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Abstract.

In this Letter we introduce a systematic perturbation method for analyzing the e�ect of small perturbations on critical
self focusing by reducing the perturbed critical nonlinear Schr�odinger equation (PNLS) to a simpler system of modulation
equations that do not depend on the transverse variables. The modulation equations can be further simpli�ed, depending on
whether PNLS is power conserving or not. An importantand somewhat surprising result is that various small defocusingper-
turbations lead to a universal form for the modulation equations, whose solutions have slowly decaying focusing-defocusing
oscillations.
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1. Introduction. The perturbed critical nonlinear Schr�odinger equation (PNLS)

i z +�? + j j2 + �F ( ;  z;r? ; . . .) = 0 ;  (0; x; y) =  0(x; y)(1)

�? =
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@x2
+
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@y2
; 0 < �� 1 ;

arises in various physical models in nonlinear optics1, plasma physics and uid dynamics (e.g. table 1).
When � = 0 eq. (1) reduces to the critical nonlinear Schr�odinger equation (CNLS)

i z +�? + j j2 = 0 :(2)

We recall that for the nonlinear Schr�odinger equation with a general nonlinearity � and transverse di-
mension D
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�
 + j j2� = 0 ;

we distinguish between three di�erent cases: 1) When �D < 2, the subcritical case, di�raction always
dominates and focusing singularities do not form. 2) In the supercritical case �D > 2, there is a large
class of smooth initial amplitudes for which a focusing singularity forms in �nite distance z. Since in
supercritical self-focusing the nonlinearity dominates over di�raction, addition of small perturbations to
the equation has a small e�ect. 3) In the critical case �D = 2 (as in the case of eq. 2), solutions can
also become singular in a �nite z. However, in this borderline case between subcritical and supercritical
self-focusing, singularity formation is characterized by a near-balance between the focusing nonlinearity
and di�raction. As a result, critical self-focusing is extremely sensitive to small perturbations, which can
have a large e�ect and can even lead to the arrest of collapse.

Self-focusing is a genuinely nonlinear phenomenon and standard linearization methods cannot be used
to analyze singularity formation in eqs. (1) and (2). In addition, methods such as the inverse scattering
transform (IST), which is so successful in the 1D cubic subcritical case, cannot be applied to eq. (2),
because (2) is not integrable. Self-focusing in (1) or (2) is, moreover, a local phenomenon which cannot
be accurately captured by global estimates. For these reasons, despite considerable progress the present
theory of critical self-focusing in the presence of small perturbations is still far from complete. In this
Letter we present a general method for analyzing the e�ect of a any deterministic or random perturbation
on critical self-focusing. In this method PNLS (1) is reduced to a simpler system of modulation equations
which do not depend on the transverse variables. The reduced system is much easier to analyze and
simulate, and provides insights that are hard to get directly from PNLS.

� Department of Mathematics, UCLA, Los-Angeles CA 90095-1555, �bich@math.ucla.edu
y Department of Mathematics, Stanford University, Stanford CA 94305, papanicolaou@stanford.edu
1 The amplitude  may depend on additional variables, such as t in the case of time-dispersion.
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2. Review of critical self-focusing. CNLS (2) has two important conserved quantities: The power

N :=
1

2�

Z
j j2 dxdy

and the Hamiltonian

H( ) :=
1

2�

�Z
jr? j

2 dxdy �
1

2

Z
j j4 dxdy

�
; r? =

�
@
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@
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�
:

A su�cient condition for singularity formation in (2) is

H( 0) < 0

while a necessary condition is

N ( 0) � Nc
�= 1:86 :

CNLS has waveguide solutions of the form

 = exp(it)R(r) ; r = (x2 + y2)1=2 ;

where R(r) satis�es �
@2

@r2
+

1

r

@

@r

�
R�R+ R3 = 0 ; R0(0) = 0 ; lim

r!1
R(r) = 0 :(3)

The solution of eq. (3) with the lowest power (`ground state'), sometimes called the Townes soliton, has
an important role in self-focusing theory. This positive, monotonically decreasing solution has exactly
the critical power for self-focusing Z 1

0

R2 rdr = Nc(4)

and its Hamiltonian is equal to zero

H(R) = 0 :(5)

Analysis of blowup in CNLS is based on the assumption (which is supported by numerical and
analytical evidence) that near the singularity the solution is roughly a modulated Townes soliton:

 �  R ;(6)

where

 R :=
1

L
R(�) exp(iS) ; � =

1

L
; S = � +

Lz
L

r2

4
;(7)

and

d�

dz
=

1

L2
:(8)

More precisely, near the singularity,  s, the inner part of the solution2, whose power is slightly above
critical, collapses towards the singularity in a quasi-self-similar fashion,

 s �
1

L
V (�; �) exp(iS) ;

2 A possible de�nition is  s =  for 0 � � � �c, with 1� �c constant.
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where

V ! R as z ! Zc

and Zc is the location of the singularity. Based on this modulation ansatz, it was shown that near the
singularity self-focusing can be described by the reduced system [1,2,3]

�z = �
�(�)

L2
;(9)

Lzz = �
�

L3
(10)

where

�(�) � c exp(���1=2) ; c �= 45:1 :

In order to motivate (9,10), we note that the modulation variable L is the radial width as well as
1=amplitude of the focusing part  s, and that � is proportional to the excess power above critical of  s
[4]. Therefore, at the point of blowup L(Zc) = �(Zc) = 0. The �(�) term arises from radiation e�ects
(power losses of  s) during self-focusing. Since near the singularity

0 � �(z)� 1 ;

�(�) is exponentially small and self-focusing is essentially adiabatic.

2.1. Adiabatic approach. Originally, the reduced system (9,10) was analyzed by solving (9) to
leading order near Zc and then using (10). This leads to the loglog law for the rate of critical blowup
[1,2,3]. However, it turns out that the loglog law does not become valid even after ampli�cation of the
peak amplitude by a factor of a billion or more, which is long after the nonlinear Schr�odinger equation
ceases to be physically relevant. Fortunately, this can be `�xed' by solving (9,10) using an adiabatic
approach. Since changes in � (i.e. the power of  s) are exponentially small compared with the focusing
rate, we �rst solve (10) with � constant, and only then add non-adiabatic e�ects (9) as the next-order
correction. Application of this approach leads to an adiabatic law for critical self-focusing which is valid
almost from the onset of self-focusing [5].

3. Modulation theory for self-focusing in the perturbed CNLS. The adiabatic law, which
provides an accurate description of critical self-focusing in domain of physical interest, is obtained in two
stages: 1) Derivation of the reduced modulation equations (9,10) which do not depend on the transverse
variables and 2) Solving these equations with the radiation term �(�) neglected to leading order (adiabatic
approach). In this section we extend this approach to self-focusing in PNLS: 1) The modulation ansatz
(6) is used in proposition 3.1 to reduce eq. (1) to the system (11) and 2) The reduced system is analyzed
with the adiabatic approach (propositions 3.2{3.3). More details, as well as proof of results are published
elsewhere3 [6].

For modulation theory to be valid, the following three conditions must hold:
1. The focusing part of the solution is close to the asymptotic pro�le (6).
2. The power of the focusing part is close to critical���� 12�

Z
j s(z; x; y)j

2 dxdy � Nc

����� 1 ;

or equivalently,

j�(z)j � 1 :

3 The paper is available at the web sites http://www.math.ucla.edu/~�bich and http://georgep.stanford.edu.
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3. The perturbation is small:

j�F j � j�? j and j�F j � j j3 :

In general, at the onset of self-focusing only condition 3 holds. As the solution approaches Zc (the blowup
point in the absence of the perturbation), conditions 1{2 are also satis�ed and modulation theory becomes
valid.

The main result of modulation theory is the following:
Proposition 3.1. If conditions 1{3 hold and if F is an even function in x and y, self-focusing in

PNLS (1) is given to leading order by the reduced system

�z(z) +
�(�)

L2
=

�

2M
(f1)z �

2�

M
f2 ; Lzz(z) = �

�

L3
:(11)

The auxiliary functions f1 and f2 are given by

f1(z) = 2L(z)Re

�
1

2�

Z
F ( R) exp(�iS)[R(�) + �r?R(�)] dxdy

�
(12)

f2(z) = Im

�
1

2�

Z
 �RF ( R) dxdy

�
(13)

where

M =
1

4

Z 1

0

r3R(r) dr �= 0:55 :

We note that assuming that we can carry out the transverse integration, f1 and f2 are known functions
of the modulation variables L, �, � and their derivatives.

3.1. Conservative and non-conservative perturbations. Considerable simpli�cation is achieved
if we distinguish between conservative perturbations i.e. those for which the power remains conserved

d

dz

Z
j (z; x; y; �)j2 dxdy � 0

in (1), and non-conservative perturbations:
Proposition 3.2. Let conditions 1{3 hold.
1. If F is a conservative perturbation i.e.

Im

Z
 �F ( ) dxdy � 0 ;

then f2 � 0, and to leading order (11) reduces to

� L3Lzz = �0 +
�

2M
f1 ; �0 = �(0) �

�

2M
f1(0) ;(14)

where �0 is independent of z.
2. If F is a non-conservative perturbation i.e.

Im

Z
 �F ( ) dxdy 6� 0

then to leading order (11) reduces to

�z = �
2�

M
f2 ; Lzz = �

�

L3
:(15)

Note that in both cases, non-adiabatic e�ects disappear from the leading order behavior of (11).
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3.2. Universality of the e�ect of conservative perturbations. For various conservative perturbations4

f1 turns out to have the universal form

f1 � �
C1
L2

; C1 = constant :(16)

The following proposition covers this canonical case.
Proposition 3.3. When self-focusing is given by (14) and f1 is given by (16) then y := L2 satis�es

the universal oscillator equation

(yz)
2 =

�4H0

M

1

y
(yM � y)(y � ym) ;(17)

where

yM =

p
�2
0
+ �C1H0=M2 + �0
�2H0=M

=
M�0
�H0

�
1 +O

�
�H0

�2
0

��
(18)

ym =
�C1
2M

1p
�2
0
+ �C1H0=M2 + �0

=
�C1
4M�0

�
1 +O

�
�H0

�2
0

��
;(19)

�0 = �(0) +
�C1

2ML2(0)
; H0 � H(0) +

�C1
4

1

L4(0)
:

Let us de�ne

Lm := y1=2m ; LM := y
1=2
M :

1. If the perturbation is defocusing i.e.

�C1 > 0 ;(20)

then it will arrest blow-up in (14), i.e. L (or y) will remain positive for all z.
(a) If in addition to (20), �0 > 0 and H0 < 0, then

0 < Lm < LM

and L will go through periodic oscillations between Lm and LM (Figure 1A). The period of
the oscillations is

�Z = 2

r
MyM
�H0

E

�
1�

ym
yM

�
;(21)

where E(m) =
R �=2
0

(1 �m sin2 �)1=2 d� is the complete elliptic integral of the second kind.
(b) If in addition to (20), �0 > 0 and H0 > 0 , then

i. If Lz(0) < 0, self-focusing is arrested when L = Lm > 0, after which L will increase
monotonically to in�nity (Figure 1B).

ii. If Lz(0) > 0, L will increase monotonically to in�nity.
2. If the perturbation is focusing i.e.

�C1 < 0

and if in addition �0 > 0 and one of the following two conditions holds (1) H0 > 0 and Lz(0) < 0
or (2) H0 < 0, then the solution of (14) will blow up in a �nite distance (Figure 1C), i.e.

9Z� such that 0 < Z� <1 and L(Z�) = 0 :

4 marked in table 1 with y
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Fig. 1. The leading order e�ect of the generic conservative perturbation (16) A: Defocusing perturbation and H0 < 0
(proposition 3.3 -1.a) B: Defocusing perturbation, H0 > 0 and Lz(0) < 0 (proposition 3.3-1bi) C: Focusing perturbation
and Lz(0) < 0 (proposition 3.3 -2). In all cases �0 > 0 (i.e. power above critical).

3.3. Non-adiabatic e�ects. The results of the previous section show that the exponentially small
radiation term �(�) disappears from the leading order behavior of perturbed CNLS. In the non-conservative
case the e�ect of �(�) is even smaller than the (f1)z term which is also ignored. However, in the conser-
vative case when �0 > 0 and H0 < 0, a defocusing perturbation can lead to periodic oscillations (as in
proposition 3.3-1a). In this case, the non-adiabatic radiation e�ect �(�) provides the only mechanism for
decay of the oscillations. It can be shown that if � is moderately small the total power loss during one
oscillation is small and the focusing-defocusing oscillations are slowly decreasing, but that for su�ciently
small � the quasi-periodic picture breaks down and focusing is completely arrested after a few oscillations
[7]. Further analysis of non-adiabatic e�ects in (17) can be found in [4].

3.4. Modulation theory for multiple perturbations. In some cases, one is interested in the
combined e�ect of several small perturbations e.g. randomness and quintic nonlinearity or time-dispersion
and nonparaxiality (see table 1). Modulation theory can easily handle these cases, since the modulation
equations are linear in F . Therefore, one simply adds the contribution of each perturbation to the
modulation equations.

4. Applications. The modulation approach was used by Malkin to study the e�ect of a small
defocusing �fth power nonlinearity [4]. In [8], Fibich, Malkin and Papanicolaou analyzed the e�ect of
small normal time-dispersion, using for the �rst time a systematic approach that is generalized in this
Letter. A similar approach was also used by Fibich to analyze the e�ect of beam nonparaxiality [7] and the
unperturbed CNLS [5] and by Fibich and Papanicolaou to analyze the combined e�ect of time-dispersion
and nonparaxiality [9]. Additional applications, listed in table 1, are derived in [6].

Direct numerical con�rmation of the validity of the modulation equations and the adiabatic approach
was carried out in the case of the unperturbed NLS [5] and in the case of small normal time dispersion [8].
In many other cases, there is qualitative agreement between the predictions of the modulation equations
and the results of numerical simulations of the corresponding PNLS. For example, the universal behavior
of decaying focusing-defocusing oscillations was observed numerically for �ber arrays [10], saturating
nonlinearities [3,11] and nonparaxiality [12].

5. Conclusion. In this Letter we have introduced a modulation theory for analyzing the leading
order e�ects of small perturbations on critical self-focusing. This theory is able to capture the delicate
balance between nonlinearity and di�raction in critical self-focusing, because it is based on perturbations
of the solution around modulated Townes solitons ( R). We note that the validity of other studies of
PNLS in which the derivation of reduced equations is based on modulated Gaussians is questionable,
because modulated Gaussians cannot capture the delicate balance in critical self-focusing [e.g. Gaussians
cannot simultaneously satisfy (4) and (5)]. Moreover, the derivation of reduced equations with our  R-
based modulation theory is just as easy as with modulated Gaussians. In fact, all that is needed is to
carry out the transverse integration in evaluating f1 and f2.

We have already remarked that modulation theory becomes valid near the blowup point Zc. For some
perturbations (e.g. nonparaxiality, saturating nonlinearities) one can show that the modulation equations
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remain valid for all z [7,6]. However, in other cases (e.g. small normal time-dispersion) it is not clear for
how long modulation theory remains valid, and further analysis may be needed for the advanced stages
of self-focusing.
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Perturbed Application Reduced conser- Derived

CNLS equation vative in

i z +�? + j j2 + � xxxx = 0 �ber arrays (17) with C1 = (3=2)[I6 � 3Nc] yesy [6]

i z +�? + j j2 � �j j4 = 0 quintic (17) with C1 = (4=3)I6 yesy [4]
nonlinearity

i z +�? + saturating (17) with C1 = (4=3)I6 yesy [6]
1

2�
(1� exp(�2�j j2)) = 0 nonlinearity

i z +�? +
j j2

1 + �j j2
 = 0 saturating (17) with C1 = (4=3)I6 yesy [6]

nonlinearity

i z +�? + j j2 � ��x = 0 ; Davey-
��xx + �yy = �(j j2)x Stewartson (9) , (10) yes [6]

i z +�? + j j2 + � zz = 0 nonparaxiality (17) with C1 = 4Nc no [7]

i z +�? + j j2 h random �L3Lzz = �0 + 4�L4h(z) yes [6]
+�(x2 + y2)h(z) = 0

i z +�? + j j2 + �ber arrays �L3Lzz = �0+ yes [6]

�1x
2h(z) + �2 xxxx = 0 + h random 4�1L4h(z)�

3�2[I6 � 3Nc]

4M

1

L2

i z +�? + j j2 + quintic �L3Lzz = �0+ yes [6]

�1(x2 + y2)h(z) � �2j j
4 = 0 nonlinearity 4�1L4h(z) �

2�2I6
3M

1

L2
+h random

i z +�? + j j2 � � tt = 0 time- �z =
2�Nc

M
�tt , no [8]

dispersion (8) , (10)

i z +�? + N = 0 ; Debye �L3Lzz = �0 +
�CD
2M

Lt
L

yes [6]

�Nt +N = j j2 relaxation
CD =

R
(r?R2)2r3 dr �= 6:43

i z +�? + j j2 + �1 zz+ time- �z = �
2�1Nc

M

�
1

L2

�
z

�

�2

h
2i
n0cg
c

(j j2 )t �  zt

i
dispersion+ (6cg

n0
c
� 2)

�2Nc

M

�
1

L2

�
t

no [9]

��3 tt = 0 nonparaxiality +
2�3Nc

M
�tt, (8), (10)

Table 1

Perturbations of critical NLS and their corresponding modulation equations. Here I6 =
R1
0

R6 rdr. y - f1 given by (16)


