM

Let the coefficients a;; (x w) = a ('r sy be given satisfying (2.1)
with x € Ri, weq, (L, .97 ,P) the probablhty space introduced in the
previous section with 7, : 3> © the measure preserving, ergodlc trans-
lation group. Let u® € V be the solution of (2.6) for fixed f€ L%(0;RY),

>0 andeach e€> 0.

Let {e, (w)} be an orthonormal basis in = L%(Q, #,P) with
e (w) = 1 and let V, = E{Ve, } by which we mean the set of all first
coordmates of elements in V. V is a closed subspace of H 1((9 R1) and
contains H&((O,R ). V, isalso aclosed subspace of V.

Theorem 1. The solution u¢ € V of (2.6) converges weakly in V to
the solution u(x)€ V, of the deterministic variational problem

d.
(3.1) fdx 2 q, — Qu(x) 3px) | fdxu(x)go(x) = fdxf(x)ga(x)

1
ij=1 ax 0x;

for all o(x) € V1' Here (qi].) is a constant matrix that satisfies (2.1) and

is defined in Theorem 2 below. It is symmetric when (al.].) is symmetric.

Remark 1. By weak convergence we mean that for every o(x, w)E
cv,

(3.2) (u¢,9), > (u,9); as €~0
where the inner product is defined by (2.5).

Remark 2. Another convergence result is given in Section 5 and still
another in Section 8. '

Theorem 2. There exist uniquely defined functions ’I,k (W) in H,
(G,k=1,2,...,d), such that
d

(3.3) _.Z' Ea,(5, + JF)Dpt =0, Voex' (k=1,2,...,0),
: L,j=
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(G4  E(Fr=0,
(35)  E(UfD;0}= E(UFD;0}, voe#! (i k=1,2,...,d).
The coefficients (qi].) in (3.1) are defined by {

d ~ ~ .
(3.6) qi].=E{k§; 4G+ D} Gi=1,2,...,d).

There exist furthermore uniquely defined processes x*(x,w) (k=
=1,2,...,d) which are in Hltc(Rd; #), they are not stationary, ]
x¥(0, w)=0 and ' |

3.7) aL(x—‘—"— VE, W) = §Fr_ @) G k=1,2,...,d)

so that their gradients are stationary. For any compact subset K of R9
they satisfy the estimate

38)  tm sp Ef(ex* (%))} =0 k=1,2,....0.

el0 xekK

Remark 1. In the periodic case there exist functions ;k (w) in o1
which satisfy

d |
~ X" (w)y dp(w) _ !
(3.9) T,{i dw i’gl @, (w)(8;, + e, ) S0, =0
for all (;E #Y (k=1,2,...,d). Thisis the usual cell problem in homo-
genization (cf. for example [10], Chapter 1, Sections 2 and 3). In the gen-
~eral case one cannot obtain stationary xk(x, w) (= ;k (r_,w)) butit
turns out that Theorem 2 is sufficient.

Remark 2. Theorem 2 also be stated in the following way. There are
functions x k(x, w) in Hloc(Rd; #) whose gradients are in HS(Rd; H)
(i.e. stationary) such that if B, isasin(2.16), !

d
lim —— /[ dx Za(a w) X
oo 2N ' p=—sg
(3.10) N1 (2N)4 By =1
ax*(x, w)y dplx, w) _
X (5J'k + 6xj ) ax . )
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for all cpeHSl(Rd; H#) (k=1,2,...,d) and with the limit in (3.10)
being in # or P almc_)st everywhere. The gradients of x¥ have mean
zero and

d k
- lim —1 OX"(x, w)
G g = lim g B_va dxk:21 @y (x, ) (8, + o ),
with the limit againin # or P almost everywhere.

The translation of Theorem 2 to the above statement is immediate
in view of the ergodic theorem (2.16). The statement (3.10), (3.11) is
perhaps a bit more physical and in line with the discussion in Section I.
However, we have found the abstract formulation very convenient ana-
lytically.

Remark 3. In the next section we show that formula (3.6) for q;
can also be written in the form

’ d
(3.12) g, = E{kg1 a4 (8, + UG, + UD}-

From this formula we see that (ql.].) is symmetric when a, is sym-
metric. Using (2.1) and (3.4) we also see that (2.1) holds for the (ql.].).
For example

d
L k= Pl 2 Gy TGO, + PG}
d 4.
= ag | £P° +"0E{k;; (]:211 Uig) )= eIkl

4. PROOF OF WEAK CONVERGENCE THEOREM

The proof of Theorem 1 is a modification of Tartar’s proof for the
periodic case (cf. [10], Chapter 1, Section 3). Of course we use in it The-
orem 2 so we shall prove it first.

Proof of Theorem 2. For each B> 0 consider the problem: Find
x*¥f in ! such that
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d
JPEw) 2] ay (@) + D, X*8(@)D;p(e) +
4.1) b=
+ B S{ P(dw)XF P (w)p(w) = 0

for all ;e #Y (k=1,2,...,d). Thisproblem has a unique solution by
the Lax — Milgram lemma [15]. Letting ¢ = x¥:# in (4.1) and unisg (2.1)
yields

d
(4.2) S{ Pdw) 2, DX (w)? < C,
=

43) B JPUA)GFFNF<C,
Q

for k=1,2,...,d with C; and C, constants independent of §.

Because of (4.2) there is a subsequence '~ 0 such that Djzk’ﬁl >
- \,U].k (some limit) in »# weakly. Using (4.3) we can pass to the limit in
(4.1) along this subsequence to obtain

d
[ PEw) 2 ay(@)(8y + P (w)Dp(w) =0, Ve £
Q i,j=1

“4.4)
(k=1,2,...,4d).

By passage to the limit we obtain in addition the following:

[ P(dw) ¥ (@)D, p(w) = | PAw)¥F(@)D;p(w), Vo& !
45 ° e

G,jk=1,2,...,d)
and
(4.6) [ P(dw) @’].k(w) = 0.
Q

We shall show next that (4.4)-(4.6) has a unique solution which proves
the first part of Theorem 2. For this purpose we use the spectral resolution
of the unitary group T,




@1 T,= [e™ U@y  xeRD,
Rd

with U(d\) the spectral projections.

Foreach y> 0 we define

A7) ~
“8) g = [ Z ThoE U@ PF(w) - (k=1,2,...,d)
Rd ]_
d
where |iA — 7!2 Z (z)\ —(— z)\j — ). On using (4.5) we conclude
~ =1
that g%7v € #! and

49 -t =9F  (ki=1,2,...,d).
Moreover,
lyghr |2 = f P(dw)(vg57 (w))? =

d (—iN =70\ —
L= N — 14

(4.10) = [ 42
R4

> (UQONT¥, §E) as v~ 0,

v) ~y o~
U@k, v~

by the Lebesgue dominated convergence theorem. But U({0}) is the
projection operator into the functions invariant by T,. The only such
functions are the constants, by ergodicity, and because of (4.6) we con-
clude that
(4.11)  lim |7g*"2=0 (k=1,2,...,d).
740

Now suppose ij is a solution of the homogeneous version of (4.4)-

(4.6). From (4.4) we have

fP(dw) Z a; (w)\,l/ (w)D; go(w) k=1,2,...,d).
i,j=1
Substitute for ; the function gk”. Using (4.9), passing to the limit
v- 0 and using (4.11) we find that

- 851 -




fdP(w) 2 4@V (P @) =0 (k=1,2,...,d).

l]——-

From the uniform ellipticity we conclude that %" = 0 and hence unique-
ness has been shown.

We continue with the construction of xk(x, w) satisfying (3.7) and
(3.8).

We define x*(x, w) by

[N

X @)= [ ™ D=y X -0 U T )

(4.12) R? AP
k=1,2,...,d),

which is nonstationary because it is not of the form x* = T ; However,
x*(x, w) isin H 1 (R?; #) as can be verified directly, x (O w) =0 and
(3.7) holds.

loc

It remains to show (3.8). We have

2 € _ 112 7\ ?\
(4.13) s{P(dw)(exk(g,w).) = [ Py
where
414)  RE@) = [ Pdw) U@ T¥(w) T (w),
Q

is the power spectral matrix measure of the stationary process tl/ (x, w)=
t,D (r_,w). From the estimate

d

d
! Z?\?\R(d?\) Z RE(@N),

P,

which follows from Schwartz’s inequality, we obtain

A
415 [Paw) (et (F, ) < [ [ ] ZR (V).

j=1




By the ergodicity hypothesis and (4.6) it follows that Rjj({O}) = 0. Appli-
cation of the Lebesgue convergence theorem to (4.15) yields the result
(3.8). The proof of Theorem 2 is complete.

Before continuing with the proof of Theorem 1 we observe that
formula (3.12) for (qi].) is obtained by replacing D,-$ in (3.3) by Jl’ and
adding the result to (3.6). That this substitution is permissible follows from
the uniqueness argument for JJ." given above.

Proof of Theorem 1." We follow Tartar’s elegant argument ([10],
Chapter 1, Section 3). Define

d
“16)  EHE o) = 2 ay(e©)

€

out(x, w) .
———————axj (i=1,2,...,d),
which is in L2(0; #). In view of (2.1) and (2.7) there is a subsequence,
denoted again by  £7(x, w),u‘(x, w) which converges weakly in
(L2(0; #)4* 1 to some limit §;(x, w), u(x, w). Passing to the limit in
(2.6) we obtain

: 0p(x, w)
o Q =1 ! axi

(4.17)
+ [dx [ Pdw)ulx, w)e(x, w) = [ dx [ P(dw)f(x)o(x, w)
o a £

forall p(x,w)e V.
Let x’: (x, w) be the function defined in Theorem 2 with (c;;j) re-
placed by (al.l.). Define w,(x, w) by
wp(x, w)=x, + x*(x, w).
We may rewrite (3.3) in the form

d Iw, (x, W) do(x, w)
(4.18) &{ P(dw) 2 a,(x,w) ox, ox, =0

i,j=1
for all ¢(x,w)=(r_ w) with g€ #! and k=1,2,...,d. Since
D}w = %‘2 we may rewrite (4.18) in the form
J
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d ow, (x, w)
d K\ _
(4.19) mé’l ax, (a;Cx, @) o, )=0

which makes sense as an equality of distribution valued stationary proc-
esses..

Define
(420)  wi(x, ) = ews (3, w) = x, + ex¥ (3, w).
. k\ s k\e> X e
Clearly (4.19) may also be written in scaled form

d 3 aWe(x3 (x))
(4.21) i’gl -a};(aij(zec-, w) kaxi__) =0

Let 6(x, w) be any function in 2(@; L~ (2, #,P)). Since u(x, w)&
€ Vc HY(0; »#) it follows that 6(x, w)u¢(x, w) € H& (0; #). Multiply-
ing (4.21) by 6u€, integrating and integrating by parts gives the iden-
tity

d

wfdx I P(dw) = a; (zec-, w) 5?7 O, wus(x, w)) X
(4.22) ’ !
aw;(x, w)
axl. -

The functions wi(x,w) are in HL (RY #) and hence

0(x, wIwE(x, w) s in H&(@; #)S V. Thus, replacing ¢ by Owf in
(2.6) gives

d
[ ax [ P(dw) 2 §f(x, ) 5o (0Cx, ) we(x, 6) +
o ) i=1 Xy
(4.23) + [ dx [ P(dw)us(x, w)0(x, w)wE(x, w) =
[ o

= [ dx [ Pdw)f(x)0(x, wIwE(x, w).
Y Q

Subtracting (4.22) from (4.23) and cancelling some terms yields the iden-
tity




o

d
e ¢ 00(x, w) _
J dx x ] P(dw) 2 O w)wi, @) o

dwy (x, w)

- /dfo(dw) 2 ( ,w) Ty
(4.24) Li=1 f

ae(ax,__w) + o [dx J Pw)us(x, )00, @)wlx, w) =
xj [4 1Y)

u€(x, w)X

x

[ ax [ P(dw)fix)6(x, w)wE(x, w).
4 2

We may now pass to the limit € -~ 0 in (4.24) along the subsequence.
From (4.20) and (3.8) we conclude that

(425)  Jdx [PAw)(wilx,w)—x,)> >0 as e~ 0.
[ Q

Using (4.25) to pass to the limit in (4.24) and then using (4.17) gives us the
relation

J dx fP(d,w)Ek(x, wW)f(x, w) =

awe(x w)

(4.26) = —lim [dx [ Pdw) 2 Ew) —E—

el0 0 Q i,j=1 ;

. oy 2008 @)

X uf(x, w) ox,
for k=1,2,...,d. We shall show that the right side in (4.26) equals
d
@27 [adx [ Pdw) D) g, ulx, w) 20%)
o Q j=1 "M ax].

with (g, ) defined by (3.6) (after noting that (a ) has been replaced by
(a i) Assummg this fact we shall complete the proof.

Since 0(x, w)E 9(0; L (2, #,P)) is arbitrary and
9(0; L= (2, #,P)) .isdensein L2%(0¢; #) we conclude that

(428) £ (x,w)= Z % a“(a’; @D k=1,2,...,d.
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Inserting this expression into (4.17) gives

du(x, w) dp(x, w)

d
[ax [ Pdw) 2 q,

429 ° ° bl d

+a fdx [ PAw)ulx, w)elx, w) = [dx [ Pdw)fx)e(x, w)
[} Q o Q

for all ¢(x,w)€ V. This problem has a unique solution in ¥ since (ql.j)
is positive definite and o« is positive. But the solution u(x) € V, of (3.1)
satisfies (4.29) since the (ql.j) are constants. Thus u(x) = u(x, w), i.e.
the limit is deterministic and we have the result stated in Theorem 1.

It remains to show thatAthe right side of (4.26) equals (4.27). Define
kj
g by

. ~ aw, (
(4.30)  gM(x,w)= gk’('r_x Z a;(x, w) —w—) = Qg

In terms of g% what we must show is that

d
lim [ dx [ Pdw) 2 g9(F, @)t w) 2 = 0

431) <0 @ ¢ K

(k=1,2,...,d).
Define h7(x, w) by

. . - l)\l) ~y .
(432)  AfiGx,w)= [ (€™ — 1) —— UdNg¥ (w).
Rd |)\|

Since FEf{g ghi }= 0, a calculation similar to the one used for xk below

(4.12) gives
(433 tim fax [Pao)(enf(2,0)) =0 Kil=1,2...,0.
el0 @

We also have that

d 3nk(x, w) ‘ -~ .
434 2 ’—a———= [ e yganghi = ghigx, w).
=1 xl Rd




Now we use (4.34) suitably scaled in (4.31) and integrate by parts.

: 0 k(X 90(x, W)
;,f de{P(d@,.,El (eﬁx_l hz’.(g:“’))“e(x,w)——-a—xlj——=

d
(4.35) = — Jax [ Pdw) 2 enf (X, @)X
o Q jl=1 €

% [aue(x,w) 00(x, w) +u(x, w)

920(x, w)
ax, ax]. ]

ax]. 0x ]

The result (4.31) follows from this by using (4.34) and the estimate (2.7)
which is uniform in e. The proof of Theorem 1 is complete.

5. STRONG CONVERGENCE THEOREM

We shall state and prove the strong convergence theorem for the whole
of R? since the result is local in character. The cutoff arguments of [10],
Chapter 1, Section 5 apply here also so that the same problem over a subset
0 with Dirichlet conditions can be analyzed without difficulty.

We assume that all hypotheses about (al.j) stated in Section 2 and at
the beginning of Section 3 hold here also. With fe€ LY(R%;RY) and
a>0 fixed we consider the problem: find u¢(x, w) in HY(RY; #) such
that foreach €> 0

uc(x, w) dplx, w) +
ax,. ax;

d
X
R{i dx J Pde) i,gl a,;(%, )

(5.1) + o [ dx [P(dw)ut(x, welx, w) =

R4 Q

= [ dx [ P(dw)f(x)e(x, w)

for all ¢(x, w) in HY(RY; #). This problem has a unique solution satis-
fying (2.7) with 0 replaced by RY.

Theorem 3. Let u€(x,w)€ HY(RY; #) be the solution of (5.1) and
let u(x)e HY(RY;R') be the solution of
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d
62 fax 2 ”—‘xl—%%lw [ drut)o() = [ dxfixdpt)

< 4
Rd i;]=1 U ax i Rd

forall p€ HY(R?;RY) and with (q;) given by (3.6). Then

(5.3) lim [ dx fP(dw)Iue(x w) —u(x)|? =
el Rd

and

_du(x)
axi ax,.

lim [ dx [ Pdw) 2
Q =1

el0 Rd
(5.4) J
x du(x) 12 _
; ( @) ox, | 0
where x]/ik(x, w)= J{‘(T_xw) and $f(w) is defined in Theorem 2.

Remark 1. This theorem complements Theorem 1 since it gives
stronger convergence. Note in particular that ©¢ does not tend to u in
HY(R?; #) strongly as can be seen from (5.4). The principal advantage
of Theorem 1 is that it works for arbitrary homogeneous boundary value
problems in variational form while the present theorem is of a local char-
acter.

Remark 2. We shall give two proofs of Theorem 3 both of which
are more direct and hence more intuitive than Tartar’s proof of Theorem
1. The first proof is exactly analogous to the one given in the periodic
case and uses Theorem 2. The second uses Theorem 2 without taking
advantage of the nonstationary x* and (3.8). As a result more informa-
tion is needed about problem (4.1) that approximates (3.3)-(3.5). This
being of independent interest it is stated as Theorem 4 in the next section.
In the second proof and Theorem 4 we require that the (ai/.) be symmetric
since we use the spectral theorem.

6. PROOF OF THE STRONG CONVERGENCE THEOREM

In view of (2.7) it suffices to prove (5.3) and (5.4) for each f(x)€
€Cy (R9). In that case (5.2) hasa C™ solution u(x) that goes to zero
exponentially fast («> 0) as |x]|- .
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Let

d
(6.1)  z(x,w) = u(x, w) —ulx) - k;; exk(g’ ) agg)

where xk (x, w) is the process defined in Theorem 2. We note first that be-
cause of the estimate '

6.2) [ Pdw)(xF(x, N < C,(1 + |x?) forall x,

9)
which is a cruder version of (3.8) and follows from (4.13), and because of
(2.7) there is a constant C, independent of € such that

d aze(x, w) |?
(6.3) [ dx [Pdw) 2 |————— <C, <.
Rd Q i=1 8xl 1

We note further that

d
. k(X u(x)y2 _
(6.4) ehfg R{i de{P(a’w)(k:Z; €x (e,w) Vaxk ) =0

which follows from (3.8), the rapid decay of u(x) and its derivatives as

| x|~ e and from (6.2).
We write (5.1) in the form
(6.5) ££eu€ =f

with

g 3 X d
(6.6) % = l_,gl a—xi(a,-,-(;, ) 5,7],) +

By direct computation and by using Theorem 2 we find that

, (e )
©n 2= i,i,kz;l [aik () [6"/' ¥ T] - qii] "
2u) 3 B, (X x 7 22ul)
S T Ul ST Dl o
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d
e > a,-,.(f,w)x"(f,w) _Pulx)

ijk=1 € € axkax].axi“
d .
_ k(X du(x)
akg'lx (e’w) axk )

The precise meaning of this identity is that if both sides are multiplied by
o(x, w) € HY(RY; #), integrated with respect to x and £ and £°€ is
written in variational form, then a correct equation results. In this equation
we may replace ¢ by z¢ in view of (6.3). Using then the uniform elliptici-
ty (2.1) and (6.4) (along with some obvious generalizations of it) we obtain
the estimate '

0z¢(x, w) |2

+
ax,.

d
lima, [ dx [ Pdw) 2
€0 R4 Q i=1

+Ima [ dx [Pdw)lzé(x, w)? <
el0 Rpd Q

(6.8) ;
i X
<lm| fax fraer, 2 fa(6w)
. 2
X Bk]'+ wé(gow]]—ql] %&?T(-;?ZE(X,Q))I.

We observe now that the right side of (6.8) is precisely of the same
form as the limit in (4.27) i.e. just like (4.32). Since the uniform in e
estimate (6.3) holds the arguments of Section 4 proving (4.31) applies
again and the proof of Theorem 3 is complete.

The second proof of Theorem 3 goes as follows. Instead of defining
the error z¢ with the term

g k(X ou(x)
k;; X (E’w) 0x,

we define it with xk(g,w) replaced by  x%¢* (%,w) where

X8 (x, w) = )?k’ﬁ(r_xw) is stationary and x*f(w) solves (4.1). A com-
putation nearly identical to the one that gave (6.7) gives an equation for
the new error z€. Inspection of this equation reveals that Theorem 3 will
follow if we can prove that
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6.9)  lim 8 [ P(dw)(x**(w))? =0
gi0

and

(6.10) lim [ P(dw)IDJ.;k’ﬁ(w) - E}.k(wﬂ? =0 G, k=1,2,...,d).
gi0 £

The two estimates (6.9) and (6.10) say that the approximating solu-
tions x*f of (3.3)«(3.5), which satisfy (4.1), not only converge weakly
in #! but also strongly. We state this as a separate theorem.

Theorem 4. Estimates (6.9) and (6.10) hold for ;k’ﬁ, the solution
of (4.1), provided the (al.].) are symmetric.

Proof of Theorem 4. Suppose first that (6.9) holds. Subtracting (3.3)
from (4.1), replacing a by ;k’ﬂ and using (6.9) we obtain

d
6.11)  lim [Pdw) 2 a.(w)D,x**(w)— ¥F(w)D,x**#(w)=0.
610 € ij=1 Y ! ! '

By the replacement used in Section 4 to prove uniqueness of the solution
of (3.3)-(3.5) we conclude that

d
612) [ Pdew) ]?1 (D, x*#(w) = P () Pf(w) = 0.
i,]=
Subtracting (6.12) from (6.11) and using the uniform ellipticity gives
(6.10).

So it remains to prove (6.9). Let A be the operator

d
(613)  A=— 2 Di@;D;")

i,]:

defined on ! as a quadratic form. We denote by A also its Friedrichs
extension [19], p. 372 in . This operator is a nonnegative selfadjoint
operator (using symmetry of (ai].)) with spectral resolution

6.14) A= [ \G@).
0

Write
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d
©.15) A= 2 Diayw)  (k=12,....d),
l=
with the right side interpreted in the weak sense
(6.16) [ P(dw)gD,ay = — [ Pdw)ayD,g, Vge #1. |
Q Q

1
We shall show below that ]7" is in the range of 4 2. Assuming this we i
shall complete the proof of (6.9).

In terms of the spectral resolution we may write )N(k '# in the form

VBx*E=VB@B+ A)~1fF = bf VB_ G@NF* (w)

g+ A :
so that
617 B [ Pw)&E#w)? = | —LE— EF*canf®y.
Q o B+ N
1
Since we have assumed that fk is in the range of A2, there exists an

1 N 11
n* in 2(4?) suchthat f¥=A2r?. But then

1 1
(6.18)  E{F*G(ANF*} = E{A2h* G(aNA 2 h*} = ERF G(aN)RhF

and (6.17) becomes

kb2 - [ A Lk K
(6.19) B [ Pldew) () Of o gy O G@I,

Since )\$(7\+ B)~2? is bounded by % independently of >0 the

Lebesgue convergence theorem applied to (6.19) gives the desired result
(6.9).

1
We must now show that f¥ of (6.15) is in the range of A 2.
Lemma. If there is a constant C < o such that

(6.20) |E{fg}® < CE{gAg} Vg€ 9(4)



1 _1
then f isin the range of A% and E{|A 2fi1<c.

We prove the lemma after verifying that the k¥ of (6.15) satisfy
(6.20). Since 2(4) C #1; forall g€ 2(4) we have

-. 4 -
|EF 2 Dy} -

I

|E(f*g} 2

| 2 ra, o) <

(a

1,43 -
(Zz;) ; gl E{D; gaUD]g} = (using (2.1))

N

0) g E{|Dgl} < (using (2.1))

N

- () EEae)
ag )
Then (6.2) holds and the proof of Theorem 4 is complete.

Proof of Lemma. Put

_1
621) hy=@+4) f  (B>0)
Then for all g e 2(A)

1
IE{EZBH: |E{g(B+ A) 2f}P =

|

= |[EfB+ A 2g}* <

1 _
< CE{(B+ A) 2gA+ A)

~

gl= (by (6.20))

W=

= CEA(B+ A) 1gg} <

< CE{l1g|?}.

Since 9(A4) isdense in s this means that E{lh |2} < C and hence there
exists a subsequence also denoted by h that converges weakly in £ to
some limit 7 as g- 0.
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1
By (6.21), (B+ 4) 2/76 =7 and hence
1 o 1
E{h, (8 + A) lg}=E{fg}, Vg€ 2(4?).
Passing to the limit §— 0 gives

1

i o - 1
E(hA%g) = E{f g}, Vg€ 9(A>

).

L
2

i .
This implies that W isin the domain of 42 and that 427 = f, (cf. [19],

p. 322) as was to be shown.

7. THE BLOCH REPRESENTATION

Problem (5.1) can be solved explicitly in terms of Fourier transforms
and the solution of a problem in the abstract space (£, %, P). We call this
the Bloch representation, or the Bloch expansion, because in the periodic
case the problem in the abstract space is a boundary value problem over a
period cell that can be solved by Bloch waves (cf. [10], Chapter 4, Section
3). Although we do not make use of this representation in our asymptotic
analysis we give it here since it may be useful in other contexts.

We write (5.1) with e= 1 in the form

d

_ 0 ou(x, w) _ d
(7.1) ]_’gl % [2;,(x, @) o, ]+ outx, )= fix)  (x€RY).
Since the coefficients a].l(x,w)= &;I(T_xw) depend on w through
T_,w wemay look for u in the form

(7.2) ulx, w) = v(x, 7_ L W)

We then have du _ oy + D.v, and hence (7.1) becomes
ox, O0x, i

1 1

- 2 (D+ 5%—)[[1;1(@)’@[ + —5??) p(x, w)] + an(x, w) = fx)
(7.3) L=t 4 !

(x € R9).




I
“‘
1
[‘:?
;

Suppose f(x) isa smooth function decaying rapidly as |x|— and

let f(k) be its Fourier transform

) = —— J dxe” A,

(iji R

We write formally at the moment

a4 v w)= L [ dke™ ik, w).

"d’ d
(2W)2 R

Then »(k,w) satisfies

d _ .
(7.39 ~j;1 (D, + ik)a; (@)D, + ike)) b(k, )] + ok, w) = fK)
which is an equation in the abstract space (£, &, P) with k€ RY apa-

rameter.

Define formally for each k€ R4
d
15)  A()=— 2 D+ ik)ay @)Dy + ikl
i =1 ] ] ]

nof A(k) isasa quadratic form over ! and then
this form [19]. It isa nonnegative selfadjoint
n #! (we alwaysassume uniform

The precise definitio
by the Friedrichs extension of

operator with domain 2(A(k)) dense i
(2.1)). It can be verified easily that for each &> 0 the operator

ellipticity
unded in # uniformly in ke RY and is strongly con-

(Ak) + )~ 1 jsbo
tinuous as a function of k.

Let
(7.6) vk, w) = (Ak) + &)~ Lf(k) ()

with f(k) smooth and rapidly decayiﬁg as |k|— . Then the integral
(7.4) makes sense for almost all « and we have Parseval’s identity,

[ ax [ Pdo)vix, )P = [ dx [ P(dw) |9k, w)1*.
Rd 193 Rd o

This and the boundedness of (A(k)
865 —

+ o)~ ! uniformly in & imply that



e

e

e e

e

== e

S

i e e

the mapping f(x) = v(x, w) is bounded from L2(Rd) to L2(Rd; H)
and the formula

(1.7 u(x, w) = L 7 [ dke™*(A(k) + o)~ Hf(k) (r_ )
@m? &

extends by continuity to all f€ L 2(RY).

We summarize the discussion of this section as follows: The solution
u(x, w)eHl(Rd; ) of (5.1) with e=1 (and with o> 0 and (2.1))
for f€ L2(R?), admits the representation (7.7) with the integral under-
stood in the sense of LZ(Rd ; #). The operator A(k) is the Friedrichs
extension of (7.5) defined as a quadratic form on #! for each k€ R4,

Thus the problem of solving (7.1) is reduced to solving the abstract
cell problems (7.3") (the shifted cell problems in the terminology of [10])
foreach k€ R4 and then constructing the Fourier integral (7.7).

8. PROBABILISTIC CONVERGENCE THEOREM

We shall assume that the coefficients al.].(x,co)= ;l.].(r_xw) are
symmetric and satisfy (2.1) on (Q, #,P) with the translation group 7,
ergodic on M as described in Section 2. We shall assume in addition that

for almost all w the coefficients (al.].(x,w) are

(8.1) . . d
continuous functions of x € R“,
1 < 9
52 the functions b]. (x,w)= 5 1_221' 5: (ai]. (x, w))

are bounded and measurable in  (x, w).
For each e€> 0 define the operator

83 o - 34 (Fe) sl
' w o 271 i].(e,w) 0x; 0x; ;

4 x J
]:Zlv b]-('e—, OJ) ij—

1
€ j

Let X = (0, «); R?) be the space of continuous trajectories in
R? with the topology of uniform convergence on compact sets. Let Z de-
note the o-algebra of Borel sets and let X, (r= 0), derote the o-algebra

generated by events depending on paths up to time f. A pointin X is
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|

denoted by ¢ and the point in R? at time ¢ through which § passes
is denoted by x(#) = x(, {).

Under assumptions (8.1), (8.2) and (2.1) there is a uniquely defined
diffusion process on R? associated with £¢ . That is, for each €> 0,
x€R? and almost all w€ Q there isa probablhty measure Q. (-, w)
on (X,Z) which solves the martingale problem [20] associated with £ :

i) Qi@ =x,w)=1,

(ii) foreach f(x) in C 2(R%) that is bounded and
has bounded derivatives the expression

8.4)

t
flx(6)) — Of (Z5,N(x()) ds

isa (%, Q;(- , w)) martingale.

Theorem 5. Let Q. be the diffusion process (Brownian motion)

associated with

d
1 2
©-3) 2.2, 9 5,05,

with the constant coefficients (q; ) defined in Theorem 2. Let ¢(x) be
any nonnegative square integrable functzon on RY andlet F(¢) be any

bounded continuous function on X. Then

lim fdP(w)t [ dxp(x) [ FOQ5S, ) ~

el &

[ dxpto) [F©Q, @] =
R b'e

(8.6)

Remark 1. In the periodic case it is possible to analyze processes
with generators of the form (8.3) that do not satisfy (8.2) i.e. are not in
divergence form. However, the large drift b]. must satisfy certain other

conditions (cf. [10], Chapter 3 and [9]).

Remark 2. The asymptotic analysis of the process corresponding
to (8.3) with b»,=0 can also be carried out but requires additional con-
sideration. It is given in [22].
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Remark 3. The main advantage of the probabilistic convergence The-
orem 5 is that it can be used to obtain convergence results for functionals
F that are associated with solutions of boundary value problems. Thus, it
provides a convenient tool for localization i.e. for separating what happens
away from boundaries from what happens near them.

Remark 4. Let us assume that the matrix (a; ) has a symmetric
square root

d
(8.7) ai].(x,w)=k221 0y (%, )0, (x, @) (Gi=1,2,...,d),

where 0, (x w) = 5 (r_ L« w). Let us also assume that b and 04 satisfy
a Llpschltz condltlon w1th Lipschitz constant 1ndependent of w Let
B(z‘)v— (B] (1)) denote the standard Brownian motion processson R9. Then
the Ito stochastic differential equations

d

. dxy (1) = b, (x(0), wydt + 2 0, (x(0), w)dlf, (1)

(x(0)=x€R, j=1,2,...,d),

have for almost all we€ Q a solution which is a diffusion process (with
path measure Q:(+, w) as above) expressed explicitly as a functional of
a standard Brownian motion. We have what may be called a diffusion
process in a random medium or a random environment with the realization

of the medium being labeled by w € Q. A natural question to ask is how
1

does x(f) —x behave for ¢ large? Does t~7(x(t) ~Xx) tend in some‘
sense to a Gaussian as 1 «? In fact if we let

89 € = "L € 0 = ]
(89)  x°(» GX(GZ) (x¢(0) = x)
we find that (8.8) becomes

eon 1 x5t a
dxj (1) = % b].(T, w) dt + k:z; (4]
(8.10)

(xe(O)___x,]': 1323"':




which is precisely the fto equation that goes with (8.3). Thus, Theorem 5
says that indeed x€(#) tends to Brownian motion (generator (8.5)) as
e~ 0 weakly (as a measure in X) in L2(Q, #,P), ie. in the sense

(8.6).

We note again that Theorem 5 has been shown only under condition
(8.2) which says that (8.3) is in divergence form (cf. Remark 2 above).

9. PROOF OF PROBABILISTIC CONVERGENCE THEOREM

We shall first show that the measures Q;(- ,w) (e>0, weq,
x € RY) are relatively weakly compact. For this purpose it suffices to show

that

E%* (| x(1) — x(s) 1*} =

9.1)

= j(flx(r, ¢) — x(s, OI* Q(ds, w) < Clt — s,

where C is a constant independent of f,5,¢€,w and x. To prove (9.1)
we use the divergence form of (8.3) and Nash ’s estimates [21].

Specifically, suppose for the moment that the coefficients (al.j) are
smooth and satisfy (2.1). Then the diffusion equation

U _ ype
at—z’wu

has a fundamental solution ¢€(¢, x, y; w). The estimate of Nash says that
there is a constant > 0 that depends only on the uniform ellipticity

constants in (2.1) such that

o lx—yl fx=p!
Y V-; logy V?

€ >

Lo

(9.2) et x,¥; W) < —

t
forall +=0, x,y€ RY and we€ . Estimate (9.2) immediately yields
(9.1) (after the preliminary smoothing is removed).

R

Compactness of Qf, with IXI < M, means that for any 6 >0 there
is a compact set K, in X = C([0, «); R?) such that
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93) QK ,w)>1-38

for all €e>0, we and |x|{< M. Thus, to prove (8.6) it suffices to
prove

lim [dP(w)| [ dxp(x) J F§)Q5ES, w) -
el & Ixl<M Ks

%4

lxl<M

2
= axe [ FO0,@[ =0
§

or, since g€ L2(R?),

. 2
lim [dP() [ dx| | F&0: g, o)~ [ F0, 0| =

= 0.

Now F({) is a bounded continuous function on X so in particular
Fe C(K;) (the space of bounded continuous functions on the compact
set K,). Finite linear combinations of functions in C(K,) of the form

(9.6)  fi(x(t)) .. fy(x(ty)  (0<t <t,<...<ty <o,

with f].(x) in Cf (R?) form an algebra in C(K s ) that contains the con-
stant functions and separates points. This algebra is thus dense in C(K,)
by the Stone — Weierstrass theorem. It suffices then to prove (9.5) with
F of the form (9.6). But then (9.5) will follow if we can show that for each
T < and for each f(x)€ C~(R?) that decays to zero as |x]| - oo, say,
exponentially fast we have

©.7)  lim sup [ dP(w) [ dxlEZ(Fx0)) — E2F (fxt))|? = 0,
eld 0<t<T Rd

Here we use the fact that u(f,x)=F Q"{f(x(t))} satisfies the heat equation

(9.8) —g-% = %u (>0, w0, x) = f(x))

and has smooth and decaying solution as |x|—> e when f(x) is also
smooth and decaying as |x|— eo.




Let

©9)  ut(tx, w) = S}

This function is a suitable weak solution of the diffusion equation

010 Mo geus (>0, uT0,x 0) = ),

with 32 given by (8.3). Since 3’; is in divergence form we consider
(9.10) in the following manner. ’
Let w#=L1%Q, #,P), H=L*RY #) and H! = HY(R?; )
with the usual inner products (cf. Section 2). On H! which is dense in H
the operator A€ = — £, defines a nonnegative, symmetric bilinear form.
We denote the Friedrichs extension of A also by A€ and note thatitisa

densely defined, selfadjoint nonnegative operator on H. Let A be the op-
erator defined by — £ on H (which is essentially the Laplacian). From

Theorem 3 we know that for each >0
(9.11) (A + @)~ l>A+at

strongly in H, as €4 0. Let T; and T, be, respectively, the semigroup
defined by exp (—A€h) and exp (4t) via the spectral theorem for the
selfadjoint operators A° and A. From the strong resolvent convergence
(9.11) it follows that the semigroups converge

©.12) Ti~T,

strongly in H, as €40, uniformly in finite £ intervals. But (9.12) is
precisely the statement (9.7) which was to be shown. The proof Theorem

5 is complete.
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