

The Noise Collector for sparse recovery in high dimensions

Miguel Moscoso^{a,2}, Alexei Novikov^b, George Papanicolaou^{c,2}, and Chrysoula Tsogka^d

^aDepartment of Mathematics, Universidad Carlos III de Madrid, Leganes, Madrid 28911, Spain; ^bDepartment of Mathematics, Pennsylvania State University, University Park, PA 16802; ^cDepartment of Mathematics, Stanford University, Stanford, CA 94305; ^dDepartment of Applied Mathematics, University of California, Merced, CA 95343

This manuscript was compiled on June 28, 2020

1 **The ability to detect sparse signals from noisy high-dimensional**
2 **data is a top priority in modern science and engineering. It is well**
3 **known, that a sparse solution of the linear system $\mathcal{A}\rho = b_0$ can be**
4 **found efficiently with an ℓ_1 -norm minimization approach if the data**
5 **is noiseless. However, detection of the signal from data corrupted by**
6 **noise is still a challenging problem as the solution depends, in gen-**
7 **eral, on a regularization parameter whose optimal value is not easy**
8 **to choose. We propose a new efficient approach that does not re-**
9 **quire any parameter estimation. We introduce a *no-phantom* weight**
10 **τ and the Noise Collector matrix \mathcal{C} , and solve an augmented system**
11 **$\mathcal{A}\rho + \mathcal{C}\eta = b_0 + e$, where e is the noise. We show that the ℓ_1 -norm**
12 **minimal solution of this system has zero false discovery rate for any**
13 **level of noise, with probability that tends to one as the dimension of**
14 **b_0 increases to infinity. We obtain exact support recovery if the noise**
15 **is not too large, and develop a Fast Noise Collector Algorithm which**
16 **makes the computational cost of solving the augmented system com-**
17 **parable to that of the original one. We demonstrate the effectiveness**
18 **of the method in applications to passive array imaging.**

high dimensional probability | convex geometry | sparsity promoting
algorithms | noisy data |

1 **W**e want to find sparse solutions $\rho \in \mathbb{R}^K$ for
2
$$\mathcal{A}\rho = b, \quad [1]$$

3 from highly incomplete measurement data $b = b_0 + e \in \mathbb{R}^N$,
4 corrupted by noise e , where $1 \ll N < K$. In the noiseless case,
5 ρ can be found exactly by solving the optimization problem (1)

6
$$\rho_* = \arg \min_{\rho} \|\rho\|_{\ell_1}, \text{ subject to } \mathcal{A}\rho = b, \quad [2]$$

provided the measurement matrix $\mathcal{A} \in \mathbb{R}^{N \times K}$ satisfies additional conditions, e.g., decoherence or restricted isometry properties (2, 3), and the solution vector ρ has a small number M of nonzero components or degrees of freedom. When measurements are noisy, exact recovery is no longer possible. However, the exact support of ρ can still be determined if the noise is not too strong. The most commonly used approach is to solve the ℓ_2 -relaxed form of Eq. 2

$$\rho_\lambda = \arg \min_{\rho} \left(\lambda \|\rho\|_{\ell_1} + \|\mathcal{A}\rho - b\|_{\ell_2}^2 \right), \quad [3]$$

7 known as Lasso in the statistics literature (4). There are
8 sufficient conditions for the support of ρ_λ to be contained
9 within the true support, see e.g. Fuchs (5), Tropp (6), Wain-
10 wright (7), and Maleki *et al* (8). These conditions depend
11 on the signal-to-noise ratio (SNR), which is not known and
12 must be estimated, and on the regularization parameter λ ,
13 which must be carefully chosen and/or adaptively changed (9).
14 Although such an adaptive procedure improves the outcome,
15 the resulting solutions tend to include a large number of “false

positives” in practice (10). Belloni *et al* (11) proposed to solve the square-root Lasso minimization problem instead of Eq. 3, which makes the regularization parameter λ independent of the SNR. Our contribution is a new computationally efficient method for exact support recovery, with no false positives, in noisy settings. It also does not require an estimate on SNR.

Main Results. Suppose ρ is an M -sparse solution of system 1 with no noise, where the columns of \mathcal{A} have unit length. Our main result ensures that we can still recover the support of ρ when the data is noisy by looking at the support of ρ_τ found as

$$(\rho_\tau, \eta_\tau) = \arg \min_{\rho, \eta} (\tau \|\rho\|_{\ell_1} + \|\eta\|_{\ell_1}), \quad [4]$$

subject to $\mathcal{A}\rho + \mathcal{C}\eta = b_0 + e$,

with an $O(1)$ weight τ , and an appropriately chosen *Noise Collector* matrix $\mathcal{C} \in \mathbb{R}^{N \times \Sigma}$, $\Sigma \gg K$. The minimization problem 4 can be understood as a relaxation of 2, as it works by absorbing *all* the noise, and possibly some signal, in $\mathcal{C}\eta_\tau$.

The following theorem shows that if the signal is pure noise, and the columns of \mathcal{C} are chosen independently and at random on the unit sphere $\mathbb{S}^{N-1} = \{x \in \mathbb{R}^N, \|x\|_{\ell_2} = 1\}$, then $\mathcal{C}\eta_\tau = e$ for any level of noise, with large probability.

Theorem 1 (No phantom signal): Suppose $b_0 = 0$ and $e/\|e\|_{\ell_2}$ is uniformly distributed on \mathbb{S}^{N-1} . Fix $\beta > 1$, and draw $\Sigma = N^\beta$ columns for \mathcal{C} , independently, from the uniform distribution on \mathbb{S}^{N-1} . For any $\kappa > 0$ there are constants $\tau = \tau(\kappa, \beta)$ and $N_0 = N_0(\kappa, \beta)$ such that, for all $N > N_0$, ρ_τ , the solution of Eq. 4, is zero with probability $1 - 1/N^\kappa$.

This Theorem guarantees, with large probability, a zero false discovery rate in the absence of signals with meaningful information. The key to a zero false discovery rate is the choice of a *no-phantom* weight τ . Next, we generalize this

Significance Statement

The ability to detect sparse signals from noisy, high-dimensional data is a top priority in modern science and engineering. For optimal results, current approaches need to tune parameters that depend on the level of noise, which is often difficult to estimate. We develop a new parameter-free, computationally efficient, ℓ_1 -norm minimization approach that has a zero false discovery rate (no false positives) with high probability for any level of noise while it detects the exact location of sparse signals when the noise is not too large.

Author contributions: M.M., A.N., G.P., and C.T. performed research and wrote the paper.

The authors declare no conflict of interest.

²To whom correspondence should be addressed: papanicolaou@stanford.edu, moscoso@math.uc3m.es

40 result for the case in which the recorded signals carry useful
41 information.

42 Theorem 2 (Zero false discoveries): Let ρ be an M -sparse
43 solution of the noiseless system $\mathcal{A}\rho = \mathbf{b}_0$. Assume κ, β , the
44 Noise Collector, and the noise are the same as in Theorem 1.
45 In addition, assume that the columns of \mathcal{A} are incoherent,
46 in the sense that $|\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \leq \frac{1}{3M}$. Then, there are constants
47 $\tau = \tau(\kappa, \beta)$ and $N_0 = N_0(\kappa, \beta)$ such that $\text{supp}(\rho_\tau) \subseteq \text{supp}(\rho)$
48 for all $N > N_0$ with probability $1 - 1/N^\kappa$.

49 This Theorem holds for any level of noise and the same
50 value of τ as in Theorem 1. The incoherence conditions in
51 Theorem 2 are needed to guarantee that the true signal does
52 not create false positives elsewhere. Theorem 2 guarantees
53 that the support of ρ_τ is inside the support of ρ . The next
54 Theorem shows that if the noise is not too large, then ρ_τ and
55 ρ have exactly the same support.

56 Theorem 3 (Exact support recovery): Keep the same as-
57 sumptions as in Theorem 2. Let $\gamma = \min_{i \in \text{supp}(\rho)} |\rho_i| / \|\rho\|_{\ell_\infty}$.
58 There are constants $\tau = \tau(\kappa, \beta)$, $c_1 = c_1(\kappa, \beta, \gamma)$, and
59 $N_0 = N_0(\kappa, \beta)$ such that, if the noise level satisfies $\|\mathbf{e}\|_{\ell_2} \leq$
60 $c_1 \|\mathbf{b}_0\|_{\ell_2}^2 \|\rho\|_{\ell_1}^{-1} \sqrt{N} / \sqrt{\ln N}$ then, for all $N > N_0$, $\text{supp}(\rho_\tau) =$
61 $\text{supp}(\rho)$ with probability $1 - 1/N^\kappa$.

62 To elucidate an interpretation of the last Theorem consider
63 a model case where \mathcal{A} is the identity matrix and all coefficients
64 of $\mathbf{b}_0 = \rho$ are either 1 or 0. Then $\|\mathbf{b}_0\|_{\ell_2}^2 = \|\rho\|_{\ell_1} = M$. In
65 this case, an acceptable relative level of noise is

$$66 \|\mathbf{e}\|_{\ell_2} / \|\mathbf{b}_0\|_{\ell_2} \lesssim \sqrt{N} / \sqrt{M \ln N}. \quad [5]$$

67 This means that $\|\mathbf{e}\|_{\ell_2} \lesssim \sqrt{N} / \sqrt{\ln N}$, and it implies that each
68 coefficient of \mathbf{b}_0 may be corrupted by $O(1/\sqrt{\ln N})$ on average,
69 and some coefficients of \mathbf{b}_0 may be corrupted by $O(1)$.

70 **Motivation.** We are interested in imaging sparse scenes,
71 accurately, using limited and noisy data. Such imaging prob-
72 lems arise in many areas such as medical imaging (12), struc-
73 tural biology (13), radar (14), and geophysics (15). In imaging,
74 the ℓ_1 -norm minimization method in Eq. 2 is often used, see
75 e.g. (16–21), as it has the desirable property of super-resolution,
76 that is, the enhancement of the fine scale details of the images.
77 This has been analyzed in different settings by Donoho and
78 Elad (22), Candès and Fernandez-Granda (23), Fannjiang and
79 Liao (24), and Borcea and Kocyigit (25), among others. We
80 want to retain this property in our method when the data is
81 corrupted by additive noise.

82 However, noise fundamentally limits the quality of the im-
83 ages formed with almost all computational imaging techniques.
84 Specifically, ℓ_1 -norm minimization produces images that are
85 unstable for low SNR due to the ill-conditioning of super-
86 resolution reconstruction schemes. The instability emerges
87 as clutter noise in the images, or *grass*, that degrades the
88 resolution. Our initial motivation to introduce the Noise Col-
89 lector matrix \mathcal{C} was to regularize the matrix \mathcal{A} and, thus, to
90 suppress the clutter in the images. We proposed in (26) to
91 seek the minimal ℓ_1 -norm solution of the augmented linear
92 system $\mathcal{A}\rho + \mathcal{C}\eta = \mathbf{b}$. The idea was to choose the columns
93 of \mathcal{C} almost orthogonal to those of \mathcal{A} . Indeed, the condition
94 number of $[\mathcal{A} | \mathcal{C}]$ becomes $O(1)$ when $O(N)$ columns of \mathcal{C} are
95 taken at random. This essentially follows from the bounds on
96 the largest and the smallest nonzero singular values of random
97 matrices, see e.g. Theorem 4.6.1 in (27).

98 The idea to create a dictionary for noise is not new. For
99 example, the work by Laska *et al.* (28) considers a specific

100 version of the measurement noise model so $\mathbf{b} = \mathcal{A}\rho + \mathcal{C}\mathbf{e}$, where
101 \mathcal{C} is a matrix with fewer (orthonormal) columns than rows,
102 and the noise vector \mathbf{e} is sparse. \mathcal{C} represents the basis in
103 which the noise is sparse and it is assumed to be known. Then,
104 they show that it is possible to recover sparse signals and
105 sparse noise exactly. We stress that we do not assume here
106 that the noise is sparse. In our work, the noise is large (SNR
107 can be small) and is evenly distributed across the data, so it
108 cannot be sparsely accommodated.

109 To suppress the clutter, our theory in (26) required expo-
110 nentially many columns, so $\Sigma \lesssim e^N$. This seemed to make the
111 Noise Collector impractical, but the numerical experiments
112 suggested that $O(N)$ columns were enough to obtain excellent
113 results. We address this issue here and explain why the Noise
114 Collector matrix \mathcal{C} only needs algebraically many columns.
115 Moreover, to absorb the noise completely, and thus improve
116 the algorithm in (26), we introduce now the no-phantom weight
117 τ in Eq. 4. Indeed, by weighting the columns of the Noise
118 Collector matrix \mathcal{C} with respect to those in the model matrix
119 \mathcal{A} , the algorithm now produces images with no clutter at all,
120 no matter how much noise is added to the data.

121 Finally, we want the Noise Collector to be efficient, with
122 almost no extra computational cost with respect to the Lasso
123 problem in Eq. 3. To this end, the Noise Collector is con-
124 structed using circulant matrices that allows for efficient matrix
125 vector multiplications using FFTs.

126 We now explain how the Noise Collector works and re-
127 duce our Theorems to basic estimates in high-dimensional
128 probability.

129 The Noise Collector

130 The method has two main ingredients: the Noise Collector
131 matrix \mathcal{C} and the no-phantom weight τ . The construction of
132 the Noise Collector matrix \mathcal{C} starts with the following three
133 key properties. Firstly, its columns should be sufficiently
134 orthogonal to the columns of \mathcal{A} , so it does not absorb signals
135 with “meaningful” information. Secondly, the columns of
136 \mathcal{C} should be uniformly distributed on the unit sphere \mathbb{S}^{N-1}
137 so that we could approximate well a typical noise vector.
138 Thirdly, the number of columns in \mathcal{C} should grow slower than
139 exponential with N , otherwise the method is impractical.

140 One way to guarantee all three properties is to impose

$$141 |\langle \mathbf{a}_i, \mathbf{c}_j \rangle| < \frac{\alpha}{\sqrt{N}} \quad \forall i, j, \text{ and } |\langle \mathbf{c}_i, \mathbf{c}_j \rangle| < \frac{\alpha}{\sqrt{N}} \quad \forall i \neq j, \quad [6]$$

142 with $\alpha > 1$, and fill out \mathcal{C} drawing \mathbf{c}_i at random with rejec-
143 tions until the rejection rate becomes too high. Then, by
144 construction, the columns of \mathcal{C} are almost orthogonal to the
145 columns of \mathcal{A} , and when the rejection rate becomes too high
146 this implies that we can not pack more N -dimensional unit
147 vectors into \mathcal{C} and, thus, we can approximate well a typical
148 noise vector. Finally, the Kabatjanskii-Levenshtein inequality
149 (see discussion in (29)) implies that the number Σ of columns
150 in \mathcal{C} grows at most polynomially: $\Sigma \leq N^{\alpha^2}$. The first estimate
151 in Eq. 6 implies that any solution $\mathcal{C}\eta = \mathbf{a}_i$ satisfies, for any
152 $i \leq N$, $\|\eta\|_{\ell_1} \gtrsim \sqrt{N}$. This estimate measures how expensive
153 it is to approximate columns of \mathcal{A} , i.e. the meaningful signal,
154 with the Noise Collector. In turn, the no-phantom weight τ
155 should be chosen so that it is expensive to approximate noise
156 using columns of \mathcal{A} . It cannot be taken too large, though,
157 because we may lose the signal. In fact, one can prove that
158 if $\tau \geq \sqrt{N}/\alpha$, then $\rho_\tau \equiv 0$ for any ρ and any level of noise.

159 Intuitively, τ characterizes the rate at which the signal is lost
 160 as the noise increases. The most important property of the
 161 no-phantom weight τ is that it does not depend on the level of
 162 noise, so it is chosen before we start using the Noise Collector.

163 It is, however, more convenient for the proofs to use a
 164 probabilistic version of Eq. 6. Suppose that the columns of \mathcal{C}
 165 are drawn, independently, at random. Then, the dot product
 166 of any two random unit vectors is still typically of order $1/\sqrt{N}$,
 167 see e.g. (27). If the number of columns grows polynomially, we
 168 only have to sacrifice an asymptotically negligible event where
 169 our Noise Collector does not satisfy the three key properties,
 170 and the decoherence constraints in Eq. 6 are weakened by a
 171 logarithmic factor only. This follows from basic estimates in
 172 high-dimensional probability. We will state them in the next
 173 Lemma after we interpret problem 4 geometrically.

174 Consider the convex hulls

$$H_1 = \left\{ x \in \mathbb{R}^N \mid x = \sum_{i=1}^{\Sigma} \xi_i \mathbf{c}_i, \sum_{i=1}^{\Sigma} |\xi_i| \leq 1 \right\}, \quad [7]$$

$$H_2 = \left\{ x \in \mathbb{R}^N \mid x = \sum_{i=1}^K \xi_i \mathbf{a}_i, \sum_{i=1}^K |\xi_i| \leq 1 \right\}, \quad [8]$$

175 and $H(\tau) = \{\xi h_1/\tau + (1-\xi)h_2, 0 \leq \xi \leq 1, h_i \in H_i\}$. Theorem 1 states that for a typical noise vector \mathbf{e} we can find
 176 $\lambda_0 > 0$ such that $\mathbf{e} \in \lambda_0 \partial H_1$ and $\mathbf{e} \notin \lambda \partial H(\tau)$ for any $\lambda < \lambda_0$.

177 Lemma 1 (Typical width of convex hulls H_i): Suppose $\Sigma = N^\beta$, $\beta > 1$, vectors $\mathbf{c}_i \in \mathbb{S}^{N-1}$, $i = 1, 2, \dots, \Sigma$, are drawn
 178 at random and independently, and $\mathbf{e} \in \mathbb{S}^{N-1}$. Then, for any
 179 $\kappa > 0$ there are constants $c_0 = c_0(\kappa, \beta)$, $\alpha = \sqrt{(\beta-1)/2}$ and
 180 $N_0 = N_0(\kappa, \beta)$, such that for all $N \geq N_0$

$$\max(\max_{i \leq K} (|\langle \mathbf{a}_i, \mathbf{e} \rangle|), \max_{i \leq \Sigma} (|\langle \mathbf{c}_i, \mathbf{e} \rangle|)) < c_0 \sqrt{\ln N} / \sqrt{N}, \quad [9]$$

181 and

$$\alpha \sqrt{\ln N} \mathbf{e} / \sqrt{N} \in H_1, \quad [10]$$

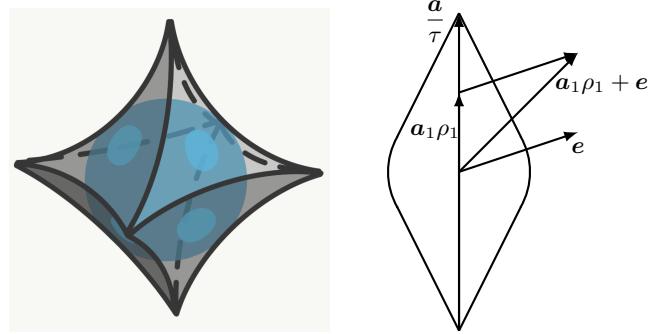
182 with probability $1 - 1/N^\kappa$.

183 We sketch the proof of estimates 9 and 10 in Section Proofs.
 184 Estimate 9 can also be derived from the Milman's version of
 185 Dvoretzky's theorem (30). Informally, inequality 9 states that
 186 H_1 and H_2 are contained in the ℓ_2 -ball of radius $c_0 \sqrt{\ln N} / \sqrt{N}$
 187 except for a few spikes in statistically insignificant directions.
 188 See Figure 1-left. Inequality 10 states that H_1 contains an
 189 ℓ_2 -ball of radius $\alpha \sqrt{\ln N} / \sqrt{N}$ except for a few statistically
 190 insignificant directions.

191 These inequalities immediately imply Theorem 1. We just
 192 need to explain how to choose the no-phantom weight τ . There
 193 will be no phantoms if H_2/τ is strictly inside the ℓ_2 -ball of
 194 radius $\alpha \sqrt{\ln N} / \sqrt{N}$. This could be done if $\tau > c_0/\alpha$.

195 If columns of \mathcal{A} are orthogonal to each other, then Theorem 2 follows from Theorem 1. We just need to project
 196 the linear system in Eq. 4 on the span of \mathbf{a}_i , $i \notin \text{supp}(\rho)$,
 197 and apply Theorem 1 to the projections. If, in addition,
 198 we assume $\mathbf{b}_0 = \mathbf{a}_1 \rho_1$, then the proof of Theorem 3 is illus-
 199 trated on Figure 1-right. In detail, a typical intersection of
 200 $V = \text{span}(\mathbf{a}_1, \mathbf{e})$ and $H(\tau)$ is a rounded rhombus because it is
 201 the convex hull of \mathbf{a}_1/τ and the ℓ_2 -ball of radius $c_0 \sqrt{\ln N} / \sqrt{N}$.
 202 If $\mathbf{a}_1 \rho_1 + \mathbf{e} \in \lambda_0 \partial H(\tau)$, then there are two options: 1) $\mathbf{a}_1 \rho_1 + \mathbf{e}$
 203 lies on the curved boundary of the rounded rhombus, and then
 204 $\text{supp}(\rho_\tau) = \emptyset$; 2) $\mathbf{a}_1 \rho_1 + \mathbf{e}$ lies on the flat boundary of the

213 rounded rhombus, and then $\text{supp}(\rho_\tau) = \text{supp}(\rho)$. The sec-
 214 ond option happens if the vector $\mathbf{a}_1 \rho_1 + \mathbf{e}$ intersects the flat
 215 boundary of $\partial H(\tau)$. This gives the support recovery estimate
 216 in Theorem 3.



217 **Fig. 1.** Left: A convex hull H_1 is an ℓ_2 ball of radius $O(\sqrt{\ln N} / \sqrt{N})$ with few
 218 spikes. Right: An intersection of $H(\tau)$ with the span(\mathbf{a}_1, \mathbf{e}) is a rounded rhombus.

219 In the general case the columns of the combined matrix
 220 $[\mathcal{A} | \mathcal{C}]$ are incoherent. This property allows us to prove Theorems 2 and 3 in Section Proofs using known techniques, see
 221 e.g. (26). In particular, we automatically have exact recovery
 222 using (2) applied to $[\mathcal{A} | \mathcal{C}]$ if the data is noiseless.

223 **Lemma 2 (Exact Recovery):** Suppose ρ is an M -sparse
 224 solution of $\mathcal{A}\rho = \mathbf{b}$, and there is no noise so $\mathbf{e} = 0$. In addition,
 225 assume that the columns of \mathcal{A} are incoherent: $|\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \leq \frac{1}{3M}$.
 226 Then, the solution to Eq. 4 satisfies $\rho_\tau = \rho$ for all

$$M < \frac{2\sqrt{N}}{3c_0\tau\sqrt{\ln N}} \text{ with probability } 1 - \frac{1}{N^\kappa}. \quad [11]$$

Fast Noise Collector Algorithm

227 To find the minimizer in Eq. 4, we consider a variational
 228 approach. We define the function

$$\begin{aligned} F(\rho, \eta, z) &= \lambda (\tau \|\rho\|_{\ell_1} + \|\eta\|_{\ell_1}) \\ &+ \frac{1}{2} \|\mathcal{A}\rho + \mathcal{C}\eta - \mathbf{b}\|_{\ell_2}^2 + \langle z, \mathbf{b} - \mathcal{A}\rho - \mathcal{C}\eta \rangle \end{aligned} \quad [12]$$

229 for a no-phantom weight τ , and determine the solution as

$$\max_{\mathbf{z}} \min_{\rho, \eta} F(\rho, \eta, z). \quad [13]$$

230 The key observation is that this variational principle finds the
 231 minimum in Eq. 4 exactly for all values of the regularization
 232 parameter λ . Hence, the method has no tuning parameters. To
 233 determine the exact extremum in Eq. 13, we use the iterative
 234 soft thresholding algorithm GeLMA (31) that works as follows.

235 First pick a value for β and τ . For optimal results, one can
 236 calibrate τ to be the smallest constant such that Theorem 1
 237 holds, that is, we see no phantom signals when the algorithm
 238 is fed with pure noise. In our numerical experiments we use
 239 $\beta = 1.5$ and $\tau = 2$.

240 Next, pick a value for the regularization parameter λ , e.g.
 241 $\lambda = 1$. Choose step sizes $\Delta t_1 < 2/\|\mathcal{A}\| \|\mathcal{C}\|$ and $\Delta t_2 <$
 242 $\lambda/\|\mathcal{A}\|$.^{*} Set $\rho_0 = \mathbf{0}$, $\eta_0 = \mathbf{0}$, $z_0 = \mathbf{0}$, and iterate for $k \geq 0$:

$$\begin{aligned} r &= \mathbf{b} - \mathcal{A}\rho_k - \mathcal{C}\eta_k, \\ \rho_{k+1} &= \mathcal{S}_{\tau \lambda \Delta t_1}(\rho_k + \Delta t_1 \mathcal{A}^*(z_k + r)), \\ \eta_{k+1} &= \mathcal{S}_{\lambda \Delta t_1}(\eta_k + \Delta t_1 \mathcal{C}^*(z_k + r)), \\ z_{k+1} &= z_k + \Delta t_2 r, \end{aligned} \quad [14]$$

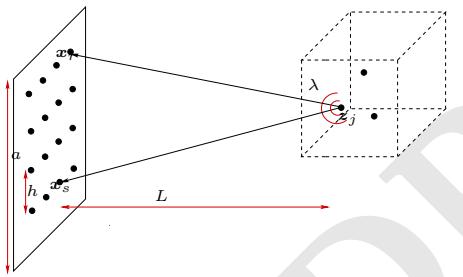
243 *Choosing two step sizes instead of the smaller one Δt_1 improves the convergence speed.

252 where $\mathcal{S}_r(y_i) = \text{sign}(y_i) \max\{0, |y_i| - r\}$.

253 The Noise Collector matrix \mathcal{C} is computed by drawing $N^{\beta-1}$
 254 normally distributed N -dimensional vectors, normalized to
 255 unit length. These are the generating vectors of the Noise
 256 Collector. From each of them, a circulant $N \times N$ matrix \mathcal{C}_i ,
 257 $i = 1, \dots, N^{\beta-1}$, is constructed. The Noise Collector matrix
 258 is obtained by concatenation, so $\mathcal{C} = [\mathcal{C}_1 | \mathcal{C}_2 | \dots | \mathcal{C}_{N^{\beta-1}}]$. Ex-
 259 ploiting the circulant structure of the matrices \mathcal{C}_i , we perform
 260 the matrix vector multiplications $\mathcal{C}\boldsymbol{\eta}_k$ and $\mathcal{C}^*(\mathbf{z}_k + \mathbf{r})$ in Eq. 14
 261 using the FFT (32). This makes the complexity associated to
 262 the Noise Collector $O(N^\beta \log(N))$. Note that only the $N^{\beta-1}$
 263 generating vectors are stored, and not the entire $N \times N^\beta$ Noise
 264 Collector matrix. In practice, we use $\beta \approx 1.5$ which makes
 265 the cost of using the Noise Collector negligible, as typically
 266 $K \gg N^{\beta-1}$. The columns of the Noise Collector matrix \mathcal{C}
 267 with this circulant structure are uniformly distributed on \mathbb{S}^{N-1}
 268 and they satisfy Lemma 1. This implies that the Theorems of
 269 this paper are still valid for such \mathcal{C} .

270 Application to imaging

271 We consider passive array imaging of point sources. The
 272 problem consists in determining the positions \mathbf{z}_j and the
 273 complex[†] amplitudes α_j , $j = 1, \dots, M$, of a few point sources
 274 from measurements of polychromatic signals on an array of
 275 receivers; see Figure 2. The imaging system is characterized
 276 by the array aperture a , the distance L to the sources, the
 277 bandwidth B and the central wavelength λ_0 .



278 **Fig. 2.** General setup for passive array imaging. The source at \mathbf{z}_j emits a signal that
 279 is recorded at all array elements \mathbf{x}_r , $r = 1, \dots, N_r$.

280 The sources are located inside an image window IW, which
 281 is discretized with a uniform grid of points \mathbf{y}_k , $k = 1, \dots, K$.
 282 The unknown is the source vector $\boldsymbol{\rho} = [\rho_1, \dots, \rho_K]^\top \in \mathbb{C}^K$,
 283 whose components ρ_k correspond to the complex amplitudes
 284 of the M sources at the grid points \mathbf{y}_k , $k = 1, \dots, K$, with
 285 $K \gg M$. For the true source vector we have $\rho_k = \alpha_j$ if
 286 $\mathbf{y}_k = \mathbf{z}_j$ for some $j = 1, \dots, M$, while $\rho_k = 0$ otherwise.

287 Denoting by $G(\mathbf{x}, \mathbf{y}; \omega)$ the Green's function for the propagation
 288 of a signal of angular frequency ω from point \mathbf{y} to point
 289 \mathbf{x} , we define the single-frequency Green's function vector that
 290 connects a point \mathbf{y} in the IW with all points \mathbf{x}_r , $r = 1, \dots, N_r$,
 291 on the array as

$$292 \mathbf{g}(\mathbf{y}; \omega) = [G(\mathbf{x}_1, \mathbf{y}; \omega), G(\mathbf{x}_2, \mathbf{y}; \omega), \dots, G(\mathbf{x}_{N_r}, \mathbf{y}; \omega)]^\top \in \mathbb{C}^{N_r}.$$

293 In three dimensions, $G(\mathbf{x}, \mathbf{y}; \omega) = \frac{\exp\{i\omega|\mathbf{x} - \mathbf{y}|/c_0\}}{4\pi|\mathbf{x} - \mathbf{y}|}$ if the
 294 medium is homogeneous. The data for the imaging problem
 295 are the signals $b(\mathbf{x}_r, \omega_l) = \sum_{j=1}^M \alpha_j G(\mathbf{x}_r, \mathbf{z}_j; \omega_l)$ recorded at

296 receiver locations \mathbf{x}_r , $r = 1, \dots, N_r$, at frequencies ω_l , $l = 1, \dots, S$. These data are stacked in a column vector

$$297 \mathbf{b} = [\mathbf{b}(\omega_1)^\top, \mathbf{b}(\omega_2)^\top, \dots, \mathbf{b}(\omega_S)^\top]^\top \in \mathbb{C}^N ; \quad N = N_r S, \quad [15]$$

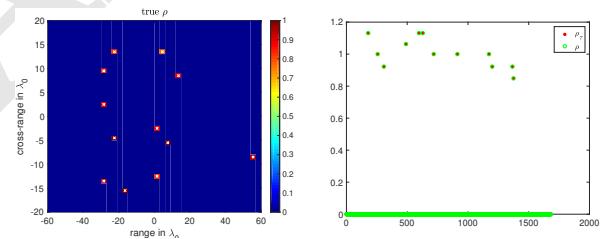
298 with $\mathbf{b}(\omega_l) = [b(\mathbf{x}_1, \omega_l), b(\mathbf{x}_2, \omega_l), \dots, b(\mathbf{x}_N, \omega_l)]^\top \in \mathbb{C}^{N_r}$.
 299 Then, $\mathcal{A}\boldsymbol{\rho} = \mathbf{b}$, with \mathcal{A} the $N \times K$ measurement matrix
 300 whose columns \mathbf{a}_k are the multiple-frequency Green's function
 301 vectors

$$302 \mathbf{a}_k = [\mathbf{g}(\mathbf{y}_k; \omega_1)^\top, \mathbf{g}(\mathbf{y}_k; \omega_2)^\top, \dots, \mathbf{g}(\mathbf{y}_k; \omega_S)^\top]^\top \in \mathbb{C}^N, \quad [16]$$

303 normalized to have length one. The system $\mathcal{A}\boldsymbol{\rho} = \mathbf{b}$ relates
 304 the unknown vector $\boldsymbol{\rho} \in \mathbb{C}^K$ to the data vector $\mathbf{b} \in \mathbb{C}^N$.

305 Next, we illustrate the performance of the Noise Collector
 306 in this imaging setup. The most important features are that
 307 (i) no calibration is necessary with respect to the level of noise,
 308 (ii) exact support recovery is obtained for relatively large levels
 309 of noise (i.e., $\|\mathbf{e}\|_{\ell_2} \leq c_1 \|\mathbf{b}_0\|_{\ell_2}^2 \sqrt{N}/(\|\boldsymbol{\rho}\|_{\ell_1} \sqrt{\ln N})$), and (iii)
 310 we have zero false discovery rates for all levels of noise, with
 311 high probability.

312 We consider a high frequency microwave imaging regime
 313 with central frequency $f_0 = 60\text{GHz}$ corresponding to $\lambda_0 = 5\text{mm}$. We make measurements for $S = 25$ equally spaced
 314 frequencies spanning a bandwidth $B = 20\text{GHz}$. The array has
 315 $N = 25$ receivers and an aperture $a = 50\text{cm}$. The distance from
 316 the array to the center of the imaging window is $L = 50\text{cm}$. Then,
 317 the resolution is $\lambda_0 L/a = 5\text{mm}$ in the cross-range
 318 (direction parallel to the array) and $c_0/B = 15\text{mm}$ in range
 319 (direction of propagation). These parameters are typical in
 320 microwave scanning technology (33).



321 **Fig. 3.** Noiseless data. The exact solution is recovered for any value of λ in Algorithm
 322 14; Left: the true image. Right: the recovered solution vector, $\boldsymbol{\rho}_\tau$, is plotted with red
 323 stars and the true solution vector, $\boldsymbol{\rho}$, with green circles.

324 We seek to image a source vector with sparsity $M = 12$;
 325 see the left plot in Fig. 3. The size of the imaging window
 326 is $20\text{cm} \times 60\text{cm}$ and the pixel spacing is $5\text{mm} \times 15\text{mm}$. The
 327 number of unknowns is, therefore, $K = 1681$, and the number
 328 of data is $N = 625$. The size of the Noise Collector is taken to
 329 be $\Sigma = 10^4$, so $\beta \approx 1.5$. When the data is noiseless, we obtain
 330 exact recovery as expected; see the right plot in Fig. 3.

331 In Fig. 4, we display the imaging results, with and without
 332 the Noise Collector, when the data is corrupted by additive
 333 noise. The SNR = 1, so the ℓ_2 -norms of the signals and
 334 the noise are equal. In the left plot, we show the recovered
 335 image using ℓ_1 -norm minimization without the Noise Collector.
 336 There is a lot of grass in this image, with many non-zero values
 337 outside the true support. When the Noise Collector is used,
 338 the level of the grass is reduced and the image improves; see
 339 the second from the left plot. Still, there are several false
 340 discoveries because we use $\tau = 1$ in Algorithm 14.

341 In the third column from the left of Fig. 4 we show the
 342 image obtained with a weight $\tau = 2$ in Algorithm 14. With this

343 [†]We chose to work with real numbers in the previous sections for ease of presentation but the results
 344 also hold with complex numbers.

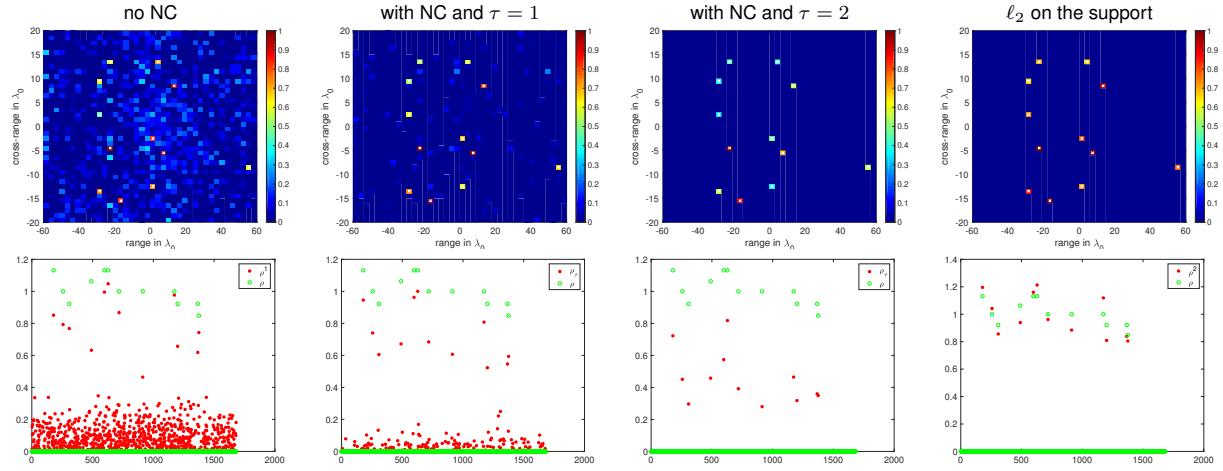


Fig. 4. High level of noise; SNR = 1. From left to right: ℓ_1 -norm minimization without the noise collector; ℓ_1 -norm minimization with a noise collector with $\Sigma = 10^4$ columns, and $\tau = 1$ in Algorithm 14; ℓ_1 -norm minimization with a noise collector, and the correct $\tau = 2$ in Algorithm 14; ℓ_2 -norm solution restricted to the support. In the top row we show the images, and in the bottom row the solution vector with red stars and the true solution vector with green circles.

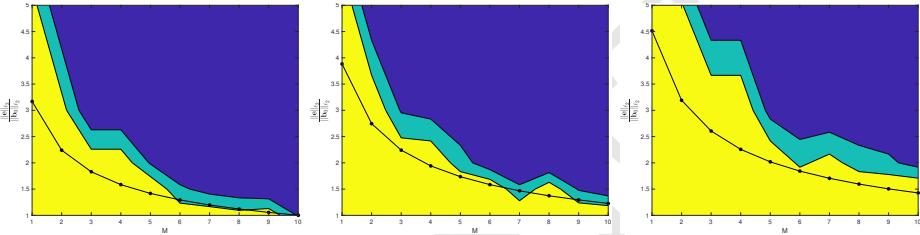


Fig. 5. Left: Algorithm performance for exact support recovery. Success corresponds to the value 1 (yellow) and failure to 0 (blue). The small phase transition zone (green) contains intermediate values. The black line is the theoretical estimate $\sqrt{N}/\sqrt{M \ln N}$. Ordinate and abscissa are the sparsity M and $\|e\|_2/\|b_0\|_{\ell_2}$. From left to right the data size is $N = 342$, $N = 625$ and $N = 961$.

334 weight, there are no false discoveries and the recovered support
 335 is exact. This simplifies the imaging problem dramatically, as
 336 we can now restrict the inverse problem to the true support
 337 just obtained, and then solve an overdetermined linear system
 338 using a classical ℓ_2 approach. The results are shown in the
 339 right column of Fig. 4. Note that this second step largely
 340 compensates for the signal that was lost in the first step due
 341 to the high level of noise.

342 In Figure 5 we illustrate the performance of the Noise
 343 Collector for different sparsity levels M and $\|e\|_{\ell_2}/\|b_0\|_{\ell_2}$
 344 values. Success in recovering the true support of the unknown
 345 corresponds to the value 1 (yellow) and failure to 0 (blue).
 346 The small phase transition zone (green) contains intermediate
 347 values. The black line is the theoretical prediction Eq. 5.
 348 These results are obtained by averaging over 10 realizations of
 349 noise. We show results for three values of data size $N = 342$,
 350 $N = 625$ and $N = 961$. In our experiments the non zero
 351 components of the unknown ρ take values in $[0.6, 0.8]$ and,
 352 therefore, $\|b_0\|_{\ell_2}/\|\rho\|_{\ell_1} = cst/\sqrt{M}$.

353 **Remark 1:** We considered passive array imaging for ease
 354 of presentation. Same results hold for active array imaging
 355 with or without multiple scattering; see (34) for the detailed
 356 analytical setup.

357 **Remark 2:** We have considered a microwave imaging regime.
 358 Similar results can be obtained in other regimes.

Proofs

Proof of Lemma 1: Using the rotational invariance of all our probability distributions inequality 9 is true if

$$\mathbb{P}(\max_i |\langle \mathbf{d}_i, \mathbf{e} \rangle| \geq c_0 \sqrt{\ln N}/\sqrt{N}) \leq 1/N^\kappa, \quad 362$$

where \mathbf{d}_i , $i = 1, 2, \dots, K + \Sigma$ are (possibly dependent) uniformly distributed on \mathbb{S}^{N-1} , and we can assume $\mathbf{e} = (1, 0, \dots, 0)$. Denote the event

$$\Omega_t = \left\{ \max_i |\langle \mathbf{d}_i, \mathbf{e} \rangle| \geq t/\sqrt{N} \right\}. \quad 366$$

$\mathbb{P}(|\langle \mathbf{d}_i, \mathbf{e} \rangle| \geq t/\sqrt{N}) \leq 2 \exp(-t^2/2)$ for each \mathbf{d}_i . We obtain $\mathbb{P}(\Omega_t) \leq 2(K + \Sigma) \exp(-t^2/2)$ using the union bound. Choosing $t = c_0 \sqrt{\ln N}$ for sufficiently large c_0 , we get $\mathbb{P}(\Omega_t) \leq CN^\beta N^{-c_0^2/2} \leq N^{-\kappa}$, where $c_0^2 > 2(\beta + \kappa)$ and $N \geq N_0$. Hence, Eq. 9 holds with probability $1 - N^{-\kappa}$.

If N columns \mathbf{c}_j , $j \in S$ of \mathcal{C} satisfy

$$\min_{j \in S} |\langle \mathbf{c}_j, \mathbf{e} \rangle| \geq \theta, \theta = \alpha \sqrt{\ln N}/\sqrt{N}, \quad 373$$

then their convex hull will contain $\theta \mathbf{e}$ with probability $(1/2)^N$. Therefore inequality 10 follows if 17 holds with probability $1 - 1/N^\kappa$. Using the rotational invariance of all our probability distributions we can assume $\mathbf{e} = (1, 0, \dots, 0)$. For each \mathbf{c}_i

$$\mathbb{P}\left(|\langle \mathbf{c}_i, \mathbf{e} \rangle| \geq \frac{t}{\sqrt{N}}\right) = \frac{2}{\sqrt{2\pi}} \int_t^\infty e^{-\frac{x^2}{2}} dx \geq \frac{1}{2} e^{-t^2}. \quad 378$$

379 Split the index set $1, 2, \dots, \Sigma$ into N non-overlapping subsets
 380 S_k , $k = 1, 2, \dots, N$ of size $N^{\beta-1}$. For each S_k

$$381 \mathbb{P} \left(\max_{i \in S_k} |\langle c_i, e \rangle| \leq \frac{\alpha \sqrt{\ln N}}{\sqrt{N}} \right) \leq \left(1 - \frac{1}{2N^{\alpha^2}} \right)^{N^{\beta-1}} \leq e^{-\frac{1}{2} N^{\frac{\beta-1}{2}}}$$

382 for $\alpha = \sqrt{(\beta-1)/2}$. By independence

$$383 \mathbb{P} (17 \text{ holds}) \geq \prod_{i=1}^N \mathbb{P} \left(\max_{i \in S_k} |\langle c_i, e \rangle| \geq \alpha \sqrt{\ln N} / \sqrt{N} \right).$$

384 Then $\mathbb{P} (17 \text{ holds}) \geq (1 - e^{-\frac{1}{2} N^{\frac{\beta-1}{2}}})^N \geq 1 - Ne^{-\frac{1}{2} N^{\frac{\beta-1}{2}}}$.
 385 Choosing N_0 sufficiently large, we obtain 10. \square

386 Proof of Theorem 2: When columns of \mathcal{A} are not orthogonal,
 387 we will choose a τ smaller than that in Theorem 1 by a factor of
 388 two. Suppose the M -dimensional space V is the span of the col-
 389 umn vectors \mathbf{a}_j , with j in the support of ρ . Say, V is spanned
 390 by $\mathbf{a}_1, \dots, \mathbf{a}_M$. Let $W = V^\perp$ be the orthogonal complement
 391 to V . Consider the orthogonal decomposition $\mathbf{a}_i = \mathbf{a}_i^v + \mathbf{a}_i^w$
 392 for all $i \geq M+1$. Incoherence of \mathbf{a}_i implies that $\|\mathbf{a}_i^w\|_{\ell_2} \geq 1/2$
 393 for all $i \geq M+1$. Indeed, fix any $i \geq M+1$. Suppose
 394 $\mathbf{a}_i^v = \sum_{k=1}^M \xi_k \mathbf{a}_k$, and $|\xi_j| = \max_{k \leq M} |\xi_k| = \|\xi\|_{\ell_\infty}$. Thus,
 395 $\frac{1}{3M} \geq |\langle \mathbf{a}_j, \mathbf{a}_i^v \rangle| \geq |\langle \mathbf{a}_j, \sum_{k=1}^M \xi_k \mathbf{a}_k \rangle| \geq \|\xi\|_{\ell_\infty} \left(1 - \frac{M-1}{3M}\right)$.
 396 Then $\|\xi\|_{\ell_\infty} \leq 1/(2M)$. So $\|\mathbf{a}_i^v\|_{\ell_2} \leq \|\xi\|_{\ell_1} \leq M \|\xi\|_{\ell_\infty} \leq 1/2$,
 397 and $\|\mathbf{a}_i^w\|_{\ell_2} \geq \|\mathbf{a}_i\|_{\ell_2} - \|\mathbf{a}_i^v\|_{\ell_2} \geq 1/2$. \square

398 Project system 4 on W . Then, we obtain a new system 4.
 399 The ℓ_2 -norms of the columns of new \mathcal{A} are at least $1/2$. Otherwise,
 400 the new system satisfies all conditions of Theorem 1.
 401 Indeed, \mathbf{b}_0 is projected to zero. All \mathbf{c}_i and $\mathbf{e}/\|\mathbf{e}\|_{\ell_2}$ are pro-
 402 jected to vectors uniformly distributed on \mathbb{S}^{N-M-1} by the
 403 concentration of measure, see e.g. (27). If any \mathbf{a}_i , $i \geq M+1$,
 404 was used in an optimal approximation of $\mathbf{b}_0 + \mathbf{e}$, then its projec-
 405 tion \mathbf{a}_i^w is used in an optimal approximation of the projection
 406 of $\mathbf{b}_0 + \mathbf{e}$ on W . This is a contradiction with Lemma 1, if we
 407 choose $\tau < c_0/(2\alpha)$ and recall $\|\mathbf{a}_i^w\|_{\ell_2} \geq 1/2$. \square

408 Proof of Theorem 3: Choose τ as in Theorem 2. Incoherence
 409 of \mathbf{a}_i implies we can argue as in the proof of Theorem 2 and
 410 assume $\langle \mathbf{a}_i, \mathbf{a}_j \rangle = 0$ for $i \neq j$, $i, j \in \text{supp}(\rho)$. Suppose V^i are
 411 the 2-dimensional spaces spanned by \mathbf{e} and \mathbf{a}_i for $i \in \text{supp}(\rho)$.
 412 By Lemma 1 all $\lambda H(\tau) \cap V^i$ look like rounded rhombi depicted
 413 on Fig. 1-right, and $\lambda H_1 \cap V^i \subset B_\lambda^i$ with probability $1 - N^{-\kappa}$,
 414 where B_λ^i is a 2-dimensional ℓ_2 -ball of radius $\lambda c_0 \sqrt{\ln N} / \sqrt{N}$.
 415 Thus $\lambda H(\tau) \cap V^i \subset H_\lambda^i$ with probability $1 - N^{-\kappa}$, where H_λ^i
 416 is the convex hull of B_λ^i and a vector $\lambda \mathbf{f}_i$, $\mathbf{f}_i = \rho_i \|\rho\|_{\ell_1}^{-1} \tau^{-1} \mathbf{a}_i$.
 417 Then $\text{supp}(\rho_\tau) = \text{supp}(\rho)$, if there exists λ_0 so that $\rho_i \mathbf{a}_i + \mathbf{e}$
 418 lies on the flat boundary of $H_{\lambda_0}^i$ for all $i \in \text{supp}(\rho)$.

419 If $\min_{i \in \text{supp}(\rho)} |\rho_i| \geq \gamma \|\rho\|_\infty$, then there is a constant
 420 $c_2 = c_2(\gamma)$ such that if $\rho_i \mathbf{a}_i + \mathbf{e}$ lies on the flat boundary
 421 of $H_{\lambda_0}^i$ for some i and some λ , then there exists λ_0 so that
 422 $\rho_i \mathbf{a}_i + c_2 \mathbf{e}$ lies on the flat boundary of $H_{\lambda_0}^i$ for all $i \in \text{supp}(\rho)$.
 423 Suppose V is spanned by \mathbf{e} and \mathbf{b}_0 , $H_\lambda \subset V$ is the convex hull
 424 of B_λ and $\lambda \mathbf{f}$, $\mathbf{f} = \mathbf{b}_0 \|\rho\|_{\ell_1}^{-1} \tau^{-1}$, where $B_\lambda \subset V$ is an ℓ_2 -ball
 425 of radius $\lambda c_0 \sqrt{\ln N} / \sqrt{N}$. If $\mathbf{b}_0 + c_2 \mathbf{e}$ lies on the flat boundary
 426 of H_λ , then there must be an $i \in \text{supp}(\rho)$ such that $\rho_i \mathbf{a}_i + c_2 \mathbf{e}$
 427 lies on the flat boundary of H_λ^i . If

$$428 \frac{|\langle \mathbf{b}_0, \mathbf{b}_0 + c_2 \mathbf{e} \rangle|}{\|\mathbf{b}_0\|_{\ell_2} \|\mathbf{b}_0 + c_2 \mathbf{e}\|_{\ell_2}} \geq \frac{c_0 \sqrt{\ln N}}{\sqrt{N} \|\mathbf{f}\|_{\ell_2}}, \quad [18]$$

429 then $\mathbf{b}_0 + c_2 \mathbf{e}$ lies on the flat boundary of H_λ . Since
 430 $|\langle \mathbf{b}_0, \mathbf{e} \rangle| \leq c_0 \|\mathbf{e}\|_{\ell_2} \|\mathbf{b}_0\|_{\ell_2} / \sqrt{N}$ with probability $1 - N^{-\kappa}$,
 431 Eq. 18 holds if $\|\mathbf{e}\|_{\ell_2} / \|\mathbf{b}_0\|_{\ell_2} \leq \|\mathbf{f}\|_{\ell_2} \sqrt{N} / (c_2 c_0 \sqrt{\ln N}) \leq$
 432 $c_1 \|\mathbf{b}_0\|_{\ell_2} \|\rho\|_{\ell_1}^{-1} \sqrt{N} / \sqrt{\ln N}$. \square

ACKNOWLEDGMENTS. The work of M. Moscoso was partially
 433 supported by Spanish grant MICINN FIS2016-77892-R. The work
 434 of A. Novikov was partially supported by NSF grants DMS-1515187,
 435 DMS-1813943. The work of G. Papanicolaou was partially supported
 436 by AFOSR FA9550-18-1-0519. The work of C. Tsogka was partially
 437 supported by AFOSR FA9550-17-1-0238 and FA9550-18-1-0519. We
 438 thank Marguerite Novikov for drawing the left part of Figure 1.
 439

Data availability statement: There are no data in this paper;
 440 we present a new algorithm, its theoretical analysis, and some
 441 numerical simulations.
 442

1. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. *SIAM Rev* 43:12–159.
2. Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_1 minimization. *Proc. Natl. Acad. Sci. U.S.A.* 100(5):2197–2202.
3. Candès EJ, Tao T (2005) Decoding by linear programming. *IEEE Trans. Inf. Theory* 51:4203–4215.
4. Tibshirani R (1996) Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (methodological)* 58:267–288.
5. Fuchs JJ (2005) Recovery of exact sparse representations in the presence of bounded noise. *IEEE Trans. Inf. Theory* 51:3601–3608.
6. Tropp JA (2006) Just relax: Convex programming methods for identifying sparse signals in noise. *IEEE Trans. Inf. Theory* 52:1030–1051.
7. Wainwright MJ (2009) Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ_1 -constrained quadratic programming (Lasso). *IEEE Trans. Inf. Theory* 55:2183–2202.
8. Maleki A, Anitori L, Yang Z, Baraniuk R (2013) Asymptotic analysis of complex lasso via complex approximate message passing (CAMP). *IEEE Trans. Inf. Theory* 59:4290–4308.
9. Zou H (2006) The adaptive lasso and its oracle properties. *J. Amer. Statist. Assoc* 101:1418–1429.
10. Sampson JN, Chatterjee N, Carroll RJ, Müller S (2013) Controlling the local false discovery rate in the adaptive lasso. *Biostatistics* 14:653–666.
11. Belloni A, Chernozhukov V, Wang L (2011) Square-root lasso: pivotal recovery of sparse signals via conic programming. *Biometrika* 98(4):791–806.
12. Trzasko J, Manduca A (2009) Highly undersampled magnetic resonance image reconstruction via homotopic ℓ_0 -minimization. *IEEE Trans. Med. Imag* 28:106–121.
13. AlQuraishi M, McAdams HH (2011) Direct inference of protein dna interactions using compressed sensing methods. *Proc. Natl. Acad. Sci. U.S.A.* 108(36):14819–14824.
14. Baraniuk R, Steeghs P (2007) Compressive radar imaging in 2007 IEEE Radar Conference. pp. 128–133.
15. Taylor HL, Banks SC, McCoy JF (1979) Deconvolution with the ℓ_1 norm. *Geophysics* 44:39–52.
16. Maloufot D, Cetin M, Willsky AS (2005) A sparse signal reconstruction perspective for source localization with sensor arrays. *IEEE Trans. Signal Process* 53:3010–3022.
17. Romberg J (2008) Imaging via compressive sampling. *IEEE Signal Process. Mag* 25:14–20.
18. Herman MA, Strohmer T (2009) High-resolution radar via compressed sensing. *IEEE Trans. Signal Process* 57:2275–2284.
19. Tropp JA, Laska JN, Duarte MF, Romberg JK, Baraniuk RG (2010) Beyond Nyquist: Efficient sampling of sparse bandlimited signals. *IEEE Transactions on Information Theory* 56:520–544.
20. Fannjiang AC, Strohmer T, Yan P (2010) Compressed remote sensing of sparse objects. *SIAM J. Imag. Sci* 3:595–618.
21. Chai A, Moscoso M, Papanicolaou G (2013) Robust imaging of localized scatterers using the singular value decomposition and ℓ_1 optimization. *Inverse Problems* 29:025016.
22. Donoho DL (1992) Super-resolution via sparsity constraint. *SIAM J Math Anal* 23:1303–1331.
23. Candès EJ, Fernandez-Granda C (2014) Towards a mathematical theory of super-resolution. *Comm. Pure Appl. Math* 67:906–956.
24. Fannjiang AC, Liao W (2012) Coherence pattern-guided compressive sensing with unresolved grids. *SIAM J. Imag. Sci* 5:179–202.
25. Borcea L, Kocyigit I (2015) Resolution analysis of imaging with ℓ_1 optimization. *SIAM J. Imaging Sci* 8:3015–3050.
26. Moscoso M, Novikov A, Papanicolaou G, Tsogka C (2020) Imaging with highly incomplete and corrupted data. *Inverse Problems* 36:035010.
27. Vershynin R (2018) *High-Dimensional Probability: An Introduction with Applications in Data Science*, Cambridge Series in Statistical and Probabilistic Mathematics. (Cambridge University Press).
28. Laska JN, Davenport MA, Baraniuk RG (2009) Exact signal recovery from sparsely corrupted measurements through the pursuit of justice in 2009 Conference Record of the Forty-Third Asilomar Conference on Signals. (Systems and Computers, Pacific Grove, CA), pp. 1556–1560.
29. Tao T (2013) A cheap version of the kabatjanskii-levenstein bound for almost orthogonal vectors. <https://terrytao.wordpress.com/2013/07/18/a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/>.
30. Milman VD (1971) A new proof of dvoretzky's theorem on cross-sections of convex bodies in *Funkcional. Anal. I Prilozhen.* Vol. 5, pp. 28–37.
31. Moscoso M, Novikov A, Papanicolaou G, Ryzhik L (2012) A differential equations approach to ℓ_1 -minimization with applications to array imaging. *Inverse Problems* 28.
32. Gray RM (2006) Toeplitz and circulant matrices: A review. *Foundations and Trends in Communications and Information Theory* 2:155–239.
33. Laviada J, Arboleya-Arboleya A, Alvarez-Lopez Y, Garcia-Gonzalez C, Las-Heras F (2015) Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: Theory and validation, ieee trans. *Antennas Propag.* 63(2):573–584.
34. Chai A, Moscoso M, Papanicolaou G (2014) Imaging strong localized scatterers with sparsity promoting optimization. *SIAM J. Imaging Sci* 7:1358–1387.