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WAVE PROPAGATION IN A ONE-DIMENSIONAL RANDOM MEDIUM*
GEORGE C. PAPANICOLAOUY

Abstract. Wave propagation in a slab of random medium is considered. The index of refraction
is assumed to fluctuate randomly about a mean value, the fluctuations being small. Using a recent
result of Hashminskii we give a description of the statistical characteristics of the reflection and
transmission coefficients.

1. Introduction. We consider propagation of scalar waves through a slab of
random medium. The slab is assumed to be plane stratified and the index of
refraction is taken to be a random function with small fluctuations about a mean
value. Our purpose is to compute the statistical characteristics of the reflection
and transmission coefficients and therefore to characterize the scattering properties
of the slab.

The analysis followed here is based on a result of Hashminskii [1]. In § 2 the
problem under consideration is stated along with an abridged version of Hashmin-
skii’s theorem. In § 3 the theorem is applied and the main results are obtained.
A somewhat similar approach to the problem of scattering by a random medium
was followed by Gertsenshtein and Vasiliev [2], who employed a result of
Karpelevich et al. [3]. Here, instead of discretizing the medium we treat it as a
continuum directly and the random refractive index can have, within certain
limitations, an arbitrary correlation function. By assuming that the fluctuations
in the refractive index are Markovian it is possible to obtain special cases of the
results stated here by using perturbation theory on the relevant Kolmogorov
equation [4]. A discussion of the relation of this problem to wave propagation in
a wave guide with inhomogeneities can be found in [2].

Wave propagation in a random medium has been studied by several investi-
gators [5], [7], and an extensive survey of the literature is included in the latter
reference. In these works and the works to which they refer there is no adequate
information concerning the mean of the square of the magnitude of the reflection
and transmission coefficients. However, these quantities are important in this
problem, for they measure the mean power reflected and transmitted by the slab.
Here we obtain explicit formulas, (3.12) and (3.14), for the mean power reflection
and transmission coefficients.

2. Formulation of the problem. Let v(x) be the time harmonic wave field at
location x with the time factor e "' omitted and assume that the slab occupies
the interval [0, L]. Then v(x) satisfies the equations

1) U, + k*v =0, —0<x<0, L<x< o0,
(22) Voo + K1 + em(x)v =0, O0<x<L,

and at x =0, x = L the field v and its derivative v, are continuous. In (2.2),
m(x) = m(x, o) is a real random function with zero mean and with a € Q, (Q, U, P)
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a probability space, ¢ a small dimensionless parameter characterizing the size of
the fluctuations, k the free space wave number, and L the width of the slab. Clearly
v(x) = v(x, o) isalso a random function. In what follows we suppress the dependence
on o as is customary.

Let Ae™**, L < x < oo, represent a wave incident on the slab from the right
and Be™* the reflected wave in the same space interval. A and B are, for each L,
complex-valued random variables. We may assume that the wave transmitted into
the region — oo < x < 0is of the form e~ **, By definition, the reflection coefficient
R(L) is given by

(2.3) R(L) = B(L)/A(L).

Let us consider L variable and therefore R(L) = R(L, ) a random function. We
shall now derive a stochastic differential equation satisfied by R(L).
From the continuity of v and v, at x = L and the assumed form of the field
in L < x < oo it follows that
Ux(L) . [R(L)eikL - e—ikL]

(24) U(L) - lk[R(L)eikL + e-ikL] :

Here v(x) is the solution of (2.2) with initial conditions at x = 0:

(2.5) vO0) =1, v (0) = —ik.

These conditions follow from the continuity of v and v, at zero and the assumed
form of vin —oo < x < 0. Solving (2.4) for R(L) we obtain

_arikv(L) + v (L) -

(2.6) R(L) =e m, =

Let us now differentiate (2.6) and eliminate v(L) and its derivatives from the
resulting expression by using (2.2) and (2.4). Then we obtain

2.7) d—’;% = s’-'—‘—’%@(e”‘LR(L) +e )2 L >0, RO)=0.

The initial condition in (2.7) follows from (2.5) and (2.6).

Equation (2.7) is the desired stochastic differential equation for the stochastic
process R(L), to which Hashminskii’s theorem will be applied. The statement of
this theorem [1] is rather lengthy, but it will be presented here for completeness
in a form adequate for treating (2.7). It is convenient to separate real and imaginary
parts in (2.7) so that it can be written in system form:

dy/dL = em(L)F(y(L), L),  y(0)=0, i=1,2,
(2.8)
R(L) = y,(L) + iy,(L).
Let us now make the following assumptions about m(L) and F;:

(i) m(L), L = 0, is a real-valued stochastic process on a probability space
(Q, U, P), almost surely bounded and such that

(2.9) E{m(L)} =0,  E{mLmL)} = p(L — L.
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Here E{ - } denotes taking expected values, that is, integration over Q with respect
to the measure P.

(ii) m(L) satisfies the strong mixing condition; that is, there exists a family
Ui,0 < s =t < o, of g-algebras of subsets of Q such that Uie U, Uil < Ui,

s<58,t; =t,and for any t > 0, Be U ; and some B(T){ 0as T — oo,
(2.10) P{B|U,} — P{B}| < A(T).

(iii) The vector function F = {]F;} satisfies for all y and L, ye D = R?, the
condition 2
0°F

Here D is the range of the y variables, C is a positive constant and | - | is the vector
norm.

(iv) The following limits exist uniformly in y and ¢,:

oF
oy

i

@.11) iF|<C,} <c, <C, ij=1,2.

) l T s
(2.12) lim = j f p(s — o)Fi(y,s)F(y,o)dods = a;(y),
T*oo
2 OF;
(2.13) lim — f f (s — o) A(y S)F(y,0)dads = byy), i,j=1,2.
T—- o tovito J 16

We can now state Hashminskii’s theorem:

Let m(L) and F(y, L) satisfy (1)~(iv) and suppose that the function B(T) in (2.10)
is such that

(2.14) T°BT)L0 as T - oo.

Let y©(L) be the solution of (2.8) and t, be an arbitrary positive number. Then on the
interval 0 < e2L < 1, the process y®(e*L) converges weakly as ¢ — 0, L — oo,
¢2L = const., to a Markov process y°(e*L) which is continuous with probability 1
and whose infinitesimal generator A is given by

2 2

a 2
(2.15) A=Y a(y)) — 557, ;

Lj=1 J

3. The mean of the power reflection coefficient. In this section we shall verify
that Hashminskii’s theorem applies to (2.7) and then proceed to use it. As usual,
we shall interpret this theorem to mean that, for ¢ sufficiently small, the statistics
of y® and those of y© are approximately the same.

Let us assume that the random fluctuations m(L) of the refractive index
satisfy conditions (i), (ii) and (2.14) of the previous section. These conditions are
quite reasonable for a model of a random medium. Moreover, it is well known that

(3.1) IR(L) =1, L =0.

From (3.1) it follows that the right-hand side in (2.7) is bounded and hence (2.11)
holds with D defined by

(3.2) D = {(yy,y2¥i + 3 = 1}.



16 GEORGE C. PAPANICOLAOU

Condition (iv) also holds in view of (2.10) and (2.14). Thus all conditions in
Hashminskii’s theorem are satisfied and hence it may be applied to (2.7).
Before proceeding further, let us define new dependent variables u and ¢ by

(3.3) R= g;—iei“’, w1, 0<¢ <o

Variables quite similar to u and ¢ are also used in [2], where, in addition, an
important geometrical interpretation for R(L) is given. Let us substitute (3.3) into
(2.7) and separate real and imaginary parts. This yields the system of equations

(3.4) fii;%l = ekm(L)/u*(L) — Lsin (p(L) + 2kL),  u(0) =1,

(3.5) dol) _ 8km(L)|:-yE)— cos (¢(L) + 2kL) + 1].
dL u*(L) — 1

Now it appears that Hashminskii’s theorem does not apply to (3.4), (3.5) because
(2.11) does not hold. However, it is sufficient that (2.11) hold in some coordinate
representation. The generator (2.15) can be shown to be invariant so that applying
the theorem to (3.4)3.5) is equivalent to applying it to (2.7) and subsequently
using (3.3) in (2.15). Moreover, information about the statistics of the phase ¢
of the reflection coefficient is not of primary importance in the physical problem.
Therefore we shall concentrate on the statistics of |R|, hence of u, which lead to
considerable simplification.

Let us now compute the coefficients a;{(u, ¢), biu,$), i,j = 1,2, of the
generator A4 in (2.15) corresponding to (3.4), (3.5). From (2.12) and (2.13) it follows
that these coefficients do not depend on ¢. Hence we can integrate out the ¢-
dependence in the generator A and restrict attention to the marginal generator A
that involves u only:

62

~ 0
(3.6) A= a“(u)w + bl(“)ﬁ,;‘

Here a,,(u) and b,(u) are easily shown to reduce to

2

k [ee)
a,(u) = ?(u2 - 1) fo p(t) cos 2kt dt,

(3.7)

o0

by(u) = k*u f p(1) cos 2kt dt.

0
Therefore, A*, the adjoint of A4, is given by

K k200

- 0
.8 = s —| (u? — 1)=— -
(3.8) A sau[(u l)au]’ s 3 ), p(t) cos 2kt dt.



WAVE PROPAGATION 17

According to Hashminskii’s theorem and the interpretation given in the
beginning of this section, the transition probability density P(L, u) of u(L) given
u(0) = 1 is, for ¢ small, approximately equal to P(L, u), which is the solution of

oP, 0

= 825~[(u2 - 1)%%], P.(0,u) = é(u — 1).

(39) oL ou

This equation, except for the constant &2s, was derived by entirely different
considerations in [2]. Its solution, also given in [2], can be obtained by using the
Mehler transform [6] and subsequently transforming the result in a manner
analogous to that used in the Poisson summation formula [4]. It is given by

—-xzsL/4 J\ —xz/(4ezsL)
2./ 2n(e*Ls)*? /cosh x — cosh u

Let us use (3.10) to compute approximately the mean of the square of the
magnitude of the reflection coefficient E{|R(L)|*}. From (3.3) it follows that the
approximate value of E{|R(L)|*}, which we will denote by E,{|R(L)|*}, is given by

(3.10) P(L,u) =

(3.11) E(IRW)} = f )

1

u—1
P .
(u n 1) (L, u)du

EATE} |

O 4 4 A A A A J
0 | 2 3 4 5 6 7

FI1G. 1. The approximate value of the mean power transmission coefficient plotted as a function of
e2Ls, where s is defined by (3.8)
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Substituting (3.10) in (3.11) and performing one integration we obtain
2 —x2 dx

cosh (e\/> X)

Concerning the transmission coefﬁcwnt T(L) we can use the well-known
relation

(3.13) IRI>=1—|T]?

to deduce the approximate statistical properties of |T| from those of |R|. In
particular, in view of (3.13) and (3.12), we have

(3.12) EJRL)Z =1 — —= %LJ

—x2
xze ** dx

e~ ¢ 2sL
f J 0 cosh (e</sLx)
In Fig. 1 a graph of (3.14) is shown which was obtained by numerical integration.
The result (3.14) was also obtained in [4].

To obtain the approximate transition density of the modulus of the reflection
coeflicient r = |R| we use the transformation (3.3) in (3.10). Thus

(3.14) E{TWL)*} =

(L 2re —¢e2sL/4 J‘oo xe—x2/(452sL)
r
&
re)°J

dx.
< 2n(e?sL)3?(1 L+r)/(1 = r2) \/coshx — cosh (1 +r?)/(1 —r?))
(3.15)
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