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Characterization of Space-Time Focusing in Time
Reversed Random Fields

Claude Oestges, Arnold D. Kim, George Papanicolaou, and Arogyaswami J. Paulraj

Abstract— This paper proposes various metrics to characterize
space-time focusing resulting from application of time reversal
techniques in richly scattering media. The concept and goals of
time reversal are presented. Pertinent metrics describing both
the time and space focusing effects are outlined. Two examples
based on a model of discrete and continuous scattering media are
used to illustrate how the proposed metrics vary as a function of
various system and channel parameters, such as the bandwidth,
delay and angle spreads, number of antennas, etc.

Index Terms— Space-time focusing, random media, time re-
versal.

I. I NTRODUCTION

I N a time reversal (TR) experiment, a transducer captures
the response received from an impulsive point source, and

re-emits the time reversed version of this response into the
propagation medium. For non-dissipative media the emitted
signal back-propagates and focuses in both space and time
at the original impulsive source [1]–[3]. For richly scattering
media, this space-time compression can be very strong. This
basic principle is well known in acoustics and has lead to
remarkable applications in underwater sound [4]–[12] and
ultra-sound [13]–[15].

The extension of TR techniques to radio electromagnetic
propagation for wireless communications has yet to be in-
vestigated. However, the idea of exploiting scattering is not
new. Indeed, there has been recently a tremendous activity
in exploiting the richness of the scattering medium in space-
time communications by using multiple antennas at both trans-
mit and receive ends (i.e. MIMO or Multiple-Input/Multiple-
Output systems) [16]. However, current communication sys-
tems still rely on a fairly small communication bandwidth
times channel delay-spread productB × τRMS. By using a
large B × τRMS, it is believed that the transmitter can use
an additional leverage of TR techniques to offer power gain
and diversity gain together with space-time focusing. More
precisely, TR techniques could be used to:
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• Reduce interference/intercept probability in view of se-
cure communications.By selectively focusing the energy
in both space and time at a target point, TR ensures
that intercept receivers will have difficulty detecting or
decoding the intended signal. Similarly, the co-channel
interference can be strongly reduced in cellular networks.

• Shorten the temporal channel response.The use of TR
can dramatically lower the effective delay-spread at the
receiver, and lead to lower receiver complexity.

The goal of the paper is dual. First, characteristic metrics
describing space-time focusing are presented in the context of
time-reversed signals in wireless communications. They are
estimated for two simplified models of random fields: a geo-
metrical scattering model and a random-medium waveguide.
Then we analyze the impact of system and channel parameters
on the focusing by investigating the variation of the various
metrics as a function of the channel properties (delay and angle
spreads) and the system parameters (bandwidth, number of
antennas, data rate, etc.).

II. T IME REVERSEDRANDOM FIELDS

A. Channel Impulse Response

Consider a transmission between transmit pointP and
receive pointQ. The channel impulse response (CIR) is
denoted ashB(τ,P → Q), whereB is the bandwidth of the
transmitted pulse. It is important to note that

• the symmetry properties of usual transmission channels
imply that hB(τ,P → Q) = hB(τ,Q → P)

• the CIR depends on the bandwidth of the transmitted
pulse.

The so-called CIR is actually the convolution of the infinite-
bandwidth physical channel response and the filter impulse
response. In this paper, the filter is implemented as a Nyquist
filter with given roll-off factor. By default, the roll-off is taken
as equal to zero, so the default filter is a rectangular window
in the frequency domain.

Depending on the scattering channel and the bandwidth,
the CIR results in a temporal spreading of the initial pulse.
Scatterers indeed create multipath mechanisms which, in turn,
cause echoes to arrive at the receiver with different delays.
However, the resolvability of the different delays depends
upon the ratio of the inverse of the bandwidth to the physical
channel spread (i.e. the interval between successive delays).
The smaller1/B is relative to the channel delay spread, the
larger is the number of resolved paths.
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B. Time Reversal

1) Time domain relationships:Using the above formalism,
the received signal at any pointR for a Nyquist pulse emitted
from R0 is hB(τ,R0 → R). At a particular pointT, which
we define as the transmitter,hB(τ,R0 → T) is captured. If
the transmitter sends back the time reversed version of the
captured signal, i.e.hB(−τ,R0 → T), then at any pointR,
the received signal can be expressed as

sB(τ,R) = hB(τ,T → R) ? hB(−τ,R0 → T) (1)

where ? denotes the convolution product. Note that (1) as-
sumes a perfect estimation ofhB(τ,R0 → T). In practical
settings, noise and interference considerations will cause this
estimation to be biased. We shall not cover the impact of
imperfect channel estimation in this paper.

From now on, we define the pointR = R0as the focal
or target point. Based on (1) and on the symmetry properties
mentioned above, the signal received atR0 is

sB(τ,R0) = hB(τ,R0 → T) ? hB(−τ,R0 → T) (2)

As a consequence of (2), the time-reversal operation causes
the received signal atR0 to be focused in both time and space
through constructive interference, meaning that all multipath
signals add coherently atR0, and incoherently elsewhere.

2) Frequency domain relationships:Models usually com-
pute the channel transfer functionHB(ω,R0 → T) over the
system bandwidth (whereω is the angular frequency). It is
the Fourier transform ofhB(τ,R0 → T). Relationships (1)
and (2) are naturally easily written in the frequency domain,
since the time-reversal operation corresponds to a complex
conjugation in frequency (denoted by the superscript *):

SB(ω,R0) = HB(ω,T → R0)H
∗
B(ω,R0 → T) (3)

According to (3), the time-reversal operation is equivalent to
a perfect channel matching.

We shall illustrate the characterization ofsB(τ,R), i.e. the
quality of space-time focusing in two different space-time
random fields. The first simulated random field corresponds
to a typical wireless radio channel at 2.5 GHz. The second
one is a continuous heterogeneous medium consisting of a
filled waveguide also operating at 2.5 GHz.

III. M ODELING OF SCATTERED SPACE-TIME FIELDS

A. Ray-Based Approach in Discrete Scattering Media:
Geometry-based Stochastic Model

For discrete scattering media, the channel can be represented
by a number of effective scatterers randomly distributed in
space. A ray-based approach can then be used to describe
the channel as a sum of so-called scattered or reflected
contributions. In the following, the statitical distribution of
scatterers is based on the well-known one-ring model [17].

1) Single-bounce model:We first consider that only single
scattering occurs. We assume that the scatterers are uniformly
distributed inside an annular region surrounding the target
point, as illustrated in Fig. 1. This region is specified by a
minimal radiusρm and a maximal radiusρM . The angle-
spread of the channel (as seen from the target point) is fixed by

limiting the aperture of the annular region to a given portion,
i.e. specifying minimum and maximum angles,ϑm and ϑM

(see Fig. 1). In this paper, we refer to∆ϑ = ϑM − ϑm as the
scattering angle-spread or simply the angle-spread.

ρm 

ρM 

R0 

T 

ϑM ϑm 

D 

Fig. 1. Geometrical representation of the propagation model.

We further simplify the channel description by choosing
ρM = 2ρm and ρM << D, with D denoting the distance
between the transmit and target points. Hence, the RMS delay
spread of the physical channel (over an infinite bandwidth)
is well approximated for an omnidirectional distribution of
scatterers (∆ϑ = 2π) by

τRMS ≈
√

5ρm

2c
(4)

with c = 3×108m/s is the speed of light. For a limited angle
spread, we assume thatϑm = π−∆ϑ/2 andϑM = π+∆ϑ/2.
In that case, the delay-spread can be written as

τRMS ≈
√

5ρm

2c

√

∆ϑ+ sin∆ϑ

2π
(5)

The channel transfer function is easily estimated by means
of a ray-tracing approach that yields

HB(ω,R0 → T) =
N

∑

l=1

G(ω,R0 → Sl)ΓlG(ω,Sl → T).

(6)
The quantities in (6) are

• ω = 2π/λ, the angular frequency (λ denoting the
wavelength);

• G(ω,P → Q) ∝ exp(−jωdPQ)/(dPQ)γ/2, the spread-
ing function for a transmission fromP to Q, with γ
denoting the effective path-loss exponent (γ ≥ 2) and
dPQ denoting the distance betweenP andQ;

• Γl, the scattering cross-section of thelth scatterer, which
is considered to be a complex Gaussian variable, with
given standard deviation.

Single-bounce models are not sensitive to the order of
magnitude ofΓ ansγ since they are only responsible for a
proportionality factor. This is not the case for multiple-bounce
models in which the average loss per interaction, related to
the scattering cross-section and the path-loss, is a critical
parameter.
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2) Multiple-bounce model:The previous model can be
extended in order to consider multiple bounce interactions.
In other words, the transmitted waves are scattered from one
to a certain number of times before reaching the receiver. The
calculation of the transmission channel can be written as a
sum ofN scattered contributions:

HB(ω,R0 → T) =

N
∑

l=1

ClΓlG(ω,Sl → T) (7)

where

• G(ω,Sl → T) is the spreading function for a transmis-
sion from thelth scatterer to the target pointT,

• Γl is the scattering cross-section of thelth scatterer,
• Cl is the lth element of vectorC, which is the solution

of a N -order linear system given by:

C = A−1 · C0 (8)

with

• C0l = G(ω,R0 → Sl) is the channel between the target
point and the location of each scatterer,

• A is the system matrix accounting for the transmission
between each pair of scatterers:

Akl =

{

ΓkG(ω,Sk → Sl) k 6= l,

1 k = l.
(9)

As already mentioned, the model is then highly sensi-
tive to the average loss per interaction, i.e. to the product
|ΓkG(ω,Sk → Sl)|. On one hand, if the latter is very small,
then the delay-spread of the channel tends to be infinite, which
is unrealistic. On the other hand, if the loss per interaction is
very large, the impact of high-order scattered contributions
becomes small, and the received field is very similar to the
first-order field. A reasonable assumption is that contributions
up to the third order can be significant. The average loss
per interaction should then be chosen accordingly. One could
question the usefulness of the matrix formulation as compared
to a full third-order ray-tracing computation. The reasonsfor
preferring the matrix formulation are two-fold:

• the problem of the average loss per interaction is not
related to the matrix formulation, but to any multiple-
bounce model;

• the computation time of a full ray-tracing is prohibitive
as compared to the fast matrix algorithm.

B. Phase Screen Method in Continuous Scattering Media:
Waveguide Model

We investigate guided wave propagation in two dimensions.
The interior of a periodic waveguide (shown in Fig. 2) is a
weakly scattering medium. Waves propagating from the source
at R0 are reflected by the waveguide walls and scattered by
the random inhomogeneities contained within the waveguide.

The waveguide width isLx and the distance along the
waveguide betweenR0 and T is Lz. The initial transmitted
signal atR0 has a limited angular aperture ofϑ. The mean
refractive index is unity. The fluctuation is an isotropic,

Lz

Lx

Fig. 2. Random waveguide model

Gaussian correlated random function of space. The random
fluctuation has RMS heighthRMS and correlation length̀.

To compute the random space-time field, we place equi-
spaced phase screens inside the waveguide separated in dis-
tance by`. Simulating propagation along the waveguide in-
volves combining a sequence of steps from one screen to
the next. Each step involves propagation through an “empty”
waveguide followed by a random phase correction.

We now describe a single step in the phase screen method.
Let zn−1, zn and zn+1 denote locations of three consecutive
phase screens. We assume that the channel transfer function
HB(ω, zn−1 → zn) from zn−1 to zn is known. Because the
waveguide is periodic, we express it as a Fourier series:

HB(ω, zn−1 → zn) =

∞
∑

m=−∞

am(ω, zn)ej2πmx/Lx . (10)

The channel transfer function forzn to zn+1 is then given by

HB(ω, zn → zn+1) = ejkµ̃(x)δz/2

×
[

∞
∑

m=−∞

Tm(ω, δz)am(ω, zn)ej2πmx/Lx

]

(11)

with δz = zn+1−zn andk the wavenumber as defined above.
The forward propagation operatorTm(ω, δz) is defined as

Tm(ω, δz) = exp

[

jk

√

1 − (2πm/Lx)
2
δz

]

. (12)

The random phase correctioñµ(x) is a path-integral of the
fluctuationµ(x, z) = 1−n2(x, z) between the screenszn and
zn+1 with n(x, z) denoting the index of refraction inside the
waveguide.

To limit the angular aperture for the initial transmit atR0,
we filter the Fourier modes before updating the field to the
next phase screen. Letz0 denote the phase screen containing
R0 and Ψ(ω, z0, x) denote the initial transmit signal which
we express as the Fourier series:

Ψ(ω, z0, x) =
∞
∑

m=−∞

ψm(ω)ej2πmx/Lx . (13)

From (12) we determine that propagating modes are those for
which

|m| < kLx

2π
. (14)

All others are evanescent. For a propagating mode, the prop-
agation angle is determined fromsinϑm = 2πm/(kLx). The
largest value ofm such that (14) holds gives the largest
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propagation angleϑmax. To set the angular aperture of the
initial transmitϑ, we restrict the summation in (4) to modes
m such thatϑm ≤ ϑ.

IV. CHARACTERISTIC PARAMETERS OFSPACE-TIME

FOCUSING

A. Space-Time Functions

The space-time received signalsB(τ,R) is converted into
characteristic metrics by considering

• the energy ofsB(τ,R) at any pointR in space, at a given
time τ0, i.e.

ηD(R) = |sB(τ0,R)|2 (15)

with τ0 such that|sB(τ0,R0)| = maxτ{|sB(τ,R0)|}.
• the RMS delay spread ofsB(τ,R) (on a realization

basis),

∆τ(R) =

√

∫

(τ − τm)2|sB(τ,R)|2dτ |
∫

|sB(τ,R)|2dτ | (16)

whereτm is the average delay defined as

τm(R) =

∫

τ |sB(τ,R)|2dτ/
∫

|sB(τ,R)|2dτ.

Note that the above definitions assume that the received
space-time signal is sampled correctly in time so that the
maximal amplitude can be captured. An alternative definition
of η(R) would be to consider the peak energy, independently
from the time delay:

ηM (R) =
[

max
τ

{|sB(τ,R)|}
]2

(17)

Both ηD(R) or ηM (R) and∆τ(R) are random spatial func-
tions, which can be characterized by their first-order moments.

B. Spatial Focusing

The spatial focusing around the focal point is described by
two parameters.

The asymptotic space-focusing gain (SFG) is given by

pD = lim
|R−R0|→∞

ηD(R0)/ηD(R). (18)

It is the ratio between the energy atR0 to the energy at long
distance fromR0. A large value of this ratio indicates better
space focusing. Note thatpM is defined similarly with respect
to ηM (R), and thatpD could be defined at different time
delays, i.e. other thanτ0.

The 3-dB contour of the energy functionηD(R) or ηM (R)
can be considered as the focusing region. It is described by
the distance in both range and cross-range for whichηD(R)
or ηM (R) remains within 3 dB below the energy atR0. The
characteristic parametersGa andGx are therefore defined such
that

ηD(R0 +Gaua)/ηD(R0) = 0.5 (19a)

ηD(R0 +Gxux)/ηD(R0) = 0.5 (19b)

whereua andux are unit vectors, respectively in the range
and cross-range directions. Note that the definition ofGa and
Gx may similarly rely onηM (R). However, our simulation
results show thatGa andGx appear to be independent of the
definition of the energy function.

C. Time Focusing

The time focusing at the focal point is described by the
RMS delay spread ofsB(τ,R) atR = R0, denoted as∆τ0 =
∆τ(R0). Note that this delay-spread is expressed in (16), and
accounts for the pulse width.

Finally, a time focusing gain (TFG) is also suitably defined
by the relative increase of RMS delay spread∆τ(R) at any
point R compared toR0. The parameter is denoted as

σ(R) =
∆τ(R) − ∆τ0

∆τ0
(20)

The asymptotic TFG is given bylim|R−R0|→∞ σ(R). A larger
TFG indicates better temporal focusing in the sense that the
time compression at the focal point with respect to any point
away from the focal point becomes larger.

The metrics descrived above are random variables or func-
tions per channel realization. Hence, they are characterized by
their mean and variance taken over all realizations.

V. CHARACTERIZATION OF FOCUSING FORTIME

REVERSEDFIELDS

We characterize time reversed fields computed from the two
different models described in Section III. For each case the
above metrics are computed, and relationships between these
metrics and several parameters are pointed out.

A. Geometry-based Stochastic Model

In the context of the proposed geometry-based stochastic
(GS) model, we have carried out simulations using the fol-
lowing parameters:

• the central frequency is 2.5 GHz;
• the mirror point is separated from the target point by a

distance of104 wavelengths, i.e. 1.2 km;
• several sets of[ρm, ρM ] are used withρM = 2ρm

(minimum and maxium values ofρm are 900λ and
3000λ);

• different angle spreads, ranging fromπ/3 to 2π.
• the effective path-loss exponent is set to2, and the scat-

tering cross-section is assumed to be complex Gaussian
distributed with relative standard deviation of0.25.

Fig. 3 shows snapshots ofηD(R) (the target point is in
the center of the figure), for two bandwidths: 50 and 100
MHz, two channel delay spreads and omnidirectional angular
spreading of the scatterers (only single scattering is considered
in a first step).

The impact of both the bandwidth and the channel delay-
spread is clearly visible (the scales are kept constant from
graph to graph). For the smallestB×τRMS product, some areas
receive the same level of energy as the target point. For the
largestB× τRMS product, the space focusing gain is about 15
to 20 dB. Also, it seems that the instantaneous energy function
is oscillating as a function of the distance to the focal point.
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Fig. 3. Typical one-shot realizations of time reversed random fields (the
energy function is expressed in [dB]).

1) Omnidirectional scattering results:For omnidirectional
single scattering around the target point, Fig. 3 shows that
the space-time focusing is improved when both the bandwidth
and the delay-spread are increased. Figs. 4 and 5 show
E{ηD(R)/ηD(R0)} and E{∆τ(R)} as a function of the
system bandwidth. The channel delay spread is set to 0.8µs
for these simulations.
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Fig. 4. Simulated energy functionE{ηD(R)/ηD(R0)} as a function of
range and bandwidth.

The simulated dependencies have been fitted by the follow-
ing empirical formulas:

E{pD} = p̄D = 5.9τ0.29
RMSB

0.35 (21)

E{pM} = p̄M = 2.2τ0.24
RMSB

0.52 (22)

E{ ηD(R)

ηD(R0)
} ∼= KD + (1 −KD)

× |J0 (2π|R − R0|/λ) |α exp (−|R − R0|/3.2λ) (23)

with
α = 2.6 exp(−τRMS/1.23) (24)

and
K ∝ 1/p̄D (25)

Ḡa/λ = Ḡx/λ = 0.41τ−0.01
RMS B−0.02 (26)

∆τ0 = 0.083τ−1.25
RMS B−1 + 0.93τ0.92

RMS (27)

E{σ(R)} ∼= 0.37{1 − |J0(2π|R − R0|/λ)|β

× exp(−|R − R0|/1.5λ)} (28)

with β = 1.3 exp(−τRMS/1.8). Here, the bandwidthB is
expressed in MHz, and the delay-spreadτRMS is expressed
in µs.

The alternative energy ratioE{ηM (R)/ηM (R0)} can be
expressed in the same fashion as in (23).

• In (21), (26) and (27), exponents forB and τRMS

are roughly similar as soon as both variables appear
multiplied by each other. This observation implies that
space-time focusing in general is related to the product
B×τRMS. So, we can affirm that the quality of space-time
focusing is improved by increasing the productB×τRMS.
However, that assertion should be nuanced, since some
terms in (27) and (28), as well asα andβ are only related
to the channel delay-spread.

• WhenB is sufficiently large, the space-focusing param-
eters depend uponB × τRMS. This impact is significant
regarding the asymptotic SFG. However, the dependence
of the 3-dB contour width towardsB × τRMS is much
weaker. BothGa andGx are therefore mostly inversely
proportional to the carrier frequency only. Note that for
smaller bandwidths (for which eqs. (21) and (22) are
not valid anymore), the average asymptotic SFG tends
to unity.

• The average delay spread at the focal point results from
the additive combination of two terms: one roughly
related toB× τRMS, and the other one toτRMS only. For
largeB × τRMS, the variation of∆τ0 with B becomes
weak, so∆τ0 only depends upon the channel delay-
spread. This is clearly visible on Fig. 5. At any other
point R outside the focusing region, the delay spread
E{∆τ(R)} is an oscillating increasing exponential func-
tion of the distance from the focal point. It saturates at
long distances.

• At any point R, the time-focusing gainE{σ(R)} is
only related to the channel delay-spread. Furthermore,
the asymptotic TFG (i.e. at long distance) is a constant
value (∼ 0.37) independent fromB andτRMS, at least for
sufficiently largeB × τRMS (> 10).

2) Impact of reduced angular spread:We investigate in
the following the impact of angle-spread on the quality of
space-focusing. When the angle spread is decreased from2π
to smaller angles, the spatial focusing is degraded as expected.

• For ∆ϑ > π/3, the asymptotic SFḠpD decreases as
∆ϑ decreases. It varies as p(∆ϑ/2π)0.6 relatively to the
simulatedp̄D with ∆ϑ = 2π.

• The 3-dB contoursḠa and Ḡx are not identical any-
more, and Ḡa

∼= 4Ḡx for ∆ϑ ≤ 3π/4. They are
decreased respectively by∆ϑ−1.3 and∆ϑ−1.2 relatively
from their previous values (i.e. when∆ϑ was equal to
2π). For ∆ϑ > 3π/4, the ratioḠa(∆ϑ)/Ḡa(∆ϑ = 2π)
continues to decrease following a∆ϑ−1.3 law while
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Ḡx(∆ϑ)/Ḡx(∆ϑ = 2π) remains constant. Hence,̄Ga =
Ḡx for ∆ϑ = 2π.

New empirical expressions can therefore be derived easily
that take into account that the channel delay spreadτRMS is
also modified when reducing the angle spread, as highlighted
by (4) and (5):

p̄D = 5.9τ0.29
RMSB

0.35(∆ϑ/2π)0.6ν−0.2 (29)

with ν = (∆ϑ+ sin ∆ϑ)/(2π),

Ḡa/λ = 0.41τ−0.01
RMS B−0.02(∆ϑ/2π)−1.3ν0.005

≈ 0.41(∆ϑ/2π)−1.3 (30)

Ḡx/λ =







0.13τ−0.01
RMS B−0.02(∆ϑ/2π)−1.2ν0.005,

π/3 ≤ ∆ϑ ≤ 3π/4,
0.41τ−0.01

RMS B−0.02ν0.005, ∆ϑ > 3π/4

≈
{

0.13(∆ϑ/2π)−1.2, π/3 ≤ ∆ϑ ≤ 3π/4,

0.41(∆ϑ/2π)−1.3, ∆ϑ > 3π/4.
(31)

3) Benefits from multiple antennas:The impact of using
multiple antennas at the transmit point is analyzed in the
following. At the transmit point, the terminal consists ofMT

antennas. Each antenna has a specific location aroundT,
denoted asTu. Hence, the focused signal is written as

sB(τ,R0) =

MT
∑

u=1

hB(τ,R0 → T) ? hB(−τ,R0 → T) (32)

Increasing the number of antennas should increase the
space-time focusing. Simulations actually show thatGa and
Gx remain unaffected when the number of antennas is in-
creased. Regarding the SFG, the benefit from multiple an-
tennas is inversely proportional to(1 + MT ) ∼= MT . This
corresponds to what intuition tells us. Indeed, the peak energy
at the focal point will grow asM2

T , but only asMT anywhere
else outside the focusing region.

4) Multiple bounce propagation model:We now consider
the multiple bounce model. As mentioned previously, this
model is sensitive to the path-loss exponent and the dis-
tribution of scattering cross-section. For a relative standard
deviation of 0.25, the average loss per additional reflection is
found to be about 12 dB. For this value, the impact of multiple
reflections on the focusing is negligible. If the relative standard
deviation is increased to 0.4, the impact, though not negligible,
remains small. This is mostly because the large number of
scatterers enables the time-reversed field to be highly focused
with single-bounce interactions.

5) Space-time focusing in time-reversed transmissions:So
far, we have assumed that a single time-reversed pulse is sent
from the transmitter to the target point. This section analyzes
how space-time focusing is affected when sending a time-
reversed signal. The latter consists of the convolution of the
time-reversed pulse with a train of information bits.

Fig. 6 shows the SFG as a function of the relative data
rate (i.e. the data rate relative to the pulse bandwidth) fortwo
different Nyquist roll-off factors. The bandwidth is equalto 40
MHz and the channel RMS delay-spread to0.8µs. For these
values the single-pulse SFḠpD ≈ 13 dB. It is clear from

Fig. 6 that for the full rate the space focusing advantage is
totally destroyed.

The limit to which the data rate can be increased with-
out destroying focusing is related strongly to the coherence
bandwidth of the channel transfer function. This coherence
bandwidth gives the frequency difference at which phases
become decorrelated and is inversely proportional to the delay
spread. Encoding on frequency intervals smaller than the
coherence bandwidth destroys spatial information contained
in the channel transfer function resulting in poor focusing.

In fact, Fig. 6 shows that space focusing is slowly restored
as this rate decreases. It is about 5 to 6 dB for a rate ofB/10.
For this high roll-off factor, the degradation is approximately
0.5 dB less than for the zero roll-off case. This is not surprising
since higher roll-off factors yield lower side lobes.
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Therefore, there is a trade-off between the data rate and
the spatial focusing effect that can be achieved in a wireless
channel for a given bandwidth. This trade-off is dictated by
the coherence bandwidth of the channel transfer function. For
the example given in Fig. 6, rates lower thanB/10 are needed
to maintain a sufficient level of focusing.
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Fig. 6. Spatial focusing gain as a function of data rate and roll-off factor.
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B. Waveguide Model

Numerical simulations in the waveguide have been carried
out using the following parameters:

• the central frequency is 2.5 GHz
• the lengthLz is 100 m
• the refractive index fluctuation has RMS heighthRMS =

0.05 and correlation length̀ = 1.0 m
• the waveguide widthLx is either12.8, 25.6 or 51.2 m
• the source angleϑ is either25◦, 45◦ or 65◦

• the bandwidthB is between10 and100 MHz.

The initial transmit positionR0 is centered in the waveguide.
We setR0 to be the origin for thex − z coordinate system.
The transmitter is located100 m down-range fromR0. It is
an array spanning1m ≤ x ≤ 2m.

Figs. 7 and 8 showηD(x, z0)/ηD(x0, z0) and ∆τ(x, z0)
respectively for a waveguide of width25.6 m. Averages were
computed for 500 realizations of the random refractive index.
Results are shown for bandwidths of10, 20, 40, 80 and 100
MHz.
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In Fig. 7 we observe that quality of spatial focus aboutx0 =
0 is nearly the same over all bandwidths. However, the energy
away from the refocus location decreases as the bandwidth
increases. In particular, we observe a5 dB difference between
the 10 MHz and100 MHz cases.

In Fig. 8 we observe the quality of temporal focus about
x0 = 0 where ∆τ is smallest. Because a larger bandwidth
yields a shorter pulse,∆τ is smaller for larger bandwidths.
Nonetheless, we observe that these curves become smoother
as the bandwidth increases. This phenomenon is due to the
onset of statistical stability manifested from broad bandwidth
signals [18].
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Fig. 9. Asymptotic space-focusing gain (SFG) as a function ofbandwidth
for different source angles (top) with waveguide widthLx = 25.6 m and
different waveguide widths (bottom) with source angle∆ϑ = 45◦.

To examine spatial focusing in greater detail, we show the
space-focusing gain in Fig. 9. The top plot is forLx = 25.6
m with different values ofϑ. The bottom plot is forϑ = 45◦

with different values ofLx. As we have already mentioned,
adding bandwidth to the system reduces the energy away from
the refocus location. Fig. 9 further demonstrates this since all
curves show that SFG increases with bandwidth. The top plot
in Fig. 9 shows that limitingϑ reduces the SFG. The bottom
plot shows that there is little difference between theLx = 12.8
m and 25.6 m cases. However the SFG for theLx = 51.2
m case is much smaller than the other two. For a fixedϑ,
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widening the waveguide reduces the diversity of modes that
propagate in the channel. This reduction, in turn, reduces the
quality of focus in time reversal.
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Fig. 10. 3-dB contour in cross-rangeGx as a function of bandwidth for
different source angles (top) with waveguide widthLx = 25.6 m and different
waveguide widths (bottom) with source angle∆ϑ = 45◦.

In addition, we show the 3-dB contour in cross-rangeGx

in Fig. 10. Similar to Fig. 9, the top plot is forLx = 25.6
m with different values ofϑ and the bottom plot is for
ϑ = 45◦ with different values ofLx. Here we observe
that cross-range dependence of the 3-dB contour changes
very little with respect to bandwidth. Because limiting the
angular aperture of the source is a spatial low-pass filter
yielding broader initial transmit sources,Gx increases asϑ
decreases. For different waveguide widths, the 3-dB contour
does not change significantly. It decreases slightly as the width
increases because of added angular diversity. From (14) we
understand that the number of propagating modes within a
fixed angular aperture is set byλ andLx. With λ fixed andLx

increasing, more propagating modes exists inside the angular
aperture. For example, withϑ = 45◦, there are approximately
75, 150 and 301 propagating modes forLx = 12.8 m, 25.6 m,
and 51.2 m, respectively. Time reversal methods exploit this
added spatial diversity to tighten the refocusing.

To examine temporal focusing more closely, we show the
asymptotic limit of the time-focusing gain in Fig. 11. The
top plot is for Lx = 25.6 m with different values ofϑ
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Fig. 11. Asymptotic time-focusing gain (TFG) as a function of bandwidth
for different source angles (top) with waveguide widthLx = 25.6 m and
different waveguide widths (bottom) with source angle∆ϑ = 45◦.

and the bottom plot is forϑ = 45◦ with different values of
Lx. All curves decrease monotonically with bandwidth. The
main reason for this decrease is that the pulse is narrower
as bandwidth increases. The overall delay spread is reduced
and the refocus region is not as pronounced. The TFG in-
creases withϑ since the additional diversity allows for greater
temporal focusing in the sense that ratio between∆τ at and
away fromx0 becomes greater. Similar to the result for the
SFG, we observe that the TFG forLx = 12.8 m and25.6 m
are close to each other while the widest waveguide yields a
smaller TFG. AsLx increases effects manifested by reflections
from waveguide walls decrease and the waveguide domain
approaches an unbounded one exhibiting a smaller TFG.

C. Comparison between results obtained from both models

The space-time focusing properties appear in both models.
Yet, some differences can be observed. Let us first consider
the similarities:

(i) The space-focusing gain increases with bandwidth in
both models. In the GS model, it is also shown that the
SFG increases similarly with the channel delay-spread.
In the waveguide model, simulation results illustrate that
the SFG also increases with the channel delay-spread.
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The increase for the waveguide is related to the source
angle and to the inverse of the waveguide width.

(ii) Time-focusing gain examined using the 3-dB contour
shows a weak dependence on bandwidth in both sce-
narios. Similarly, the dependence on the channel delay-
spread is also weak, but the 3-dB contour decreases
as the angle-spread increases. This is clear in the GS
model. In the waveguide model, we have observed that
the dependence towards the waveguide width is weak,
while there is a noticeable dependence on the angle-
spread.

Some differences between these two models have been
observed. The most pronounced one is that the SFG ap-
pears to be independent of the bandwidth in the case of
the GS model, while a significant dependence is found in
the waveguide. Also, the absolute value of the SFG is much
larger in the waveguide scenario. To better understand this
difference, we need to refer to the specifics of the models.
In the waveguide case, two mechanisms cause delay-spread:
large-scale multipath results from the coherent reflections by
the waveguide walls, small-scale multipath is caused by the
non-homogeneities of the refractive index. By contrast, the GS
propagation only consists of non-coherent reflections, similar
to the waveguide small-scale multipathing. Focusing in time
reversal is enhanced for bounded domains in that it is more
robust. This accounts for the difference seen in these two
models. As the waveguide width approaches infinity, it begins
to agree with an unbounded medium.

VI. CONCLUSIONS

We have proposed several metrics to characterize space-
time focusing resulting from time-reversal methods. We have
demonstrated the use of these metrics on two different scat-
tering modes: the geometry-based stochastic model and the
random waveguide model. Although these two models have
very different mechanisms for multipathing, they yield re-
markable similarities in demonstrating the stability of focusing
using time-reversal. THerefore, one can safely assume that
time-reversal methods should provide an effective method to
improve wireless communication systems.
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