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Abstract. We present a computational technique for low-frequency electromagnetic imaging in inhomogeneous
media that provides superior three-dimensional resolution over existing techniques. The method
is enabled through large-scale, fast (low-complexity) algorithms that we introduce for simulating
electromagnetic wave propagation. We numerically study the performance of the technique on var-
ious problems including the imaging of a strong finite scatterer located within a thick conductive
box.
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1. Introduction. Imaging through conductive structures embedded in a dielectric medium,
such as air/sea water or air/metal containers, using electromagnetic waves is generally con-
sidered a difficult problem. On one hand, existing high-frequency techniques are theoretically
well understood, provide resolution guarantees, and can be used in combination with efficient
algorithms. On the other hand, high-frequency methods cannot be employed in this context
because high-frequency waves do not penetrate deeply enough within conductive structures
to produce a signal containing sufficient information for imaging purposes. Low-frequency
waves, on the other hand, have a much superior penetrating power. Further, they can propa-
gate through dielectric media, which is a feat not achievable by DC signals (frequency w = 0),
as they are are limited to purely conductive material. Unfortunately, existing low-frequency
techniques exhibit low resolution and incur such a high computational cost that they are of
little practical use.

In this context, we present a novel scheme for performing imaging using low-frequency elec-
tromagnetic waves. Wavelengths under consideration are orders-of-magnitude larger than the
imaging domain, and can be generated with ease using recently developed portable sources [30].

*Received by the editors August 7, 2019; accepted for publication (in revised form) February 13, 2020; published
electronically DATE.
https://doi.org/10.1137 /19M 1279502
Funding: The work of the authors was supported by the Defense Advanced Research Projects Agency (DARPA)
ITA3 (Imaging Through Almost Anything Anywhere) Disruption Opportunity under grant HR001118C0048. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views, the official policy or position of the Department of Defense or the U.S. Government.
Distribution Statement A (Approved for Public Release, Distribution Unlimited).
fCorresponding author. Reservoir Labs, New York, NY 10012 (letourneau@reservoir.com).
tReservoir Labs, New York, NY 10012 (mitchell.harris@mit.edu, langston@reservoir.com).
$Department of Mathematics, Stanford University, Stanford, CA 94305 (papanicolaou@stanford.edu).

1


https://doi.org/10.1137/19M1279502
mailto:letourneau@reservoir.com
mailto:mitchell.harris@mit.edu
mailto:langston@reservoir.com
mailto:papanicolaou@stanford.edu

2 LETOURNEAU, HARRIS, LANGSTON, AND PAPANICOLAOU

The method relies on a novel computational filtering scheme (section 1.4), and its application
at practical scales is made possible only through the use of state-of-the-art fast algorithms
for simulating electromagnetic signals in complex media, which we introduce. It can achieve
significantly higher resolution than existing low-frequency techniques. It also possesses higher
imaging capabilities than high-frequency methods in media involving conductive materials
and is highly versatile.

The paper is structured as follows: the remainder of this section describes existing tech-
niques and gives an overview of our proposed method and contributions. Section 2 details
the physical model as well as the theoretical tools underlying the imaging technique. Section
3 provides information about the fast algorithm used to perform physical simulations. The
imaging algorithm specifics can be found in section 4, and extensive numerical results are
presented in section 5.

1.1. Related material. There are three commonly employed low-frequency electromag-
netic imaging methods related to the one we present here: (1) electrical impedance tomography
(EIT) (also known as electrical resistance tomography [6, 18, 49]), (2) electrical capacitance
tomography (ECT) [14, 45, 52], and (3) magnetic induction tomography (MIT) (also known
as mutual inductance tomography, or electromagnetic tomography [1, 25, 35]).

All aforementioned techniques are based on Maxwell’s equations (7) but rely on differ-
ent sets of modeling assumptions and approximations: EIT (section 1.2.1) is essentially a
zero-frequency approximation (w = 0) that uses potentials and direct current injections to
recover the conductivity (o). ECT, discussed in section 1.2.2, is designed to recover permit-
tivity (e) distributions in insulating materials through capacitance measurements. Finally,
MIT (section 1.2.3) is based on a low-frequency (w = 0) approximation that uses alternating
currents and field measurements to produce an image of low-permittivity materials. Under
appropriate circumstances, e.g., when the skin depth of an inclusion is comparable to its char-
acteristic size [1], it has the ability to identify both permeability (x) and conductivity (o)
perturbations.

The method presented in this paper does not make any such modeling assumptions or
approximations. Rather, our methodology is based on solutions of the complete system of
Maxwell’s equations, and thus it can capture all possible phenomena, can treat complex ma-
terials, and can recover permittivity (¢), conductivity (o), and permeability (u) perturbations.
As noted in Griffiths [25], such considerations of the full electromagnetic wave propagation
problem are of prime importance, especially in biomedical applications. Below, we provide
further details regarding each technique and discuss recent highlights of the literature on each
topic.

1.2. Physical modeling and low-frequency imaging techniques. We now describe the
most common low-frequency imaging techniques, as well as their advantages and their limi-
tations.

1.2.1. Electrical impedance tomography. EIT is used to recover an unknown conduc-
tivity distribution o(z) from boundary measurements. The governing system of equations of
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EIT under the complete electrode model [18, 41]) takes the following form:

—V - (o(xz)Vu(z)) =0, z€Q,

/Ualfds:fk, k=1,...,K,
e ON

o(@) 5=(2) =0 V¥ €0\ UK ex,

u(z) + 2z o(x) gz(w)—vk Vaeece, k=1,... K,

where Q € R? (d = 2, 3) is an open domain with Lipschitz boundary 92, # is the unit normal
vector on 0f, o(z) is the conductivity distribution to be recovered, {e;} are boundary sets
representing the location area of electrodes, u(x) is the electric potential, {zx} are contact
impedances, {V}} are known applied potentials at the boundary, and {Ij} are known currents
applied at the boundary.! The partial differential equation (PDE) system is of an elliptic
nature and can be derived under a quasi-static assumption on the electromagnetic process
[23, 41]. In particular, EIT is restricted by the fact that the medium under consideration
must be conductive. In this sense, it applies to fields such as medical imaging, nondestructive
testing, and geophysical prospecting but leaves out applications such as target localization in
air or underwater imaging in the presence of an air/water interface. EIT has been extensively
studied theoretically and numerically. From a theoretical standpoint, we refer the reader to
Borcea [6] and Uhlmann [49] for a survey of existence, uniqueness, and regularity results. Cui
et al. [14] also provide a good overview of numerical methods for EIT. Numerical imaging
algorithms are also discussed in section 1.3.

1.2.2. Electrical capacitance tomography. ECT [14, 44, 52] is a method used to recover
a permittivity distribution e(x) within an insulator. It is mathematically similar to EIT, with
a governing system of PDEs given by

=V (e(x) Vu(z)) =0, z€Q,

e—s=0Q k=1,... K,
2) e ON

u(z) =0 YV z€ N\ UL e,
ulxz)=Vy Vazece, k=1,... K,
where Q € R? (d = 2,3) is, again, an open domain with Lipschitz boundary 99, e(z) is the
permittivity distribution to be recovered, {e;} are boundary sets representing the location

area of electrodes (sources/receivers), u(x) is the electric potential, {Vj} are known applied
potentials at the boundary, and {Qy} are the total electric charges on the portions {e;} of

!The solution map from boundary potentials to currents on the boundary is generally referred to as the
Dirichlet-to-Neumann map, whereas the map from currents to potentials is called the Neumann-to-Dirichlet
map (NtD).
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the boundary. The PDE system is elliptic like that of EIT. In the absence of a charge density,
it can be derived from Maxwell’s equations under the assumption that the medium is non-
conducting (o = 0) and of sufficiently low permeability relative to the frequency being used
(wp =~ 0). For a recent survey of applications and imaging techniques in ECT, we refer the
reader to Cui et al. [14].

1.2.3. Magnetic induction tomography. MIT relies on the following PDE system, some-
times referred to as the eddy current equations [1, 25, 35, 38]:

(3) V x BE(x) = iwp(x)H(z), z¢cR3,
(4) V x H(z) = o(x)E(x) + J(x), xR,
() E(z) =0 (jz|™"), H(z)=0(|zI""), |z = oo,

where E(z) is the electric field, H(x) is the magnetic field, J(z) are external electric currents,
o(x) is a conductivity distribution, pu(x) is a permeability distribution, and w is the working
angular frequency (time harmonic). This system of PDEs is of a diffusive nature. It can be
obtained as a first-order approximation of Maxwell’s equations at low frequency [32, eq. 2],
or under an assumption of low permittivity relative to frequency (we < 1) [38]. It uses low-
frequency alternating magnetic fields to probe the medium. MIT has found applications in
both the industrial [37] and the biomedical fields [24, 34]. One practical advantage of MIT
is that it does not require direct contact with the medium (as opposed to EIT where such
contact leads to impedance). Further, it is sensitive to both the permeability (u) and the
conductivity (o) of the medium.

1.3. Image reconstruction techniques and algorithms. Despite different underlying mod-
els, the aforementioned imaging methods make use of similar image reconstruction techniques.
Here, we provide a brief description of the most commonly used algorithms.

Output least squares [6, 9, 15, 16, 20, 21, 23] is by far the most commonly employed
technique. It relies on an optimization problem of the form ming, ||F (o) do — gH% + P (d0),
where F is the forward modeling operator, do is the quantity to be imaged, g are the measured
data, and P (+) is a regularizing term. There are various possible choices for P (-). Examples
include (1) P (60) = ||dc||3 (Tikhonov) [23, 47] which can overcome underdeterminess but
leads to resolution loss, (2) P (do) = ||do|1 [20, 21, 23, 29] which promotes sparsity in the
image, and (3) P (00) = |[0c||7rv [10, 23] (total variation) which promotes sparsity and sharp
edges in the image. Output least-squares methods are computationally advantageous thanks
to the existence of efficient algorithms for the application of the various operators involved.
Their main drawback is associated with the nonlinear nature of the inverse problem that can
lead descent schemes towards erroneous images (local minimum).

We underline that the technique presented in this paper belongs to this category. However,
the regularization technique (filtering, section 4) employed is different from those listed above
and, to the authors’ knowledge, completely novel in this context.

Variational methods (EIT and ECT only) [2, 6] are based on variational principles. They
represent powerful tools for the theoretical study of the EIT and ECT problems [19]. How-
ever, from a numerical standpoint, their direct application for image reconstruction has proved
elusive, either due to ill-conditioning, lack of regularity, or lack of uniqueness [6, 31]. Nonethe-
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less, using variational-principles-like equations as constraints on optimization-based inversion
scheme has shown promise [5, 8].

Bayesian inversion methods [17, 18] attempt to recover the posterior distribution of some
material properties given the data g, i.e., P(o|g) = %.
measurement noise models are used, together with a (user-provided) prior distribution. Once
a posterior distribution of the properties has been constructed, its mean is generally taken
as the solution of the inverse problem. Theoretical correctness and stability of the Bayesian
inverse problem have recently been studied in Dunlop and Stuart [18]. Bayesian inverse
methods are both versatile and well suited for uncertainty quantification. However, they are
also computationally expensive, requiring a very large number of simulations in order to reach
convergence (Markov chain Monte Carlo [11]). Further, the inversion process can be highly
sensitive to the choice of prior distribution as shown in Dunlop and Stuart [18].

Monoticity-based methods (EIT and ECT only) [22, 27, 43, 44] take their name from the
fact that if o(x) and 7(z) are two conductivity distributions and if Ay¢p(-) represents the
NtD map [27], then o(z) < 7(x) = Anip(o) = Anip(7). To proceed to the inversion, one
visits every voxel in the image, perturbs it, solves the perturbed problem, and verifies whether
Antp(0) = Anep(7), thus establishing whether the current voxels overlaps with a region of
higher conductivity. If so, the voxel is “included in the image.” Otherwise, one moves to the
next voxel. One advantage of such methods is that they do not require the linearization of
the NtD map (see, e.g., [22, Prop. 2.1]). This avoids issues associated with local minima as
encountered with least-squares methods. However, such techniques are very computationally
intensive; each voxel in the imaging domain requires a numerical simulation plus an eigenvalue
estimation. Further, the method does not provide information about the contrast between
the background and the perturbation.

To do so, a forward and

1.4. Filtering and image reconstruction. Although filtering/beamforming appears to be
a new concept in the context of low-frequency electromagnetic imaging [12], the idea of using
filtering to improve image reconstruction in the context of high-frequency wave-based (e.g.,
acoustic) imaging has been explored in the past [3, 7, 26, 46, 51].

For instance, Haddadin and Ebbini [26], Tanter et al. [46], Aubry et al. [3], and Vignon
et al. [51] have each proposed methods to produce filter/signals such that, when applied
at the transducer array, will generate a predetermined pattern (generally a well-localized
function) on a focal/control plane. The goal of these techniques is to use a pattern that
exhibits better spatio-temporal focusing than traditional techniques (e.g., time reversal) in
complex environments such as reflective, reverberating, and absorbing media. The methods
are designed for high-frequency, high-bandwidth signals, are all singular value decomposition
(SVD) based and produce an “optimal” filter in the least-squares sense. In Tanter et al. [46],
the method has been shown to marginally improve focusing experimentally in the limited
case of a linear transducer array and linear control plane in a homogeneous medium. In
the case of an inhomogeneous medium, however, significant improvements have been shown
under various experimental scenarios of practical interest [3]. The main drawback of the
latter technique for the treatment of inhomogeneous media is the necessity to know the whole
“transfer matrix” (Green’s function). This requires either significant a priori knowledge of
the medium, or invasive measurements. Another, less invasive method, presented in Vignon
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et al. [51] requires only the knowledge of the Green’s function between each transducer array
element and between the focus point and the transducer array elements in a lossless medium.
We note, however, that all the aforementioned methods have a goal of focusing energy at a
particular point within an inhomogeneous medium by emitting high-bandwidth signals, and
not to locate scatterers within such a medium or to image the medium per se using narrow-
bandwidth, low-frequency waves, as intended in this paper.

When it comes to actual imaging, a scheme based on filtering and capable of achieving
better cross-range resolution than is possible using traditional techniques (e.g., Kirchhoff
migration) in the context of a small active and passive linear transducer arrays is presented
by Borcea et al. [7]. The technique is limited to far-field imaging at high frequency in a
homogeneous medium. The authors perform a theoretical and numerical study of the problem
and show that filtering can improve resolution, but it is highly sensitive to the signal-to-noise
ratio (SNR, [7, eq. (24)]. Such sensitivity arises from the use of a least-squares criterion to
design the filter and the subsequent ill-conditioning of the reconstruction process (pseudo-
inverse of an ill-conditioned matrix). Their approach is conceptually similar to ours in the
sense that the goal in designing a filter is to isolate the information in the filtered received
signal to small regions of space while negating the effects of perturbations outside these regions
as much as possible. One major difference, however, is that Borcea et al. [7] attempt to design
a single filter that will improve the refocusing over a large number of locations all at once,
whereas our method uses different filters for each location and then proceeds to a rasterizing
step (section 4).

1.5. Our contributions. This paper’s contributions can be summarized as follows:

e Low-frequency three-dimensional (3D) electromagnetic imaging based on a novel fil-
tering scheme (section 4): we present a new computational 3D imaging framework
for complex electromagnetic media capable of achieving significantly better range and
cross-range resolution than existing techniques at low frequencies.

e Fast algorithms (section 3): we introduce powerful new fast algorithms for computing
the numerical solution of Maxwell’s equations in complex anisotropic media. These
algorithms go much beyond current techniques, and are key in making this type of
imaging possible.

e Quantification of resolution (section 5): we provide a methodology (with numerical
examples) to quantify the achievable spatially dependent resolution given a particular
imaging scenario.

Our proposed method uses the full system of Maxwell’s equations (7) without simplifi-
cations.” In particular, this implies that the resulting fields carry information about all the
properties of the material anisotropic tensors. Our focus in this paper is on imaging conductive
structures in an inhomogeneous background, although the principles underlying the method
generalize to more complex problems. Our imaging scheme uses a special type of filtering and
rasterizing (section 4). At high frequency, the concept is analogous to that of beamforming
found in radar [36] and medical imaging [33, 40] applications. We underline, however, that

2The only assumption is that of linearity of the material properties; we assume that the electric displacement
and magnetic flux are linearly related to the electric field and magnetic field, respectively. This is an extremely
common assumption.
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low-frequency applications are much less analytically tractable than high-frequency techniques
given the absence of closed-form analytical formulas, and that our method, given its compu-
tational nature, addresses theses issues at low-frequency and is completely novel. Indeed,
Chitturi and Nagi [12] describe “low-frequency beamforming” as a promising research direc-
tion, given the significant success it has had at high frequency. Even so, no such techniques
have been devised up to this point to the authors’ knowledge.

With few exceptions [1, 15, 16, 22], all aforementioned references that include numerical
results do so in two dimensions. In great part, this is due to the computational difficulties
associated with performing large electromagnetic simulations (e.g., [26]). Our fast algorithm
overcomes this bottleneck and allows us to study fully 3D problems, and to perform imaging
on practical scales.

Finally, despite the vast array of techniques and algorithms for low-frequency imaging
(section 1.3), there have been very few quantitative investigations of the achievable resolution.?
Indeed, to the authors’ knowledge, there is only one recent paper that addresses the issue,
namely, Harrach and Ullrich [28]. To do so, they use a monotonicity-based technique on a pre-
defined resolution grid. Their method is quite different from the broad-range methodology
presented here and significantly more computationally expensive. Furthermore, it has the
potential to grossly overestimate the resolution given the need for selecting a resolution grid
a priori. Our proposed method is unaffected by these shortcomings.

2. Theoretical background. In this section, we introduce the problem and the notation
we shall use throughout this paper. First, we designate the 3D electric field and magnetic
field by E(z) and H(x), € R3. We also denote the spatially dependent permittivity, con-
ductivity, and permeability tensors by €(x), o(x), and p(x), respectively, and let the constants
€0 and po be the permittivity and permeability of vacuum.? These properties characterize
the medium through which electromagnetic waves propagate (Maxwell’s equations, (7)). We
further restrict our attention to diagonal tensors; i.e.,

(6)
e“(z) 0 0 o%(x) 0 0 " (x) 0 0
@)= 0 @@ o [,e@=]0 @ 0 |,um=|0 we
0 0 €*(x) 0 0 o*(x) 0 0 w*(x)

The special case where all three diagonal components are equal is referred to as the isotropic
case. Such restrictions simplify the analysis and the presentation of the results but do not
reduce the scope of the technique, which can deal with general two-tensor fields. Finally,
w = 2 f represents the angular frequency (Hz) and \ is the wavelength (m), which is assumed
to be much larger than the imaging region throughout the paper (A > 1, low frequency).
Superscripts of the form -*, -¥, -* will be used to denote the Cartesian components of the
quantity under consideration. In particular, one should not confound the superscript and the
argument in the expressions. For instance, EY(x) refers to the y-component of the electric
field evaluated at x € R3. The physical model underlying the proposed technique consists of

3This is similar to the Rayleigh resolution limit familiar in far-field, high-frequency imaging.
Yep = 8.85418781 - 107 2F/m. po = 1.25663706144 - 107° H/m.
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the time-harmonic (single-frequency) version of Maxwell’s equations,

V x H(z) — (iwe(z) + o(z))E(x) = J(x),

(7) V x E(z) 4 iwp(z)H(z) = M(z),

where it is assumed that there is no free charge density; i.e., V- J(x) = 0. Here, J(z) and
M (x) are the electric and magnetic source currents. This system can be rewritten in operator
form (following the notation of Dorn et al. [16]) as

0 Atabyuta) = () 7 ulo) = a(o),

@) vx

© Nslabyote) = (00 T2

) v(0) = a(o)

where a(z) = iwp(z), b(x) = iwe(x) + o(z), and

i@ = ()

Here, = represents the conjugate of a complex number, or the conjugate transpose of a matrix
depending on the context. Aps(a,b) is referred to as the forward Mazwell operator, whereas
A3 (a,b) is referred to as the adjoint Mazwell operator. We shall assume that sources take
the form of point magnetic dipoles, i.e.,

1) 50 = (1600 )

where the sources are listed through the index j € {1,...,J}, {m;} are their respective
dipole moments, and {z;} represent their locations in R3. Note that this assumption is by
no means necessary; most sources can be treated numerically using, for instance, properly
discretized single- and/or double-layer (vector) potentials, corresponding to sums of dipoles
(see, e.g., [13, section 2.2]). With this notation, the field generated by ¢;(z) is denoted u;(z),
and the measured data, denoted dj, correspond to a vector of size 6 - N. If each receiver
location is identified by the index n € {1,..., N}, the entries of d; correspond to the field
u;(x) at location z,, i.e.,’

(11) dj = [uj(w1); uj(za); . uj(zN)],

where ;" denotes vertical concatenation. Under the appropriate circumstances,® the Maxwell
operators map a source distribution ¢(x) to electromagnetic fields u(z), v(z) through the
unique solution of their respective PDE systems (8)—(9). In other words, Ays(a,b)~!q(z)
and [A%,(a,b)] " g(z) are well-defined. Under this setup, the goal of our imaging scheme can

°It is assumed that all six components of the field can be measured and are available for imaging purposes
(6-axis receivers).

5These circumstances are sufficient regularity of the right-hand side and of the coefficients a(x), b(z),
together with the Sommerfeld radiation conditions at infinity.
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be stated as follows: to determine the medium properties a(z) and b(z) from electrical and
magnetic fields measurements {d;} induced by a set of known sources {g;(x)} located outside
of the imaging region. To achieve this goal, our proposed technique relies on three algorithmic
components:
1. Adjoint field method (section 2.1) for the inversion of the data and for gaining theo-
retical insights into the inverse problem.
2. Low-complexity algorithms (O(N log(N)); section 3) for the simulation of electromag-
netic waves through inhomogeneous background media.
3. Filtering and rastering imaging scheme (section 4) to overcome the shortcomings of
the standard adjoint field method and to improve and quantify the resolution.
We note once again that the speed of the aforementioned fast algorithm is critical to our
scheme and constitutes its backbone. Indeed, as mentioned in section 3, fast algorithms allow
us to treat large computational problems at practical scales. In the sections that follow, we
elaborate on each component.

2.1. Adjoint method framework and sensitivity function decomposition. In this section,
we introduce the adjoint field method for solving the inverse problem described earlier in
section 2 (see also [16]). The starting point of the scheme is the residual operator,

dy M1
(12) Rla,b) = | P | = "] =d-p,
dy 5

where d; are the physically measured data generated through the jth source g¢;(x), and
p; = Ay} (a,b) gj(z) corresponds to the numerically simulated measurements obtained us-
ing medium property estimates a(z) and b(x). Under this setup, the adjoint field method can
be described as an output least-squares method (section 1.1) where the goal is to recover some
distributions a*(z) and b*(x) that minimize the squared norm of the residual, i.e.,

(13) (a*(2), b*()) = argming y) p(o) || R(a, )|

over all admissible distributions a(x) and b(z), where || - || represents the L?(R?)-norm. To do
so, one makes use of three ingredients: (1) a linearization of R(a,b) about the current medium
estimate (Fréchet derivative), (2) a least-squares-based Newton—Raphson iteration, and most
importantly (3) a computationally efficient approximation scheme for solving the linear system
arising at each Newton—Raphson step. We begin with a description of the linearization. For
this purpose, details regarding the explicit form of the linearized residual operator and its
adjoint can be found in Theorem 1 below.

Theorem 1 ([16, Theorems 3.1-4.1], linearized operators, multiple sources). For each source
g, 3 =1,...,J, let [p]n be the simulated data vector induced and measured at x, for n =
1,..., N with medium property estimates a(x) and b(x). Further, let Ej(x), H;(x), (), and
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H;(x) be the solutions to the following problems:
(14) At () = a(o),
N
(15) A% (ab) <7ijj((g;))) =3 [di]n 6z — ).

Then the linearized residual operator R'[a,b] and its adjoint R'[a,b]* take the form,

o (@] _ e 5b(x) E;(x)
(16) [R 2, ] <5a(:1:)>L = Aj (a.0) <—5a(fn) Hj(:c)> :
diag (Ege(x) £7(z), BY(x)E!(x), Ei(x) 5;(:@)
_diag (H;(x) He (), HY (x) HY(x), H:(x) H;(x))

I

(17) Rla, b d =

where da(x) and 6b(x) are first-order perturbations about the property fields a(x) and b(z),
1.€.,

(18) R(a + 6a,b+ 6b) = R(a,b) + R'[a,b](6a(x), 6b(z)) + O (H5a(x)||2 + ||5b(33)||2) )

The proof of this theorem is a straightforward generalization of Theorems 3.1 and 4.1 of [16],
to which we refer the reader for further details. The Newton—Raphson step [39] is obtained by
minimizing the linearized residual in the least-squares sense, leading to updates of the form

(19) (gz((i))) = —R'[a,b]" (R'[a,b] R'[a, b]*)‘1 R(a,b) ~ —R'[a,b]" R(a,b).

From a computational standpoint, the crux of the adjoint field scheme in [16] lies in the
approximation

(20) (Rjla,b] Rifa,b]") " =cI

for some constant ¢ > 0, together with a careful selection of the sampling configuration and a
filtering (nulling) of the resulting update in the vicinity of sources/receivers. This simplified
form leads to major advantages in that the updates can now be computed rapidly through
the solution of a single forward Maxwell equation and adjoint problem, without proceeding to
an expensive matrix inversion. However, the quality of this approximation depends on many
parameters including the imaging configuration and the medium properties. In this sense,
it does not always provide satisfying results (see section 5.1), and further refinements are
necessary to overcome these shortcomings. Such refinements are at the core of our approach
and are presented in section 4. A discussion and numerical results are also presented in section

5.
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A A A A A A

Figure 1. Conceptual schematic of low-frequency sensitivity functions between combinations of sources
(green triangles) and receivers (blue squares) in a homogeneous medium (not all receiver/source pairs are
represented). For a fized source/receiver pair, the sensitivity is generally concentrated on the geodesic linking
both, and is largest in magnitude close to the source or receiver (intensity in red). Shapes are not to scale
and only show the typical characteristics of sensitivity functions (poor localization, smoothness, and complex
behavior).

2.2. Sensitivity function decomposition. Another important property of the adjoint field
method is the availability of a decomposition for the linearized residual operator and its adjoint
in terms of sensitivity functions. From an intuitive standpoint, sensitivity functions can be
described as follows: a small perturbation of the medium properties at location z leads to a
change in the data proportional to the sensitivity function at that particular location. For
instance, let the function ¢(z) : R? — R3 correspond to the sensitivity function associated with
a fixed source and receiver, and suppose it is sensitive to perturbations in the gth component
of b(x), i.e., in b?(x). Then, a “small” perturbation A - d(x — xg) of b?(x) at xp will lead
to a change in the measured data at the receiver of the form: A ¢(zp). We underline a few
common characteristics of sensitivity functions at low frequency (some of these features are
highlighted schematically in Figure 1. See also Figure 2):

1. Poor localization: the sensitivity functions are supported over all of R3, with larger
values close to the geodesic between the source and receiver location and largest values
near the source and receiver.

2. Smooth/nonoscillatory: the sensitivity functions exhibit little variations, except close
to the sources and receivers.

3. Complex behavior: the sensitivity functions are complex, vector valued, and exhibit
a nontrivial behavior as a function of the source orientation, relative source/receiver
locations, and background properties.

These characteristics have far-reaching consequences from an imaging perspective. For in-
stance, poor localization and smoothness imply that different perturbations in the properties
may lead to very similar perturbations in the data, leading to an ill-conditioned problem.
Similarly, the complex behavior implies that it is very difficult to resort to theoretical tech-
niques to derive efficient imaging schemes, and that efficient computational methods must be
used. An actual example of a sensitivity function is shown in Figure 2 for a homogeneous
background.
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Figure 2. Real part of sensitivity function of the x-component of the electric field to perturbations §b%(x).

The function plotted is sign(R(¢' ™ (E, b; z))) (60 4+ 10 log(mif(‘i;;ﬁff)’fgg‘);)))). The background is homoge-

neous with a z-dipole source at (0,0,107)m, a z-component receiver at (0,0,42) m, and w = 30 kHz (A = 10
km). From left to right: xzy-plane, xz-plane, and yz-plane. Note the presence of typical sensitivity functions:
poor localization, smoothness, and complex behavior. In practice, there are a total of siz (6) sensitivity functions
per scalar medium property and source/receiver pair, which can all be leveraged for imaging purposes.

The demonstration of the existence of the sensitivity function decomposition as well as
an explicit representation of the sensitivity functions themselves can be found in Dorn et
al. [16, Theorems 5.1 and 5.2]. The results are summarized in Theorem 2 below.

Theorem 2 ([16, Theorem 5.1], Sensitivity function decomposition). Let z; and x,, be a fized
source and receiver location, respectively, mj g, mj g be the source electric and magnetic dipole
moments, and let a(x) and b(x) be the medium properties. Then, for each perturbation type ¢ €
{a, b}, perturbation direction q € {x,y,z}, measurement field K € {E, H}, and measurement
component p € {x,y, z} there exist functions fg(K ,¢;y) called sensitivity functions such that
the linearized residual operator (16)) and the linearized residual adjoint operator (17) can be
written as

(21) [R'[a,b]0b()], = ( > 5Cq(y)¢§,’5(y)dy)€p,

pe{z,y,2} \q€{zy,2}

N
(22) (Rfa,0]"dy) (@)= > df, o)

n=1pqe{zy,z}

Further, the sensitivity functions of the measured field to perturbations in a(zx) and b(z),
respectively, take the explicit form

(23) UK asy) = —H{(y) H](y),
(24) YK, by y) = El(y) E](y),
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where qu(y), H]q(y) and Sf(y), H?(y) are the solutions of (14) and (15) with right-hand sides,

(25) o) = (1) oo - 2,)

mj7H

(26) ) = (JXE ) oo ),

OK,H €p
- - : 3
where {€p}pe(ay,z} 5 the canonical basis for R°.

The notation of Theorem 2 should be understood as follows: given a fixed source with
index j and a fixed receiver located at x,, ¢§7’Z(K ,b;y) represents the size of the change of
the pth component of the K-field measured at the receiver due to a small perturbation of the
property distribution b(y) in the ¢-direction.

The decomposition introduced in Theorem 2 forms the backbone of our imaging routine;
together with our fast algorithm (section 3), the explicit form of the decomposition allows
us to numerically compute powerful “data filters” that can isolate the effect of perturbations
within small regions of space (nullifying effects outside such regions). In turn, this allows us
to generate 3D images. This is described in detail in section 4.

3. Fast (O(N log(IN))) Maxwell’s equations solver. Here, we provide an overview of
the algorithm used for simulating the propagation of electromagnetic signals in 3D inhomoge-
neous media (8)—(9) and for efficiently computing filters in section 4. We underline that this
algorithm is absolutely key to the practical implementation of our proposed filtering scheme,
as it would otherwise be computationally prohibitive using existing technology. We also refer
the reader to [48] for a detailed description. Now, consider

(27) G(a.y) = Cle—y) = TG —y) + ,jgv VG(z - y),

etkolzl
47|z

referred to as the Helmholtz Green’s function, whereas G(x y) is referred to as the dyadic
Green’s function.” Then, it can be shown (see Appendix A) that,

o] = L)+ [ 2] L)

where T is the 3 x 3 identity matrix and ko is the wavenumber. G(z) =

is generally

where
(28)

(@) = —iwpo [ Glary) ) Qudy. A12(Q(a)) = [ x Gla.) (i) Q).
(29)

An(@@) = [V x ) B0) Qs An(Q(a)) = iwes [ Glay) (i) Q).

el () is the fundamental solution to the scalar, homogeneous, time-harmonic wave equatlon
(V? + ko) G(x) = —6(z) in R®, where V” is the Laplacian and 4(-) is a Dirac delta at the origin. Similarly, Gz
is the fundamental solution to the time-harmonic vector wave equation: (VxV x—VV-)u(x)+kju(z) = —(x)
in R3.

z)
T
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which, upon appropriate discretization of the integrals, leads to

E (x) _ -1 | Ep(x

o] == ()]
Our solver computes this solution using an iterative linear solver (LGMRES [4]). This requires
applications of the dense matrix (I — A) to various vectors, an O(N?) operation if performed
naively, and thus too expensive for problems of practical scales.

To improve performance, we apply A rapidly using an algorithm that consists of a gen-
eralization of the FFT-based algorithm introduced by Vico, Greengard, and Ferrando [50]
to electromagnetism [48]. By leveraging the speed of the FFT, this scheme leads to a fast
(O(Nlog(N)) algorithm for the application of the matrix A. We also refer the reader to
Vico, Greengard, and Ferrando [50] and Tong et al. [48] for a more detailed discussion on the
discretization of the integral, the choice of IV, the appropriate scaling involved, and potential
optimizations. Pseudocode can be found in [48]. We have implemented a parallel version of
the algorithm in the C programming language using OpenMP, and have used it to produce
the numerical results found in section 5. We refer to Tong et al. [48] for a more in-depth study
of performance.

4. Filtering and imaging. As discussed in section 5.1, the standard adjoint field method
presented in section 2.1 suffers from many drawbacks at low frequency including a lack of range
resolution and poor cross-range resolution. To overcome these shortcomings, we introduce
in this section a new imaging scheme. The most important characteristic of our proposed
method lies in replacing the matrix (R'[a,b] R'[a,b]*)"" in the Newton-Raphson step (19))
with a filtering matrix F' designed to tailor the sensitivity to regions around specific (steering)
points. Intuitively, the scheme can be described as follows: first, we choose a set {z;} of steering
points (Figure 3) where we want to concentrate/focus the sensitivity, i.e., perturbations in
a 3D region surrounding a steering point should have a large effect on the filtered data,
whereas perturbations far from the latter should have almost no effect. Then, we proceed
to a rasterizing process through each steering point. Points corresponding to the location of
a perturbation will lead to a large contribution (weight) after filtering, and vice versa. This
information is used to generate an image.

For all that follows, we consider isotropic perturbations in b(z) only (6b%(z) = db¥(z) =
0b*(x), da(x) = 0). This has the advantage of significantly simplifying the notation without
affecting the generality of the method. A consequence of isotropy is that the quantities found
in Theorems 1-2 become

(30) P )= Y RU(E, b y)

qe{x7y7z}
for the sensitivity functions, and
(31)
R'la,b]*d

3 (e FEEC) Dt BT St P
085 e oyoy TIEHD), oy HIETHIE), S ooy I HE (1)

Jj=1
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(a) The induced sensitivity region associated with the (b) The induced sensitivity region associated with the
current steering point (green) does not coincide with current steering point (green) coincides with the loca-
the location of a perturbation/scatterer (red). The tion of a perturbation/scatterer (red). The steering
steering point has no effect on the image (zero weight). point will contribute to the image (nonzero weight).

(¢) The resulting image corresponds to a weighted sum
of induced sensitivity functions that approximate the

original perturbation.

Figure 3. Schematic of imaging scheme through steering, filtering, and rastering. White circles correspond
to steering points ({x1}). Green circles represent current steering point (region of high sensitivity induced
through filtering) and the red region represents the perturbation.

for the linear residual residual adjoint operator. To design the filters, we rely heavily on the
sensitivity function decomposition of Theorem 2 and proceed as follows: given a fixed steering
point z; and an associated set of filter coefficients { fi(j,n,p, K)}, define an induced sensitivity
function through

(32) m(y) = Y_ filn.p. K)e, (K:y).
Jmp, K

With this definition and Theorem 2, the filtering process can be expressed as

(33) S FGap R, = [ o) | X FGw e 8, (K) | dy

Jmn.p, K Jm,p
(34) = / db(y) m(y) dy,
which is a projection of the perturbation db(x) onto the induced sensitivity function n;(y). In

this sense, our goal in designing a filter is to mazximize the energy of n(y) in the vicinity of x;
and minimize it away from xj.
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A A A A A

(a) Imaging using the standard adjoint field
method (section 2.1). The image is a trivial
linear combinations of the sensitivity functions
corresponding to the backprojection of the data
((22), Theorem 2). Energy is located over a hy-

(b) Imaging using our proposed method. The
image is a weighted linear combinations of over-
lapping induced sensitivity functions, and cor-
responds to the backprojection of the filtered
data (34). Energy is highest in a small 3D re-
gion around the scatterer, providing good range

perbolic region, providing poor range resolution. and cross-range resolution.

Figure 4. Conceptual schematics of imaging with sensitivity functions. Sources are represented by green
triangles and receivers are represented by blue rectangles. The perturbation is located at the yellow circle. Left:
standard adjoint field method. Right: our filtering scheme. Note that in each scenario there are sensitivity
functions between every source and every receiver. Each figure depicts distinct subsets of such functions.

The filtering process itself is depicted schematically in Figure 4 for the case of linear
and parallel receiver/source arrays with backward illumination and a steering point located
at the center; the left of Figure 4(a) shows the result of the standard adjoint field method
(section 2.1) that corresponds to setting f(j,n,p, K) = 1. In this case, the image has energy
concentrated in a “hyperbolic” region with cross section smallest in the plane of the scatterer.
This implies that cross-range resolution is achievable with such a scheme. However, this type of
image offers no range resolution since the intensity is approximately the same along the whole
range direction (and sometimes even larger near the source/receivers, which is completely
erroneous. See Figure 5). In contrast, Figure 4(b) shows the effect of appropriately weighting
the sensitivity functions prior to forming the image (our data filtering scheme). In this case,
the image produced corresponds to the induced sensitivity function 7;(y) associated with this
steering point. By design, the induced sensitivity function possesses most energy in a 3D
region localized about the point of interest (overlapping weighted sensitivity functions, darker
red region in figure) which offers both cross-range and range resolution. The creation of the
filters is followed by a rasterizing process, by which we focus the sensitivity on one steering
point at a time to identify locations and size of perturbations. This is depicted pictorially in
Figure 3. More precisely, given some data vector d, we apply the filter f; to compute

(35) di= fiff d

for each steering point x;. Then, we backpropagate each of the filtered data and sum the
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Figure 5. Cross-sectional (two-dimensional (2D)) views of the (3D) image reconstructed using output least
squares with Tikhonov regularization. Scatterer located at (22,0,22) m between 3 X 3 source and receiver parallel
arrays at z = £150 m. From left to right, top to bottom: xy-plane, z = 22 m; xy-plane, z = —50 m; xz-plane,
y = 22 m; xz-plane, y = 0 m; yz-plane, x = 22 m; yz-plane, x = —50 m. Cross-range resolution is poor. There

is no range resolution.
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results to produce the image.® In the case of an isotropic medium, we obtain
(36) T:=Y Rla,b]*d = R[a,b]* (Z flfl*> d = R'la,b]* Fd,
l l

where R'[a,b]* is the linearized residual adjoint of (17), and F := ", fif;* is the replacement
of (R'[a,b] R'[a,b]*)"" in (19). F can be interpreted as an operator that projects the pertur-
bation onto the induced sensitivity functions for which energy is more closely focused near
the perturbation.” This is summarized in Algorithm 1. Putting everything together, we find
that the image Z takes the form

(37)

25> ([ormnoar)| & A K (0) - ([ pwmtan) ae)|.

Jym,p, K

This expression shows that the image produced by our scheme is in fact a backprojection
of the perturbation on a family of induced sensitivity functions. This use of induced sensi-
tivity functions through the design of appropriate filters gives us more flexibility throughout
the imaging process and ultimately leads to higher resolution (section 5). The design and
computation of such filters is discussed next.

Algorithm 1 3D sensitivity-function-based imaging algorithm (single step).

Input: d (data), a(z),b(z) (medium estimates), {f;}£ (filters associated w/ steering points
{z}i)
Let: d =0
forl € {1,2,...,L} do
d«d+ fiffd

end for (@)

o (da(x)\ . . 5
Compute: Z = <5b(x)> = R'[a,b]*d , (17)
Output: 7

The procedure for creating a filter can be described as follows: first, we consider a set
G = {xa}ggl of “good points” as well as a set B = {xg}]ﬁvfl of “bad points.” G generally
contains a single point corresponding to the current steering point where we want the highest
sensitivity, whereas B represents the complement of G in the imaging window where we want
to “nullify” sensitivity. For instance, in Figure 3(a)—(b) the set G consists of the green steering

8The summation step corresponds to a (virtual) form of a rasterizing process for induced sensitivity functions
with disjoint supports.

9This idea generalizes to any form of sensor measurements when a notion of sensitivity function is present.
See, for example, Mountcastle, Goodman, and Morgan [36] for an application referred to as beamforming and
applied to radar problems.
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point only, whereas B contains all the remaining (white) points. The goal then is to choose
filter coefficients {f;} that maximize the ratio

2
(38) Yenee m@a)l? | Zeaca \Zj,n,p,K filG,n,p, K) ¢, (24)

5 - 2
Yasen Im(zp)] ZxﬁeB’Zj,n,p,Kfz(j,n,p,K) ?,n($5)‘

That is, we seek to maximize the power of the induced sensitivity function over the set G
while minimizing it over B. Equation (38) can be put in matrix form:

(39) argmaxy s, A 7] |z ,
1B fill
where the (6 Ng x 6JN) matrix A and the (6Np x 6JN) matrix B take the form
(40)
[ (z,x G T,x G z, G T,x G T,z G\ ]
¢§1’1))(E§$§ )) ¢§1,1))(H;$§ )) ¢§1}))(Eax§ )) (bél 2))(H ,’Eg )) ¢§J’]\;)(H;LL‘§ ))
T G T G R G G Y,2 G
. S (B D) oW (H; A D) o (Bl D) e o (H (D) o) (H; ()
Z,x G 2,x G z, G Z,x G 2,2 G
_¢§1’1))(E3$§VC3) ¢2171))(H§$§VC3) ¢El7?;))(Eax§V(3) ¢E]_72))(H;$5VG)> ¢EJ7]\/)')(H;:I;§VG))_
(41)
oy (B 2lP) ¢§f:f; (H; () ¢§f;i’;<E;x§B>> asgf’;;(H,xiB)) ¢§3:73)<H;z53>>
, B , B , B B , B
g |00 B o) o (B o) o i)
Z,T . (B 2z, . (B z, B z,T . (B 2,2 . (B
_ngl 1))(Eax§VB)) ¢§171))(H7I§VB)) ¢El 11}))( 5 sz)) ¢E1,2))(H’IEVB)) d)gj,]\;)(Hv 'TEVB))_

We recall that J is the total number of sources and N is the total number of receivers.
Equation (39) corresponds to a generalized Rayleigh ratio, and can be maximized by solving
an appropriate (generalized) eigenvalue problem. The procedure, which we now summarize,
is also presented in Algorithm 2. Consider the SVD of B: B = Ug¥gVy;. With this quantity,
the generalized Rayleigh ratio takes the form

frfATAf frANAS

(42) [*B*Bf — f*VBIZVAf'

Proceeding to the change of variable, f = VgEgl f, we obtain

P VEATAVESE f || AV £
ff 17|
which is a standard Rayleigh ratio, the maximum of which is reached when f corresponds

to the right singular vector £ of .AVBZ‘E1 associated with the largest singular value. Once
computed, we normalize the resulting quantity to get

(43)

Vg ¢
|| R'[a,b)* VsX5" €] |

(44) f=
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This choice of normalization is based on the the explicit form of the image formation expression
found in (36). Indeed, if db(y) = diag(dbg, dbg, dby) 6(y — yo) is an isotropic point scatterer,
then

T = [R'[a,b]*(F d)]

-y ([ w6 av) )

(45)
= (dbom(yo))
l

~ 6b07710 (yO) )

where [y is the index of the steering point closest to yo. Thus, with this normalization an
isotropic point scatterer will produce an image corresponding to the induced (and spatially
localized) sensitivity function weighted by the strength of the scatterer (see, e.g., Figure 6),
which lends itself to interpretation and analysis. Also note that other types of normalization
(e.g., || - ||2) are possible in a different context.

One important point to note is that the matrix ¥g, although observed to be generally
invertible in our numerical experiments, can be ill-conditioned. For this reason, we generally
resort to the use of the pseudoinverse ZE, where

(46) )] - { [Zaliy i [Zsli; > o,

i 0 otherwise.

The choice of the threshold o, depends on two things: resolution and noise. As discussed in
detail in section 4.1, there exists a trade-off between the two: the larger the threshold, the
lesser the resolution but the greater the robustness to noise and vice versa.

Algorithm 2 Filter computation.

Inputs: G (a single steering (good) point), B (a set nulling (bad) points), o, (regularization
parameters)
Compute: A, B (40)-(41)
Compute: Ug, Si, Vg + SVD(B)
forie {1,2,...,6JN} do
(2L < [Ssl5;t if [Ssli > o7 and 0 otherwise
end for
M + AVES
f < principal eigenvector of M*M
Normalize f (44)
Output: f

4.1. Effects of noise. In this section, we describe the effects of additive measurement
noise on the quality of the images generated through our proposed scheme. For this purpose,
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Figure 6. Cross-sectional (2D) views of the (3D) image reconstructed using our proposed imaging scheme.
Scatterer located at (22,0,22) m between 3 X 3 source and receiver parallel arrays at z = £150 m. From left
to right, top to bottom: xy-plane, z = 22 m; xy-plane, z = —50 m; xz-plane, y = 22 m; xz-plane, y = 0 m;
yz-plane, x = 22 m; yz-plane, © = —50 m. Both cross-range and range resolution are significantly superior to
existing techniques.
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we define the SNR as

e e
47 SNR = —
(7) EvF = No¥’

where v corresponds to a Gaussian noise vector with covariance o2, i.e., v ~ N(0,02%I),
and N is the total number of measurements. Then, we have the following lemma (proved in
Appendix A). In everything that follows, || - || refers to the maximum of the vector and || - ||
is the 2-norm of the vector.

Lemma 1 (quantification of noise effects). Let v be a zero-mean Gaussian random vector
with covariance matriz 0% I, i.e., v ~ N(0,02 1), and let

L
(48) Rla,0]"F(d+v) =) Ra.b]" (fiff) (d+v)
=1

correspond to the image formation operator described in (36) applied to data (d) corrupted by
noise (v). Assume further that the images of the filters { R'[a, b]*fl}lel satisfy

(49) (R/[a’ b]*fh)* (R,[CL, b]*le) =0
forly # 1. Then,

2
(50) P

2 L
g
> el ) < 2o 3 Al

=1

L
> Rla,b]" (fuff) v
=1

where T := Y | R'[a, b]* (fuff) d is the original noiseless image.

Please refer to the appendix for a proof.

Remark. In practice, orthogonality in (49) does not always hold. However, when 1 #
la, the induced sensitivity functions are approximately supported on disjoint sets (localized
around different steering points) in such a way that (49) holds approximately.

Now, we recall from (43) and (46) that

2
(51) 1515 ~ & (25) & <o

where Zgl is the pseudoinverse of the diagonal matrix of singular values of the sensitivity
matrix B; associated with the [th steering point z;. Therefore, Lemma 1 and the definition of
SNR imply that

I 2

> Rla,b" (fuff) v

=1

(52) P

IN

> HIH2 1 Hd‘|2 ig* (ET )2€
= | = eNRZI, N &t \TE)

1 ldll* L

53
(53) = eSNR|Z]Z, N o2
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Figure 7. Variance of the imaging scheme as a function of regularization paramter o.. The good point set
G corresponds to the origin, bad point set B corresponding to a 19 x 19 x 19 uniform grid (excluding the origin).
This is with z-polarized dipole sources and 6-axis receivers in the parallel array setup, and the frequency is 1000
Hz. The “variance” plotted, o, corresponds to the right-hand side of (52). The variance of 1000 trials is the
variance computed from 1000 random wvectors v, and the theoretical value is the value of the expression in this
instance of 60 dB of SNR. The geometry has a 4 X 4 xy-plane source and receiver arrays located at z = +150m.
To get the variance on the image to be less than the order of magnitude of the data, the smallest o, that has
or K 1 should be chosen.

from which we conclude that the probability that the relative energy of the noise induced
in the image dominates that of the original image is bounded by a quantity proportional
to the amount of regularization applied (higher regularization implies lower probability) and
inversely proportional to the SNR. This behavior is commonly encountered in the field of
imaging. Our derivation, however, provides explicit estimates in this particular context.

There is currently no known closed-form expression to describe the behavior of the singu-
lar values of the sensitivity matrices {8;} as a function of the imaging parameters such as the
location and number of sources and receivers, the orientation of the dipole sources, the back-
ground medium, etc. Further, a highly nontrivial relationship was observed through numerical
experiments (section 5.2), an example of which is shown in Figure 7. We thus restrict ourselves
to a computational approach in which we fix the imaging setup, compute the SVDs of {5},
and pick o, so that the left-hand side of (52) lies below some user-provided threshold p.

5. Numerical results. In this section, we present extensive numerical results for the per-
formance and capabilities of our imaging scheme. The section contains four subsections:

e Section 5.1 provides comparison with common techniques (section 1.1) and shows that
the proposed imaging scheme offers significant resolution improvements over those
competitors.

e Section 5.2 addresses the effects of noise described in section 4.1 from a numerical
standpoint.

e Section 5.3 discusses a case of low-frequency imaging in a highly inhomogeneous
medium, namely, a finite conductor located within a conducting box.
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Figure 8. Backlit, parallel linear arrays imaging setup with 3 X 3 or 4 X 4 sources and receiver arrays.

e Section 5.4 presents “resolution maps,” which provide a methodology for quantifying
the spatially dependent resolution achievable with the proposed scheme under specific
imaging configurations.

Unless otherwise stated, all examples use a frequency of f = 1 kHz (A ~ 300 km), and
all necessary wave propagation simulations are computed using the algorithm introduced in
section 3 with a stopping criterion of § = 1078, Scatterers are assumed to be isotropic point
perturbations (Dirac delta) in conductivity only; i.e., o(z) = Zﬁ;l on Isx3 d(x — ). The
imaging configuration consists of a backlit, parallel linear arrays imaging setup (Figure 8) made
up of square arrays of sources (orange cubes) and receivers (blue triangles) perpendicular to
the z-axis, and located at z = +150 m, respectively. Sources are ideal dipoles, and receivers
are assumed to be noise-free (SNR = oo) and capable of measuring all six components of the
electromagnetic field. Finally, a homogeneous background corresponds to a medium with the
properties of free space: e(x) = ¢ = 8.854187-10712 F/m , pu(x) = po = 1.256637-1076 H/m,
o(x) =0S/m.

5.1. Comparison with existing techniques. In this section, we compare our proposed
scheme with two commonly encountered low-frequency imaging schemes: output least squares
with Tikhonov regularization [6] and nonlinear block-Kaczmarz output least squares (section
1.1). In these examples, a single conductive scatterer with strength op = 1S/m is located at
(22,0,22) in a homogeneous background.

The results are displayed in Figures 5-6 which shows six cross-sectional (2D) views of
the reconstructed (3D) image for each case under considerations. As can be seen, both the
output least squares and the Kaczmarz method (Figures 5-9) produce very similar outputs
that provide relatively low cross-range resolution and no range resolution (in fact, the location
of highest intensity in the range direction is closest to the receiver array, which is completely
erroneous). On the contrary, our proposed method generates images with significantly better
cross-range resolution and range resolution (Figure 6).

It is important to note that these comparisons are done on the basis of a single (outer)
iteration, whereas it has been shown in [15] that multiple outer iterations (sweeps) can improve
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Figure 9. Cross-sectional (2D) views of the (3D) image reconstructed using the block-Kaczmarz (single-
sweep) nonlinear output least squares [15, 16]. Scatterer located at (22,0, 22) m between 3 x 3 source and receiver
parallel arrays at z = £150 m. From left to right, top to bottom: xy-plane, z = 22 m; zy-plane, z = —50 m;
xz-plane, y = 22 m; xz-plane, y = 0 m; yz-plane, x = 22 m; yz-plane, © = —50 m. Cross-range resolution is
poor. There is no range resolution. This is qualitatively similar to the results displayed in Figure 5.
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the results. In this sense, we wish to underline two points: first, the results found in [15]
pertain to cross-range resolution; no numerical results have demonstrated range resolution.
Second, although the paper focuses on a single-step imaging, our method also lends itself to
an iterative descent framework for nonlinear inversion as described in section 2.1.

Finally, it should also be noted that our technique provides better cross-range resolution
than range resolution in this parallel array setup. This is expected, at least qualitatively,
given the discussion of section 4 and the nature of the sensitivity functions (Figure 4(b),
right). Section 4 also elucidates the nature of the image obtained through the least-squares
and Kaczmarz methods (Figure 4(b), left). Finally, the fact that the output least-squares
and the Kaczmarz methods generate similar images can be explained by the fact that, in this
particular setup, the approximation in (20) is an appropriate one.

5.2. Effects of noise. Here, we provide numerical examples and describe the effects of
additive noise on image quality and resolution. To do so, we consider the 4 x 4 planar array
setup as shown in Figure 8.

Our simulations are based on (52); first, we fix the imaging setup (Figure 8). We numer-
ically generate data for a single scatterer at the origin, and add Gaussian noise to reach an
SNR level of 60 dB. Then, we construct filters based on Algorithm 2 for various threshold
values, i.e., o; € {1072,1071%,1072°}. Finally, we proceed to the imaging following Algorithm
1. The results of the numerical simulations are shown in Figures 10-11.

The regularizing threshold values (o) were chosen according to the methodology described
in section 4.1 and the behavior of the singular values of the sensitivity matrices shown in Figure
7. The value o, = 10719 (Figure 11) corresponds to an “underregularized” case, whereas the
value o, = 107 (Figure 12) is appropriately regularized. Correspondingly, it is seen that the
underregularized case produces a highly noisy image with very poor localization compared
to the other two cases. Further, it becomes apparent from looking at Figures 10-12 that
the amount of regularization has a significant impact on the achievable resolution. Better
resolution is obtained in the infinite SNR case in which lower regularization was possible as
discussed in section 4.1.

5.3. Inhomogeneous background. We now discuss low-frequency imaging in an inhomo-
geneous medium. For this purpose, we consider a background consisting of a thick conductive
box with one open side (Figure 13). The box is square and of dimensions 176 x 176 x 176
m with walls approximately 16 m thick. The conductivity of the box material is 1 S/m. It
is assumed that all corners and sides are sealed and smooth, with the exception of the open
face.'” The scatterer to be imaged corresponds to a Gaussian with a standard deviation of
8 m centered at (0,20,20) m and having maximum conductivity of 103 S/m. The imaging
setup comnsists of 25 sources and 25 receivers distributed uniformly at random on a sphere of
radius 180 m (full aperture). The sources have coordinates x < 0 and the receivers have co-
ordinates x > 0. Sources are randomly oriented magnetic dipoles, and receivers can measure
all 6 components of the electromagnetic field.

We note that the properties of the box walls imply a skin depth of approximately 16 m
at 103 Hz, and 2 m at 10° Hz. This means that the low-frequency waves employed here can

10This is an idealization since realistic structures are generally corrugated and have various types of gaps.
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Figure 10. Imaging process applied to uncorrupted data. Single conductivity scatterer at the origin. SNR =
00, 4 X 4 sources/receivers arrays (Figure 8). The scatterer can be appropriately localized.

penetrate through the wall and provide a full-aperture view of the scatterer. Typical high-
frequency imaging using millimeter waves (radar) would see emitted pulses either bounce off
the wall or enter the box through the opening only to undergo multiple scattering once inside,
thus making existing (linear) high-frequency imaging techniques inadequate.

For these imaging examples, efficient algorithms for solving Maxwell’s equations were vital.
Computing the residual vector requires solutions of as many problems as there are sources. In
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Figure 11. Imaging process applied to Gaussian noise-corrupted data. Single conductivity scatterer at the
origin. SNR = 60 dB, regularization parameter o, = 107'°, 4 x 4 sources/receivers arrays (Figure 8). The
image is noisy and the scatterer can no longer be localized due to an inappropriate amount of regqularization.

this case, there were 25. Further, the sensitivity functions for each source and each receiver
component of every receiver needed calculation. For this problem that is 25 + 6 - 25 = 175
problems. Every one of these problems was solved on a grid of 50 x 50 x 50 voxels, each
possessing 6 - 253 ~ 10° unknowns.

Results are shown in Figure 14 which compares the image obtained in the absence (left)
and presence (right) of the box, respectively. In these simulations, LGMRES was used with a
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Figure 12. Imaging process applied to Gaussian noise-corrupted data. Single conductivity scatterer at
origin. SNR = 60 dB, regularization parameter o, = 107%, 4 x 4 sources/receivers arrays (Figure 8). The
scatterer can be appropriately localized, but the resolution is poorer due to the regularization.

tolerance of 1071* and the regularization parameter o, was set to 1078, Our first conclusion
is that it is indeed possible to localize a scatterer within a conductive structure using low-
frequency waves. We also notice that the resolution of the image in the presence of the box
is only slightly poorer than that obtained in a homogeneous medium, leading us to conclude
that resolution is more likely to be affected by noise, as previously observed, than by known
penetrable structures.
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Figure 13. A conductive 3D square enclosure with the top wall removed, corresponding to the structure
used in section 5.3; 176 x 176 x 176 m*, 16 m-thick walls of conductivity 1 S/m.

Finally, it is worth mentioning that although the structure was assumed to be known in
this example, this is not necessary for the scheme to succeed; unknown elements in a structure
will appear as perturbations/scatterers in our image.

5.4. Resolution Maps. In this final section, we introduce the notion of a resolution map.
In short, a resolution map provides a pointwise estimate of the best resolution achievable
through our proposed technique. Here, by resolution at a point we mean the minimum dis-
tance between a scatterer at this particular point and any other scatterer such that they
can be distinguished.'' In particular, we note that this concept becomes equivalent to the
traditional concept of resolution, or Rayleigh criterion, as the wavelength goes to zero (high-
frequency asymptotics). At low frequency, however, we find that resolution exhibits interesting
properties such as spatial and directional dependence.

The methodology for creating a resolution map is relatively simple and can be described
as follows: given some background medium properties €(z), u(z), and o(x) and a set of points
where one would like to know the resolution (e.g., a fine regular grid), compute a filter as
described in section 4 (Algorithm 2) for each such point and plot the induced sensitivity
function n(x) (34). Then, given a resolution level 0 < v < 1 corresponding to the percentage
of the maximum of the filter centered xg below which its value is considered negligible (we
pick v = 0.5 in our examples) and a unit direction vector CZ; the resolution at xg is defined as,

(54) A, (o) = sup {J- (z — o) : ‘¢<$0+(cf- (z—xo))@‘ Z'y|(;5(:c0)|}.

v,d

Resolution maps for a homogeneous background with 3 x 3 parallel arrays are shown in Figure
15, demonstrating, among other things, that better resolution is achieved for steering points
closer to the source and/or receiver arrays, and that the resolution exhibits a complex spatially
dependent behavior.

"This concept of resolution requires that the single-scattering, or Born, approximation holds among scat-
terers, but not between the scatterers and the background.
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Figure 14. [Imaging process applied to a conductive spherical scatterer located at (0,20,20) m inside a
conductive square box of dimension 176 x 176 x 176 m-centered at the origin and possessing 20 m-thick walls
(red dashed line). Left: 3D cross sections, no conductive box. Middle: 2D cross sections, no conductive box.
Right: 2D cross sections, conductive box. The red dashed line delineates the boundary of the box. The resolution
achieved in the presence of the box is similar to the resolution achieved in its absence.
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Figure 15. Resolution map with homogeneous background medium. Parallel arrays 3 X 3 source/receiver
arrays imaging configuration located in the ry-plane at z = +£150 m. Left to right: resolution along the x-, y-,
and z-direction. Top: xy-plane, z = 0 m. Bottom: zy-plane, z = 40 m.

6. Conclusion. In conclusion, we have introduced a novel scheme based on a recently
developed fast algorithm for the simulation of electromagnetic waves traveling through com-
plex 3D media for the purpose of 3D imaging using low-frequency electromagnetic waves that
shows superior computational performance and improved resolution over existing techniques.
Finally, we numerically demonstrated the improved resolution of the proposed technique over
existing techniques, studied the effects of noise, introduced a resolution map methodology,
and provided imaging results in complex media for which existing high-frequency techniques
are deemed inadequate.

Future directions include applications to a wider array of problems, simultaneous treat-
ment of multimedia imaging (conductivity, permittivity, and permeability), refinement of the
steering points localization through the use of resolution maps, as well as improvement to the
fast algorithms for 3D electromagnetic wave simulations both from a theoretical and software
implementation perspective, especially on distributed platforms.

Appendix A. Lippmann—-Schwinger framework.
Theorem 3 (Lippmann—Schwinger framework). Consider
(55)
An(Q(x)) = ~iwpg / G(a.y) by) Qy)dy, Ar(Q(x)) = / v x G(a,y) (~a(y)) Qv)dy,
(56)
Q) = [V xGlaa) ) Quidy.  AnlQ) = iwen [ Glay) (~i(4) Q).

where a(x) = iw (u(z) — po) and b(z) = iw (e(z) — €0) + o(x). Then, the solution to (7) is
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characterized by the linear system

o0 o] = )+ [ 25 ] - L

3]

Ho(ff))} A [E(m)} |

where a(x,y) is the dyadic Green’s function of (27), and
Bo= i [ Glo.y) Jw)dy+ [V x Gla) Mly) dy,

(58) g _
lﬁz/an%wﬂw®+wm/ﬂ%wM@M%

corresponds to the incoming field in a homogeneous background medium.
Proof. First, introduce,

(59) a(x) = iwp(x) — iwpo,

(60) b(z) = iwe(x) + o(z) — iweo,

and rewrite Maxwell’s equations (7) as

(1) { V x H(z) — iweg E(z) = J(z) ;—_N(:r) E(z)

V x E(x) +iwpoH (x) = M (z) — a(z) H(x).

Split the resulting system of equations into two linear systems with different right-hand sides
to get

(62) V x HD () —iwegEW () = J(2) + b(z) BV (x),
V x EM(z) + iwpoHM (z) = 0,

(63) V x H () —iweg B® (z) = 0,
V x E@(2) + iwpoH® (x) = M (x) — a(z) H? ().

From linearity we have that

E(z) = EW(z) + E®(x),
H(z) = HY(z) + H? ().
Below, we derive the explicit form of EM(z) and HW(x). The expressions for E?)(z) and

H® (z) can be obtained analogously. Our starting point for the latter purpose is an ansatz
of the form,'?

(64) B(x) = iwA(z) - Vo(x),
1 1
(65) H(z) = _iwﬂov x E(x) = —%V x A(zx),

2This is known as the Helmholtz decomposition for vector fields. Every sufficiently regular vector field in
R® can be written as such [42].



34 LETOURNEAU, HARRIS, LANGSTON, AND PAPANICOLAOU

where the expression for H(z) is obtained using the second equation in system (62). Substi-
tuting (65) into the first equation of system (62) leads to,

V x V x A(z) — weouoA(x) — iweopo Vo (x) = —puo (J(m) + B(x)E(x)) .
Introduce the Lorentz gauge,
(66) V- A(z) = iweopo d(x),
and substitute to get,
V x V x A(z) — VV - A(z) — weopoA(z) = — (V2A(z) + k2 A(x)) = —po (J(x) + E(m)E(m))

after using the identity V x V x A(z) —VV-A(z) = —V2?A(z), and recalling that: k% = w?eguo.
This expression holds componentwise which implies that each component satisfies the scalar
Helmholtz equation,

(67) (V2 + k%) G(z) = —d(),
whose fundamental solution is given by: G(z) = ii:\‘;;' Therefore,
(68) Aw) == [ 16—y o (70) +B@)E@)) dy,
1 - -
(69) @) = s [ V- (T6la =)0 (7o) + 5@ B@)) ) ay
— - [VEE-y (J@)+ ) E@) .

following (66), and since V - (I G(z)) = VG(z). Substitution into (64)-(65) leads to
ED(z) = iw <— / TGz —y) uo (J(a:) +6(x)E(x)) dy>
_v <—Z,w160 / VG —y) (J(@) +ba)E)) dy)
— i ( / TG —y) (J() +ba)E@)) dy

(70) e / VG —y) (J(2) + bx)B()) dy>
— iwug / Gla.y) (J(@HB@:)E@)) dy,
HO () = —7v « < /G r—y)po (J(@) +b(a) B(x) ) dy>
- / V x Ga.y) (J@) + b)E()) dy,

and the result follows. [ |
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Appendix B. Proof of Lemma 1. First note that

L L L *
(71) Y Rl fiff | v~ N 007 | DY (Ra. b fifi ) | Y Ra,b)* fiff
=1 =1 =1
However,
(72)
L L * L L L
S ORI fiff || D0 Rab b | = D (i fm) Z A (D Rl b fm
=1 m=1 I,m=1 =1 =1
In particular, this implies
L 2 L L *
H S Ra b fify | v|| | =T | 0® D (F fm) ZR’ ab* fi | [ D Ra,b]
I=1 1,m=1 I=1
L L * L
(74) =0 > (it T [ (D Rlab" fi] (D Rlab)*
1,m=1 =1 =1

L
(75) =a® Y IIAIP
=1

following the orthogonality assumption and thanks to the linearity and cyclic properties of
the trace. Therefore,

L

0 =1

by the Chebyshev inequality. This is the desired result.
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