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1. Introduction

The mathematical theory of stochastic differential equations is concerned
almost exclusively with the study of It6 equations and the associated Markov
processes. This theory has found many diverse applications and has become a
powerful tool in the study of diffusion processes (cf. [1], [2], [3], [4]). Never-
theless, many of its aspects are somewhat drastic idealizations of physical proc-
esses. Our aim here is to prove a theorem which shows that a very broad class
of processes defined by stochastic differential equations, not of the It6 type,
converge to diffusion Markov processes, thereby providing a more acceptable
framework for working with such processes. Theorems of this form were
enunciated by Stratonovich [5] and later a mathematical treatment was initiated
by Stratonovich [6] and Khasminskii [7]. A theory for stochastic differential
equations with limited after-effect was also initiated by Gikhman and Skorokhod
[2] but with somewhat different objectives. The theorem we present here is an
improvement on previous attempts (cf. [6], [7], [8]) both in the technical aspects
of the proof as well as regarding its applications. We wish to point out that we
have found the application of this theorem remarkably effective in a variety of
problems (cf. [5], [9], [10], [11], [12], [13]). The reasons for this are discussed
in the remarks following the statement of the theorem in Section 2. Section 3
contains the proof.

2. Formulation and Statement of the Theorem
Let (Q, %#,P) be a probability space and let F:, 0 < 5s=<t=< oo, be a
family of o-algebras contained in % and such that

Fh - Fte

81 sz 2

0==s=t=t4= ©.
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We assume that the ¢-algebras % are mixing relative to P in the following sense :

(2.1) sup sup |P(4]|B)— P(A)|=pE){0 as t1o.
s%OAe.;’b";’:‘

Begy

The monotonically decreasing function p is called the mixing rate. We assume
it satisfies the rate condition :

(2.2) fop”z () ds < ..

Ergodic Markov processes on a compact state space are examples of processes
mixing in the above sense with, in fact, an exponential mixing rate.

We shall denote integration over ) relative to P by E{-}. We also assume
that conditional probabilities relative to %5, 0 < s = o0, have a regular version
so that with probability one we have the representation (cf. [14], p. 354 or [22],
p. 139)

E{.| &} =L~ P (do| ') .

Let R" denote the n-dimensional Euclidean space and [x| the norm of
vectors in R?. The same symbol will be used for absolute values of scalars, and
(x, ) denotes inner product of vectors. Let F(r,x,t, w) be a function from
[0, T] x R* x [0, 00) X Q into R", where T is a fixed positive number.
F is called a random vector field and we assume it satisfies the following con-
ditions (cf. also Remark 4):

(i) F is jointly measurable with respect to its arguments. For fixed 7, x
and t, F(r,x,t, ) is #i measurable as a function of w € Q.

(ii) There is a constant € independent of 7, x, f, and w such that

(2.3) |Fy(r, %, 8, 0)] ZC(1 + [x]),

(2.4) i OF(r,

%, ¢, @) ..
—_—— =, Li=12,--,n.
0%,

Furthermore, there is an integer ¢ = 0 such that

O Fr, %, t, 0

(25) TERE 560 < o1 4 14,
Ox; 0%,
P F(r, %, t, @
FREOXLO) < o 414,
Ox; 0x;, 0x, ikl med -

(26) L, Ryly M= 1,""", 1,

04F,(r, x,t, w) .

— | S C(1 + [«]).

Ox; Ox, 0x; 0x,,
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(iii) There is a constant C as above such that

EMH{(Fy(s + by %,t) — Fy(s, 2,0))"} S Ch(L + |#]) ,

2
2.7) El/z{(E (s + A, x,8) — OF, (s, %, t))} =< Ck.
0x; 0

Xj

Here s and s + % arein [0, T] and C is independent of s and #.
Throughout we adopt the convention that C denotes a constant, not

necessarily the same each time, and usually C will be independent of variable

parameters. The dependence of C on specific items is denoted explicitly as an

argument.
The object of our study is the asymptotic analysis of the stochastic ordinary
differential equations

dx(z, s, x, @)

= eF (%, x(4, s, x, w), t, w) + G (e’t, x(t, s, x, W), t,w)y, t>5,

dt
(2.8) x(s, 5, % @) = x€R".

Here G(r,x,t, ) is a random vector field satisfying the same conditions as
- F, and ¢ is a real parameter in (0, 1]. The usual existence and uniqueness
theory for ordinary differential equations gives us a solution x(¢, s, x, w) of
(2.8) for each w €& which is #! measurable and continuous as a function
of . We have therefore a well defined stochastic process. We are interested in
the behavior of this process as ¢ -0 and ¢— oo with %t remaining fixed.

For this purpose we define scaled variables by
(2.9) T = g%, o = &ls, *®(r, 0, %) = x(; , 52 , x) ,

and rewrite (2.8) in the form

de¥(r, 0, %) _ 1 ® T (@) T
0=0<7=T, £G0,0,%) =x€cR".

Note that we have not displayed dependence on  in (2.9) and (2.10) as is
customary. We shall also write x'?(7, ¢, x) = (1) or #® when convenient.
From (2.9) it follows that x“(7, 0, %) is 7% measurable.

We shall show that the process x® converges weakly to a diffusion Markov
process as ¢ — 0. Because of the factor 1/e in front of F in (2.10), it is clear
that if a limit is to exist as ¢ — 0, the random vector field F must be centered.
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We assume therefore that, for each fixed 7, x and ¢,

2.11) E{F(r,%,t)} =0.

To describe the limiting diffusion process we introduce diffusion and drift
coefficients by the limits (cf. also Remark 9)

(?.12) ”(T,x)—imge +f { ( )FJ.(T, ,82)} ds do,

3F,-(7-, x, 9:)

R . 1 +e ffa n s 82

& (7, x) = lim — > E Fi(r, x, -5)—-——-——— ds do
e

0 e Jr Jr 0%,
(2.13)
1 e .
+ lim ~ E{G(‘r,x, 2)}ds, i=1,2-,n.
g0 € Jr &

The manner in which these limits are taken, along with a rate of approach, is

specified by the following inequalities:

@1 f+f { ( 1, 2)F,~(¢, ,82)}dsda—a (ry %) < eC(1 + |4,
f f > E F(T, :)E—Bf(—ax-é) ds do
@.15)

1 T+e
+ _f E{GJ'(T> > 2); ds — bJ(TJ )
& Jr &

As before the constant C is independent of 7€ [0, T, x € R, ce (0,11 and
i,j=1,2,+-+,n The diffusion and drift coefficients inherit some regularity
properties from F and G. We require however other properties as well; there-
fore we specify them directly below. From the definition (2.12) it follows that
the diffusion matrix (a%(7, x)) is non-negative definite but we do not assume
that it is nondegenerate.

Let C*?(R™) denote the collection of functions on R™ with continuous

< oC(1 4+ |#) -

derivatives up to order 1,2,--:,k for which there exists an integer p = 0
such that

0* v
(2.16) AC) <C + |7, xeR",

8x°1‘1 axgz e ax;n

o; non-negative integers, 0 S oy + -+, =a k.
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Let &, be a differential operator defined on C*?(R"), p = 0, by

(2.17) L. f(x) = i a(o, x) 0f ) + élbj(o, x) %(——x), oel0,T],

4,9=1 Ox; 0x; f ;

and consider the possibly degenerate parabolic final value problem

a————”(‘;“x)+$,u(a,f,x)=o, 0So<r=T,
o
u(r, 7, x) =g(x)> g(x) eck.:p’ k=2, p=0.

We wish to know when this partial differential equation has a classical solution
which is unique and what regularity properties it has for g€ C*?. These facts
are required in our asymptotic analysis in much the same way as similar results
were required by Khinchin in proving diffusion approximations in his well
known monograph [15]. It is possible to avoid using any a priori information
about partial differential equations but we prefer the present method which we
followed in [8] also. The facts we need are provided by the theory of Oleinik (cf.
[16], [17], [18]; appendix) and can be meodified to include the case geC*?
with p = 1. It is also possible to use the Itd theory of stochastic differential
equations as presented in {1}, [2]. For this latter theory it is required
that (a%(r, x)) have a sufficiently smooth symmetric square root but it is not
easy to ascertain in general when this is possible (cf. [18]). We shall state our
requirements here in the Itd context not losing generality in view of the above
remarks (cf. also Remark 8 below).

Let &, be defined by (2.17) and assume the following:

(i) (a¥(r, x)) has a symmetric square root (¢*(r, x)),

(2.18) a“(r, x) = ¥ ¢*(r, x)c™(r, x) .

(i) (¥(7, x)) and (bi(r, x)) satisfy the bounds

(2.19) 9 (m 2 SCA+ s, [P(r, 0] = C(L + [#),
(2.20) M <cC, ‘M <,
0y, - Ox, |-

and there is an integer ¢ = 0 such that
(2.21) ¢(r, x) € C*YRY) ,

(2.22) bi(r, x) € CYY(R") , k=1,
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(iii) Moreover,

(2.23) la¥(7, %) — a®(7 + h, x)| = Ch(1 + |%/%),

(2.24) |b3(7, &) — bi(v + h,x)| £ Ch(1 + |#]) .

We recall here the convention about constants and note the similarity of (2.19)—
(2.24) and (2.3)-(2.7) which is not accidental and explains why we state the
conditions on %, in the 1t6 form.

We are ready to present the main result of this paper.

TuEOREM. Lot x9(7,0,%), 020 X717, x€R", £€(0,1], be the
process defined by (2.10). Let all hypotheses staied above (i.e., (2.1)-(2.7), (2.11)—
(2.15) and (2.18)—(2.24)) hold. Then the processes x° converge weakly as & — 0
to a diffusion Markov process x'© with infinitesimal generator £ defined by (2.17).
Furthermore, let f(x) € C*?(R™), p = 0, and let u(o, 7, x) denote the solution of

ou(o, 1, x)
(2.25) do

u(r, 7, %) =f (%) -

Then there exisis.an integer p = p + 4 such that

T

A

+ ZLulo,7,x) =0, 0=o=T

2

(2.26) |E{f (+9(r, 0, %)) | ZE} — ulo, 7, H)] S C(AT) - (1 + [4]?) .

Here C(f, T') denotes a constant which depends on f and its derivatives up
to order 4, on T' and p (and other quantities) but is independent of x and e.
When ¢ in (2.5), (2.6) and in (2.21), (2.22) is zero, then f = p + 4.

Before continuing with the proof of this theorem in Section 3 we enumerate
several remarks that may be helpful for the theory as well as the application.

Remark 1. The result (2.26) is not implied by weak convergence. In fact
we use it here to prove weak convergence. As a consequence of (2.26), moments
of any order of x(7, 0,%) converge to the corresponding moments of the
diffusion process x'% (7, o, x). This is quite useful in applications (cf. [9], [10],
[12], [18]). The O(e) error estimate on the right side of (2.20) is the best
possible as in [8].

Remark 2. The theorem puts no restrictions of nondegeneracy at all on the
operator %, and, in view of (2.3)~(2.7), linear equations are included. There-
fore, we can apply it to linear matrix stochastic differential equations and proc-
esses on matrix Lie groups. Specifically we can apply the present theorem to
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recover Theorem 3 of [8] with the additional result of weak convergence and
the very useful estimate (2.26) with p =1 (cf. [10] for an interesting appli-
cation of this). Let X denote the linear space of n X n real matrices with
inner product (4, B) = tr(4 BY) and norm |4| = \/(A, 4). Consider the X-
valued stochastic process Y (i, s, Z, w) satisfying the stochastic differential
equation

dY (s, Z, w) -
— 222 = AY (4,5, 2, 0) + M, 0) Y (i, s, Z, 0), >,
220) > ( ) + sbl(t, ) ¥( )

Y(is,8,Z,0) =Zec X.

Here A4 is a fixed 7 X n matrix and M(t, w) is an 7z X n matrix-valued
process such that

(2.28) ‘ E{M(t,)}=0.
Furthermore, we assume that there is a ¢ independent of ¢ and @ such that
(2.29) |4 M (1, w)edt| < C, weQ,t=0.

We denote exponentials of matrices by ¢?. The process M(z, ) is assumed
Ft measurable for each ¢ and the o-algebras Z¢ satisfy all hypotheses in the

beginning of the section. We introduce scaled variables by (2.9) and set (omit
the ’s)

(2:30) Y (r, 0,Z) = 41 ¥ (1 G Z) ol
£

&2
Clearly, ¥ satisfies the linear matrix stochastic equation

: dY(r, 0, Z)
(2.31) dr
' 0=Zo<r=T, Y¥0,0,Z)=Z.

1 -
. e—Ar/EzM T gAT/gz Y(e)(T’ 6, Z),
& &

It is convenient to define the matrix-valued process M(¢) by

(2.32) M(t) = e M(t)e*,

which simplifies the notation below.

We can now apply the above theorem to study the asymptotic behavior of
the processes ¥ as ¢ >0,0 S ¢ <7 < T and ZeX. Let C*?(X) denote
the space of k-times continuously differentiable functions on X satisfying (2.16).
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If Z=(Z;), then we denote by 0, the matrix of differential operators
(0/0Z;;). Assume now that for fe C*?(X) the limit

(2.33)  Zf(Z) = lim tl f o f “E{(M(0)Z, 8)(M(5)Z, 35) f(Z)} do ds

t—= 00

exists uniformly in £, and is approached faster than (Cft)(1 + |Z]|**?), 1 co.
Then, according to the theorem, the processes Y'?(r, 6, Z) converge weakly
as £¢— 0 to the time-homogeneous diffusion process with infinitesimal generator
&Z given by (2.33). Moreover, moments of any order go to the corresponding
moments of the limiting Markov process (i.e., (2.26) is valid) and the error in
the approximation is O(g).

The differential operator % is usually degenerate and in the case of matrix
groups it acts tangentially on the group manifold which is thought of as a sub-
manifold in X. Thus the probability distribution will be entirely concentrated

on the group manifold. In the applications it is important to select coordinate

systems in X adapted to the group manifold so that redundant variables are

eliminated (cf. for example [8], [9], [10], [11]).
Moments of the Y® process can be computed easily by using (2.26). By
direct computation we find that, for f(Z) = Z,

(M(0)Z, 95) (M(5)Z, 05)Z = M(s)M(0)Z
and, for f(Z2) =2 ® Z,

(M(0)Z, 05) (M(5)Z,05) - Z® Z

2.34
(234 = (M) QI +IQM(®) (M) RI+IQMO)NZRZ.

Let us denote by A;€X and A, € X ® X the limits

Ay = lim 1 f t"“f E{M(s)M(0)} do ds,
55) - tlo & t:: . 2
Ay = IiTmtl ° j E{(M(s) ® I + 1® M(s))(M(o) ® I+ I ® M(0))} do ds .
tleo i 2

Then, from (2.35), (2.34) and (2.33), we obtain
(2.36) KXZ=MNTZ, FZRZ=MNZRZ.

Similar formulas can easily be obtained for higher-order tensor products. The
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élgebraic identities (2.36) and the limit theorem lead to the conclusion that

hfn E{Y(S)(T, o, Z) lg{g/gz} - eA1(T—¢7)Z’
&v0

(237) Lim E{y(a)(,r’ g, Z) ® Y(e)(,r, v, Z) Ig-g/ﬁ} — gAz(T_G)Z®Z.

elo

The result (2.37) was also obtained in [19] by a formal perturbation argument.
A group-theoretic version is contained in Theorem 4 of [8] but the fact that
moments converge to moments was not proved there. The role played by 4
in (2.31) is exploited in [9], [107, [117], [12].

Remark 3. The theorem of Khasminskii [7] differs from the present one in
the following respects. Linear problems are ruled out in this theorem since,
instead of (2.3), F and G are uniformly bounded in x. The vector fields F
and G are also assumed independent of 7. The estimate (2.26) holds only
insofar as it is implied by the fourth moment estimate used to show weak con-
vergence (i.e., for low p = 0) and the right side of (2.26) is o(1) instead of
O(e).

Remark 4. Hypotheses (2.3) and (2.4) seem excessively stringent, that is,
the constant ¢ should have been allowed to depend on @ and ¢ and C(w, #)
should perhaps have uniformly bounded (in ¢) moments of sufficiently high
order. We have not succeeded in weakening (2.3) and (2.4). It is interesting
to note however that in [2], Part IT, Chapter 1, a theory of stochastic equations
with limited after-effect is developed in which conditions analogous to (2.3)
and (2.4) are imposed, i.e., stringent uniform bounds relative to @ are required.
The theory of [2] can nevertheless handle stochastic equations for diffusions as
well as jump Markov processes. It seems to us that (2.8) or (2.10) as formulated
here fit many physical problems rather well and in particular conditions such
as (2.3) do not affect the applicability of the results seriously.

Remark 5. An important aspect of the limit theorem is that the random
vector fields F(r, x,t) and G(r,x,t) are not assumed to be stationary processes
for fixed = and x. Indeed, (2.32) shows that, for example, even if M(¢) were
stationary, A(¢) would not be. Instead of stationarity, (2.12) and (2.13) are
assumed to hold uniformly in 7 € [0, T], or the limit in (2.33) is assumed to be
independent of f, uniformly for # = 0. We are thus performing an averaging,
as in Bogolyubov’s method of averaging [20] for deterministic ordinary dif-
ferential equations, simultaneously with the diffusion Markov process approxi-
mation. This is the reason why the theorem, when applicable, is so effective
(cf. [5], [9]-[13]). Ifweset F = 0 in (2.10) and assume that G is deterministic,
then the above theorem reduces to the method of averaging for deterministic
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equations (cf. [20]). Other aspects of the averaging principle for stochastic
equations along with references to earlier work of Bogolyubov, Krylov
and Gikhman can be found in Section 14, Part IT of [2].

Remark 6. The present theorem and its proof can be formulated in terms of
spaces and operators as in [8]. We do not do this here because it would require
a somewhat elaborate asbstract framework which seems of little use beyond
problem (2.10). Our proof however, especially Lemmas 5-8, is almost identical
with the proof of Theorem 1 in [8]. An interesting survey of operator methods
for stochastic equations and other applications is given by Hersh [21] along
with many references to related work.

Remark 7. Discrete time problems, i.e., random difference equations or, in
the case of the example in Remark 2, products of random matrices are included
in the present theorem. One simply has to take the random fields F and &
piecewise constant in some appropriate way and, usually, statistically inde-
pendent in different segments. In this kind of setup, proofs become consider-

ably simpler and many hypotheses introduced above are superfluous.

Remark 8. Let F and G in (2.10) have the form

N
F( %, 1) = S F¥(r, 2)1, (—) ,
. & =1 g%

(2.38) ' H=1,2,,n,
Gi(T: s Ié) = G~i(7’: x) .
€

Here F*(r,x) and G(r,x), k=1,---, N, are deterministic vector fields
satisfying (2.3)-(2.6) and n,(t) = n(t, @) are stationary zero-mean processes,
F? measurable and bounded. The o-algebras &; satisfy the mixing
hypothesis stated at the beginning of this section. We define the noise intensity
matrix (vg) by

Yl =Lkaz(5) ds, Ry (s) = E{n(s + t)m(t)} >

ki=1,2-,N.

(2.39)

In view of (2.2) the integral in (2.39) converges.
We compute now the diffusion and drift coefficients defined by (2.12) and
(2.13) when F and G are given by (2.38):

3

N
(240) d(r, %) = X yuFlir, ) Fi(r, %),

k,1=1

N n i T, X
QA1) F(n) =3 3P0 A

k,0=1¢=1 X5

éj(r,x), ,j=1,2,-,n.
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According to our theorem, the solution process x(r) of the system of stochastic
differential equations

dx'® (7)

(2.42) -

N
= Gl 45 + 3, 40 o (5

E=1 e \e
converges weakly to a diffusion Markov process with diffusion and drift coef-
ficients given by (2.40) and (2.41). Furthermore, moments of any order con-
verge to the corresponding moments of the diffusion process i.e., (2.26) holds.
This result gives a physically acceptable interpretation of solutions to stochastic
equations with white noise coefficients. Indeed, the processes 7 (r) =
(1/e)m(r/€?), k =1, -+, N, converge to Gaussian white noise by the central
limit theorem. It is actually more appropriate to consider integrals of 7 (r)
which tend to Brownian motion. Note however that the solutions x¥(7) tend
to a limit that differs from that of the It6 theory because of the differentiated
terms that appear in (2.41). Note further the formal similarity of the white
noise approximations 77,(05)(7-) to approximations of delta functions by integrable
functions.

The problem of analyzing the limit as & —0 in (2.42) has received con-
siderable attention (cf. [6], [24], and references therein). In many applications
it is the averaging, as we pointed out in Remark 5, that is the principal reason
for the effectiveness of the theorem. More specifically, suppose that instead of
(2.42) we have the system

dx'® (1)
dr

N
(2.43) = 6(n 50, 5) + 37 (n ), %) om(3)
£ B=1 e)e T \e
where F‘k(r, x,t) and C(T, x,t) are deterministic vector fields satisfying
(2.3)-(2.7). For the asymptotic analysis of (2.43) one needs the full strength of
the present theorem and (2.12), (2.13) cannot be significantly simplified. It

may be possible to assume, however, that there exist two parameters g and
& such that ¢ « & andin (2.43) we have

G~—>G~(7,x,12), F—»F(T,x 7'),

> 2
2

1 T 1 T
TR\ ) T T el S
e \g & \&

Then we may apply the theorem first with respect to ¢, , in a manner similar
to (2.42), and subsequently use the method of averaging to the diffusion Markov
process relative to ¢, (cf. [2]). This yields a result that is different from the case
€ ~ & to which our theorem applies (cf. the example in Remark 2). Since
the separation of scales & and g, described above does not lead to anything
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simpler and since our theorem covers the full range & ~ &, , the separation
of scales approach is clearly less useful. From the physical point of view, in
examples such as the one in Remark 2, one of the most interesting features
emerging in the limit is the way the stochastic fluctuations and the deterministic
rapid variations interact. This is suppressed in the separation of scales approach.

The symmetric part of the noise intensity matrix (y,) in (2.39), which
enters in the diffusion coefficient matrix in (2.40), is non-negative definite since
it is a power spectrum matrix. Therefore it has a non-negative symmetric square
root. From (2.40) and this observation it follows that (2.18) is automatically
satisfied for the system (2.42). This is also the case in many other applications.
Furthermore, for (2.42) the conditions (2.19)-(2.21) are also satisfied auto-
matically and (2.7) is unnecessary. '

3. Proof of the Theorem

The proof is divided into several steps, some of which are stated as lemmas.
To simplify the notation we assume without loss of generality that G in (2.10)
is identically zero. The difficulty of the theorem is due to F. The first lemma is
well known but we include it here for completeness. It is used frequently in the
sequel. Lemma 3 is an important estimate in the proof. Lemma 4 summarizes
some results about (2.25) which are needed. Lemmas 5-8 are almost a step by
step adaptation to the present context of the proof of Theorem 1 in [8]. That
proof should be consulted for motivation if necessary. The fourth moment
condition for weak compactness which we use here is well known (cf. [22],
p. 450).

LemMa 1. Let F(w, ') be a function on Q X Q such that, for fixed o,

F(-, o) is Fg, measurable and, for fixed w, F(w,) is Fy measurable and
|F(w, )| £ ¢(w'). Let Ft and P satisfy the hypotheses of Section 2 and set

Fw) = E(F(, ) = | Flo,0) P(dw).
Then
(3.1) IB(B(, ) | F8 — F)] S 20(0)$(0) -
Proof: We have

|E{F(, o) | 773} — Flo)| = U F(w, ') [P,(do | o) = P<dw>]\
(3.2) .

= U F(aw, o")u,(do | w')l .
o
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Here pyd|o’) = P4 l ') — P(4) is a signed measure and, from (2.1) and
the Hahn decomposition theorem, its variation |u,| (4 | ') satisfies

(3.3) P lul (4] o) =2p0).

su
AeF 2
This estimate applied to (3.2) together with the hypothesis |F(w, ') < (')
completes the proof of (3.1).
We state without proof (cf. [23], p. 222) a related estimate which we use in
Lemma 6.

If [F(o, o)l S po)$(@) and E($} < o, E? <o with 1p+
/g =1, p,g > 1, then

(3.4) |E{F} — E{F}| = 2pY7(t) EVP{$?}EVe{y?).

We rewrite (2.10) as an integral equation:

(3.5) ¥z, o, x) = x 4+ lf F(s, (s, o, x), iz) ds.
&€ Jo &
We have the following simple estimates.
LeMma 2. For 0 =7 — 0 Z ¢,

0x'9(r, 0, x)

O0x
=C( + |+ .

[¥9(r, 0, 2)| = C(1 + |x]), =C,

3.6
(3:6) % (7, g, x)

0x*

Proof: First we recall the convention about constants stated in Section 2
and write 9/0x for any first partial and 92/9x% for any second partial deriv-
ative. The estimates (3.6) follow from Gronwall’s inequality applied to (3.5)
after using (2.3), (2.4) and (2.5).

We come now to a basic lemma in our proof.
Lemva 3. For any integer p =1 and 0 S 6 =+ 5 T,
(3.7) E{#(r, 0, 2)[?| #§"} S C(1 + 1417) ,
where the constant C' is independent of e, T and o but depends on T and p.

Proof: We consider first the case when p is an even integer, say 2p.
Divide the interval [o, 7] into segments of length & and assume with no loss of
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generality that ¢ takes on values for which m = (7 — ¢)/e is an integer going
to 400 as ¢ goes to 0.
From (3.5) we deduce by differentiation and integration that the following

identity holds:
Ix(a) (r, 0, x)lzp

(3.8) 9 [ s
= |x|** 4 —f (F(s, (s, 0, x), ;), (s, o, x)) |x® (s, &, %) 27 ds .
€ Ja &€

Using the decomposition of the interval [0, 7] we rewrite (3.8), with slightly
simplified notation, in the form

(3.9)
Ix(s)(T)lzp — lezp + Q_P mz_l d+(k+l)s(F(J x(e) (S) _S_) x(s)(s)) Ix(e)(s)lz(zz—l) ds
- > LY .
€ k=0 Jo+tke &

To simplify the notation further we write

2
oy =0+ke, 2 =ux0,0,%), F,=FH,

1) 1P = [ (F(s 0. 5), 20 ) WO0r s,

For I{”(x) we have the simple estimate

(3.11) |15 ()] < eC(1 + |4*) -
Here we use (2.3) and the local estimate (3.6) of Lemma 2. In the notation
(3.10) and in view of (3.11), (3.9) yields

2 m—1
(3.12) E{xZ12? | F,} < C(L + |47) + —P 2 [E{I (x) | F o}l -
k=

We wish to show that

[E{IS(x) | F o}l S &0 + E{lx2," | F)),

3.13
(3.13) k=1,2-, m—1.
From this estimate and (3.12) the desired result (3.7) follows immediately by
the discrete time version of Gronwall’s inequality (cf. [2], p.221). We pro-
ceed therefore to prove (3.13).
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"The following identities are verified by direct computation:

() = 2 4 - f F(a, %9 (o), %) do
Ty &

(3.14)
1
= xn0 + - (),
&
,x(a)<s)|2(p—1)
(3 ) — [ ](:_)1]2(73—1) + 2([’ )f (F(O‘, x(S)(O‘),%‘), x(a)(o,))lx(a)(g)lz(p—z)do,,
& ak—-l &
F(s, x(‘)(s), —Sé)
) &
(3.16) = F(f #, Sz) +lfs a_F(S, x“)(ff),iz)F(a, x“’(a),%) do
& Eda, | ox & £

EF(sz(ce—)l’“;)"{' “Mpe1(8)s O 1 SS= 04y, k=120, m—1

In (3.16), 0F/0x denotes the matrix of derivatives of F with respect to x. We
msert (3. 14) (3.16) into (3.10) and rearrange. This yields

R Trs1 R s R 1 e
19 = [(#(s2. ) #) 2 a2
Ty

+ l(p( N ) £ 1(s>) = (a5, sk_1<s>>]

(3.17) ¢
@ 2w-v , 200 —1)
X |:l X + .
xJ‘s (F(G’ x(s)(o.)’ %), x(s)(o.)) lx(a)(a)lzm—z) do.:l ds .
Try &

There are 8 terms in (3.17) that must be estimated. We shall estimate 2
typical terms in detail. The others are estimated in the same manner. In the
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following we use Lemma 1, Lemma 2, (2.2), (2.3) and (2.11):

’EU‘ k+1(F(s, x,(f_)l s s;;), x,(ﬁl) |x(t21|2(p—1) ds 570}
%k
Tkl @ S\ @ &) 12(p—
(3.18) = E{J;k E{(F(x, Xt s 82), xke_l) 37,0_1} ds |2 2o 3‘70}
1
< ep( )00 + BG4 | 22
§820<1+E{lx7(ﬁ112p| 0}): k=1,2,---,m—1.

In the last inequality we use (2.2) and the monotonicity of p to deduce that
(1/e)p(l/e) is bounded in [0, 1].

Let #,=%y", ¢ £s=<r. We continue by considering the following
relations:

{ f f ( (s x(B)(o') )F(O-’ (e)(g)’sz)’x;ﬁl) x}isll 200~ g acl g7
<E{ f f {( (s’ £9(0), 2) .

(3'19> X F(O‘ x(E)(G), 2), x}(call)
&

=[] A%

<&C(1 + E{|x§:_’112ﬂ |F

.94‘0} |2 do ds

54“0}

) dods- CG(1 + E{lx;(f_)ﬂzplg“‘o})

Here we have used again Lemmas 1 and 2, hypotheses (2.2), (2.3) and (2.11).
The analysis of the other terms in (3.17) proceeds in much the same way as
(3.18) or (3.19). Thus (3.13) follows and the proof of Lemma 3 is complete for
p even. For general p we use Schwarz’ inequality and the even p result:

E{x9(r, 0, x)|? | F5} < BV (x, 0, 5) | F5Y
< CVA(L 4 [#f) 2 < C(1L + |al?) .

We note that the decomposition (3.9) can be avoided which yields a more direct
proof for the lemma.

Before continuing further with the proof of the theorem we summarize in
the following lemma some facts about the solution u(¢, 7, x) of (2.25) which
we shall use in the sequel. As we pointed out before, the statements in Lemma 4
are seen to be valid without (2.18), by using Oleinik’s theory (cf. [16], [17],
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[18]). With (2.18) the results can be derived by using the It calculus (cf. [17,[2]).

Lemma 4. Let (2.18)-(2.22) hold and let % (r, o, %) be the diffusion Markoo
process with infinitesimal generator £, given by (2.17). Then the partial differential
equatin (2.25) has a unique classical solution for f(x) eC*? 2 <k =4, p=0,
and there is a p = p + 4 such that u(o, 7, %) €C¥?

Following the convention for the constants C we shall not be precise with
values of p also.

Lemmas 5-8 which follow deal with (2.26). Evidently, (2.26) implies that
the finite-dimensional distributions of #® converge to the finite-dimensional
distributions of the diffusion Markov process x® with infinitesimal generator
Z, given by (2.17). The processes #*(r, ¢, x) are continuous. Thus in order
to show weak convergence of x® to #(9 it is sufficient to show that the family
&' is weakly compact. After Lemma 8 we shall employ a slightly improved version
of (2.26), along with some additional calculations, to show weak compactness.

As in Lemma 3, we fix ¢ and 7 in [0, 7] and decompose the interval
[0, 7] into m = m(e) sections of length e. We also employ the abbreviations
(8.10) for o, 2 and Fy, k=0,1,2,---,m. We fix a function flx) in
C*?(R™), p = 0, and define I (g, 7 ,%) as follows:

(3.20) 190, 7, x) = |E{f (x(r, 0, ) | F&"} — u(o, 7, x)] .

Note that I is an Z§’® measurable random variable. As in Lemma 3, we
shall abbreviate in the sequel F§™ by &, also for variable s, 0 =s =7,
but we continue to denote F§'* by &, adhering to (3.10):

(3.21) a(oy,, 7, %) = E{u(oy, , 7, 90y, 031, %))} .
The following relations can be verified easily:

I(E)(o‘, T, X)

m
ZE{u(O'k 5 Ty x;:)) - u(Gk——l > Ty x;cz—)l) |370}

k=1
m
ékil E{”(O'k 5 Ts x(e)(o'k 5 015 xy(ﬁl)) lﬁo} - E{[‘(O‘k > Ty xz(ca-)l) lgl’vo}

(3.22)

m
+,§1 Efi(oy,, 7, 54) | Fo} — E{u(ony, 7, 50) | Fo}

m
ékzl E{u<°'k s Ty x(e)(ak > Op—1> x;(ca—)l)) I'g;o} - E{ﬁ<6k 5Ty x;ce—)l Ig'vo}

+k2 E{IE{ZZ(% 5Ty x;ie—)1) lg:k—l} - E{“(Gk—l 5Ty xi(ce—)l) ]ﬂk—l}l Ifo} .
—1
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Let

€) B € _
(3.23) ng(x) = |E{u(0y, T, ! )(Q'Ic s Op—1> x;c—)l)) |5T0} — E{a(oy, 7, x;f_)l) Ifo}l ,

L3(x) = la(oy , 7, %) = u(op1, 7, %) -
Note that I{%(x) is an &, measurable random variable.
" Lemma 5. For k=2, ,m we have
(3.24) IS0 SECA + 1517

Here C is independent of k, x, ¢ and w €€ and p Z p is some integer. For
k=1 wehave I{F(x) < Ce(l + |#[7).

Proof: First we rewrite L%(x) using (3.21):

I9(x) =
(3.25)

fu(ak >Ts x(E)(O‘k > Op—1> x(E)(Gk—l s 05 %, w)> w))Palaz(dw | 60")
—qu(o‘k o7y X0y, , Oy » X2 (04 » 0, %, @), ©)) P(dw) P, 2 (de’ | ")

Dependence of L%(x) on o” will not be indicated explicitly. Moreover, since
. 2 . . 2
X9(e,_y, 0, %) is F. Z’;;gl/  measurable and £'¥(0,, 0y_y, %) is 3‘7;'7;1 ®/2 TOEAsur-

able, we may rewrite (3.25) further as follows:

Iisl)c(x) = ‘ffu(gk 5 Ts x(a)(ak s Op—1> x(e)(ak—l , 0 %, @), @)

(3.26)
X [P, o(do| o) — P(dw)]Pye(do’ | o).

We wish to apply Lemma 1 but we note that this would be unproductive in
(3.26) since there is no gap between the o-algebras of %0y, 041, %) and
(0, , 0, %). We must therefore rewrite (3.26) in a more convenient form.
As pointed out at the beginning of Section 3, motivation for the identity that
follows is provided by equation (2.24) of [8]. Here we shall omit derivations
and simply write the desired result which can be verified directly.

To simplify the notation we denote partial derivatives by a comma followed
by a subscript, employ the summation convention and set g®(x) = u(oy, 7, %).
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" From (3.14) and (3.16) we have

O] O I L R LS CT)

X 250y, 8, %, ©) * [Py2(dw | 0") — P(dw)] dt‘

1 [ [ $
_2- }71 ) x(a)(53 05 X, wl)) s w’
& Ja o1 &

t
X [Fi.i(t’ x(e)(y’ 0, %, @'), 3 0.))
&

(3-27) x g8 (x(oy, 1, #7(s, 0, %, @), @))% (03, &, £V (5, 0 %, @), @)

4+ F, (t x“)(y, G, %, @ )’ 2’ w)g(k)(x(s)(o,k’ £, x(E)(s, o, %, Ct)l), w))

X x(S)(ak L8, 595, 0, %, '), ®) - 20y, 1, x("’)(,v, g, %, ), w)

4
+ F; (t, s, 0, %, 00'), =, w)gff)(x(a)(ak Lt 595, 0, x, ), ©))
£

X )(vazl(oik:t x (5: g, X, CO) w)}

X [Pye(do | @) — P(dw)]P,a(de | o) de ds|.

Note that the second term on the right side of (3.27) is equal to zero when
k=1

In (3.27) we have effected the desired gap because functions of w are
s gap
F ‘Z/’cgef measurable and functions of o' are F:% measurable, where o <

s < 0y =t = 0. We can now apply Lemma 1. For the first term on the
rlght side of (3. 27) we use Lemmas 1, 2, 4, (2.2) and (2.4) and obtain

4
(z 5% ) dB (5 (0 s 1, 7 @) (0 £, 5, )

0'7"1

(3.28) X [Py2(do | @) — P(dw)] dt

20 LR ()4 ) SECH+ ), k=2
& &



660 G. C. PAPANICOLAOU AND W. KOHLER

The term corresponding to £ =1 can be shown to be at most Ce(l + [#/7).
Here we have also used the monotonicity of p and the fact that (1/e)p%2(1/e)
is uniformly bounded for &€ [0, 1]. Note that Lemma 3 is not used in (3.28)
and § = p is some integer.

Let I{%(x) denote the second integral in (3.27). By using Lemmas 1, 2, 4,
(2.2), (2.3) and (2.4), we obtain, for some § = p,

7(g) 1 k-1 [k t— v {g) IANY ’ "
18 =L p(552) deds o1 + 15965, 0, % @) 7) Byyodar | )
& Jo Or_1 €

kz2.

The ¢, s integral, with the factor 1/e? included, is estimated in (2.28)—(2.30)
of [8] and is 0(e?). On using that estimate and Lemma 3 we obtain

(329) Ifx) S8+ |47, Ez2.

This last inequality and (3.28) yield (3.24). The proof of Lemma 5 is complete.
We proceed now with the estimation of I{%(x) in (8.23).

Lemma 6. There is a constani C  independent of k,x, & and weQ and a
b= p such that :

(3.30) I (x) S £C(1 + |#P) .

Proof: 'The proof of (3.30) is a minor modification of the argument be-
ginning with (2.33) in [8]. Here we must account for the time inhomogeneity
of the limiting diffusion process. First we rewrite I§%(x) using (3.21):

oy B0 = | [ 900, 005 0) P(0) = aleya )

= IE{g(k)(x(S)(Gk > Op—1 x))} - u(o'k—l s T x)l .

We use the abbreviation g®(x) = u(oy, 7, ). Next we iterate the integrated
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form of (2.25) once, a legitimate procedure in view of Lemma 4, and obtain

3.32) u(0yy,7 %) =g (x) + k &L, g% (x) do + o kgagsu 57, %) dsdo .
%
(4 G Vo

k—1

Thus, by Lemma 4 thereis a § = p such that

Wopy, T, %) — gP(x) — | L, g™ (x) do| < E2C(1 + |27 .

Tr—1

(3.33)

We shall show in Lemmas 7 and 8 that there is a j = p such that we have,
along with (3.33), the estimate

’E{g(m(x(e)(gk 5 O s x))} - g(k)(x)

TN e e
oo 3plon )]

Now we use (3.33) and (3.34) in (3.31) to obtain

CR [ R A e e o

_ f ™ d(g, %) dail ®) ()

B oz fon

- f " b0, ) da}gf’;’m

g1

do ds < EC(1 + |47).

(3.35)

+ &2C(1 + |4)7) .

To complete the proof of Lemma 6, assuming (3.34) for the moment, it re-
mains to estimate the first two terms on the right side of (3.35). We shall only
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estimate the first term since the second is treated in the same way:

!‘_ Oy s E F g F s o i )
82 i O x’gz il x,"z' dO'd-Y"— a (G,x) do]g,ii(x)
Op—1 YOk-1 2 o1
1 jak fs [ { ( - ) ( :
2 E ‘FL T, %, F,; s Xy o
82 Gpe1 VOE—1 & i\’ 82) }
g . Ky
- E{Fz (O'k—l > %, —5) F; (%-1 5 % —2)}] do ds
€ &

_rk [aij(% x) — aij(o'k—1 ,%)] do

(-5

=C+ lxlf’){sup

- sup
]

1 4% s i o s i
= E{F oy, %—5 ) F; crk_l,x,—z) dadx—ea’(ak_l,x)}
& Jop_y Yop_a & &

a s
%J’ % J [E{(Fi(o', x,%)
&  Jap_y Yo &

o s

e Z)rled)

+ E{Fi(o‘k_l,x,%) (Fj(s, x,iz) - F,-(o‘k_l,x,%))}] do ds
& € €

< e2C(1 4 [57*%) + C(1 + |#17)

(L Ao

<&C(1 + [#17) - (Recall the convention about f.)

(3.36) + sup
2,9

<0 +1ai9)|sup

+erC(l+ 1x|2)}

In the next to the last inequality in (3.36), we have used (3.4) with p = ¢ =3,
(2.7) (and earlier (2.23)) and, in the last inequality, (2.2). From (3.36) and .
(3.35) it follows that the proof of Lemma 6 is complete, assuming the validity
of (3.34).
We proceed therefore with the proof of (3.34). As for (3.27), the motivation
for what follows comes from Theorem 1 in [8]. It can also be verified by direct
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computation that the following identity holds:

E{g(k) (x(ﬂ)(gk, Ors %)) }

= g(k)(x) + L[ E{F (sl, %, 2)} (k)(x) ds,
L €

+ L f k{ (Sl’ g ;) [Ff(fz’x 8—) "“’(x)] }dsl ds,
5 e 3) [ )

(3.37) ( Fz(%: " 2) e )) ] } ds, ds, ds,

+ 1 fok J‘ fak { ( )
3 S1s X
84 O 1 s ! 2
X (F (52; X5 s:)f S(Fl(sz;, x(e)(‘% 525 x)) i:) d-f4
€ So &€
X (Fy(s?,, x(E)(s4, Sg5 X)), s—:)g(;f)(x)) ) } } dsg ds, ds,
& KRR

The second term on the right side of (3.37) is zero on account of (2.11). After
bringing the first and third terms of the right side to the left side and taking
absolute values it becomes clear, with an interchange of integration, that (3.34)
holds with the help of the following two lemmas. Recall that, by Lemma 4,
g™ (x) is differentiable.

Lemmva 7. There is an integer p = p and a C independent of x, € and k such
that the absolute value of the fourth term on the right side of (3.37) is at most &*CG(1 + |x]7).

Lemma 8. There is an integer f = p and a C independent of x, ¢ and k such
that the absolute value of the last term on the right side of (3.37) s at most €2C(1 + |x|?).

The proofs of these lemmas are almost identical with the proofs of Lemmas
2 and 3 in [8]. Therefore we shall not repeat them here. We note only that
Lemma 3 is not required for either Lemma 7 or Lemma 8 since the estimates
are local, i.e., within an interval [o,_,, ¢,] of length e.

Let us return finally to (3.22). From Lemma 5 and Lemma 6 it follows that
there is a constant C independent of ¢, x and  and an integer § = p such
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that

I (0, 7, x) £ me’C(1 + |x|?)

(3.38) +ECI 4 Bl | F )] + £C(1 + |x17).
k=2

On using Lemma 3 in (3.38) and the fact that me = 7 — ¢, we obtain

(3.39) 190, 7, x) L eTC(1 + |x]7) .

This completes the proof of (2.26). If we have ¢ = 0 in (2.5), (2.6) and (2.21),
(2.22), then it is easy to check that § = p + 4.

It remains to prove that the continuous processes {x'*(r, 0, x), & € (0, 1],
020=7=T, x€R"}, whose finite-dimensional distributions have been
shown to converge to those of the diffusion Markov process x(®, are weakly
compact in the space of continuous trajectories on R". We shall show that for
each compact U < R® the corresponding #*(r, ¢,x), x€ U, ¢€(0,1], 0
0 21 =T, are weakly compact on C([o, T],R*), ¢ fixed in [0, T]. We
take ¢ = 0 without loss in generality.

We wish to show that for any 0 < ¢ £ 7 £ T there is a constant € inde-
dependent of x € U, e € [0, 1], ¢ and 7 &[0, T] such that, for some « > O,

(3.40) E{x®(7,0, x) — 2*(0, 0, 2)|*} < C(r — o).

By a well known theorem (see [22], p. 450) the estimate (3.40) yields weak com-
pactness and hence, by the above remarks, weak convergence. We have

E{|x?(r, 0, z) — x9(a, 0, %)}
(3.41) = E{|x<5)(q-, o, x(e)(o.’ 0, x)) — x(a)(o', 0, x)|4}
= E{E{x°(z, 0, ¥(0, 0, x)) — 2(0, 0, )|*| F3/*}} .

Define I(y) by

(3.42) 1(5) = E{|#”(r, 0, 5) — 3|*| F5) .

For given ¢, 7 and o, we consider the cases (1 — ¢)¥" Z ¢ and (7 — 0)"" < ¢
separately. Suppose first that (7 — 0)%7 = &. We shall obtain the desired
estimate (3.40) with « = % by using a refined version of (3.38).
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Let f(x) = |x — »|* and denote the solution of (2.25), with » regarded
as a parameter, by u(o, 7, #; 3). We have the following inequalities:

1(5) £ |E{#(r, 5, 5) — 5| F5} — E{x Oz, 0, 3) — 5%
+ E{[x(r, 6, y) — 3|%}
(3.43) S |E{x (7, 0,5) — 31| F5} — ulo, 7, 33 )]
+Clr — 0)*(1 + [517) .

Here we have used the well known estimate
Ef|x (7, 0,9) — 3| £ C(r — 0)2 (1 +|y7)

which can be obtained by 1t’s calculus (cf. [2]) or otherwise.

We wish to use (3.38) to estimate the first term on the right side of (3.43),
i.e., to use (3.38) with f(x) = |x — /¢, » regarded as a parameter, and then
set x =y. This is possible except that the term ¢C(1 + ||%) on the right side
of (8.38) is too crude and must be refined. The remaining terms in (3.38) yield
the estimate = C(r — o)¥57(1 +[y|7) (recall that e = (v — 0)%") which is
adequate. By re-examining L% of (3.28), which yielded the crude term in
(3.38), we shall show that, if I'”(g, 7, x; ) denotes the first term on the right
side of (3.43) (which is the same as (3.20) with f(x) = |» — 9|4, then

10,7, 335) S Clr — o)™ (1 + | 37) + C(r — 0)™/7(1 + [I?)

(3.44) )
S CI+DP)(r — o) r.
Inserting (3.44) into (3.41), using Lemma 3 and remembering that xe€ U, a
compact subset of R", the estimate (3.40) follows with « = 3 and under the
hypothesis ¢ < (7 — o)%/7,

We proceed now with the proof of (3.44). The case (r — 0)57 < & will be
examined later. Let [7i(x;5) denote (3.26) with % =1 and with f(x) =
[# — »[*. It follows that

(3.45) If9(y;y) =

fu(a + &1, 590 + ¢, 0, », w); ) [Py2(dw | @) — P(dw)]]-

We have assumed here that 7 — ¢ = e. The intermediate case &”/° =7—0=c¢
will not be treated explicitly since similar considerations apply. Let us denote by
E©® expectation relative to the measure of the limiting Markov process x(® .
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Then we have the following relations:

u(o + &, 7, 29 (c + ¢, 0,3, ©); 9)
= EO{x(r, 0 + &, 8 (0 + &, 0, 3, ®)) — JI*}
< 8EO{|x(r, 0 + &, xP (6 + &, 6, 9, 0)) — #(0 + &, 7, 3, )|"}
(3.46) + 85 (0 + &, 0, 3, ®) — |*
< 8C(r — o —e)*(1 + 5% (0 + &, 0, 9, ®)|?)
+ 89 (c + ¢, 0, 3, ) — y|*
< Clr — 0)¥(1 + [3I?) + 8|+ (c + &, 0,9, @) — )I*.

Here we have used the same property of #(® as employed in (3.43). From
(3.46) and (3.45) we obtain

(9 9) £ Clr — 0)*(1 + 517

(3.47) +C U|x‘8’(a + ¢, 0,9, 0) = J|* [Pe(do | o) — P(dw)] l

and proceed now with the estimation of the last term in this inequality.
Note first that

1£® (0 + &, 0, 9) — oI
(3.48) < 81490 + & 0 + &5, X0 + 7% 0,9) — (0 + &% 0, )*
+ 81+ (0 + 6% 0, 9) — I*.

In order to estimate

f]x“’(o + &% 0, 9, 0) = I [Pye(do | o) — P(dw)],

we use (3.37) with g®(x) = |x — y|*, » regarded as a parameter, and with
Opy = 0, 0, replaced by o + ¢”/®. Inserting this g™ (x) into (3.37) and
setting x =y, all terms on the right side become zero except the last one. Be-
cause of the conditioning relative to & ¢/e* we cannot use Lemma 8 to estimate

the surviving last term but we have the elementary estimate

f|x(£)(a +&7%, 0, 3, ) — )| [Poe(do | ) — P(dw)]

7/5\4
(3.49) gc&ju+wm=%ﬂu+m%

= Clr — o)L+ I

which is what we sought. Here we have used the hypothesis that & = (r — )37,
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We estimate next the integral of the first term on the right side of (3.48).
We rewrite this term in more convenient form by the usual iteration procedures
which yielded (3.27) and (3.37) in the following way (we use the notation of
(3.27) and (3.37)):

Ix(a)(o, +e0+ 87/5, x(e)(o. + 87/5, O‘,})) _ x(e)(a. + 87/5, 6,)))]4

1 [ote s
= —f F(s “No + &% g, y), —2) [#*2(o + & 5, 20 + 7%, 0, 3))
& a+e7l5 )
— (0 + &5, 0, )% 50 + &, 5, #9 (0 + €75, 0, 3)) ds

o+¢&

1 s
= ;f 7/5Fi(s, > ;‘E) lx(E)(O‘ Tes x) - -y,?f ng)l(o' + 8,5, _))) ds
(3.50) o+s

1 ¢7+s7/5 ote ) £
— & —
5[ R R ) 3)

AY
x [F( £ 0, 9), ;) 149(0 + & 5, ¥2(t, 0, ) — #9(, 0, P,

X ¥ + 5, 5, 49(2, o, y))} ds dt.
.1

We integrate now both sides of (3.50) with respect to Pya(do | ") — Pldw).
In a manner entirely analogous to the estimate (3.28) (k = 2) we find that the
single integral in (8.50) is less than or equal to

pel/(e73) C(1 + | 917) = &5 C(1 + [)IP) = (7 — o)W C(1 + |I7).

The double integral in (3.50) is estimated like jl,ka k=2,in (3.29), and we
find that the integral of this term is less than or equal to

01+ 5P) = C(r — o)1 +[y}p) .

Thus (3.44) has been shown to hold when ¢ £ (v — ¢)%7. As we indicated
above this implies that (3.40) holds with « = 1 when & < (r — o).

It remains to show that (3.40) holds, also with « = 1, when (7 — )" < e.
This follows easily by estimating I(y) of (3.42) directly using (3.37). Thus,
we set ¢M(x) = |x —y|*, 04y = 0, 0) = 7, insert the conditioning F5"** and
note that with x = y all terms except the last become zero on the right side of
(3.37). This last term is less than or equal to

(T —s_ 6)40(1 +IP) = (7 = )PC 4 517,

which follows easily (we use the hypothesis (7 — ¢)5/7 < ). From this estimate
for I(y), we deduce (3.40) as before. The proof of the theorem is complete.
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