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The ability to detect sparse signals from noisy high-dimensional
data is a top priority in modern science and engineering. It is well
known, that a sparse solution of the linear system Ap = by can be
found efficiently with an ¢;-norm minimization approach if the data
is noiseless. However, detection of the signal from data corrupted by
noise is still a challenging problem as the solution depends, in gen-
eral, on a regularization parameter whose optimal value is not easy
to choose. We propose a new efficient approach that does not re-
quire any parameter estimation. We introduce a no-phantom weight
7 and the Noise Collector matrix C, and solve an augmented system
Ap + Cn = by + e, where e is the noise. We show that the ¢;-norm
minimal solution of this system has zero false discovery rate for any
level of noise, with probability that tends to one as the dimension of
bg increases to infinity. We obtain exact support recovery if the noise
is not too large, and develop a Fast Noise Collector Algorithm which
makes the computational cost of solving the augmented system com-
parable to that of the original one. We demonstrate the effectiveness
of the method in applications to passive array imaging.

high dimensional probability | convex geometry | sparsity promoting

algorithms | noisy data |

We want to find sparse solutions p € R¥ for
Ap=b, [1]

from highly incomplete measurement data b = by + e € RY,
corrupted by noise e, where 1 < N < K. In the noiseless case,
p can be found exactly by solving the optimization problem (1)

p,. = argmin | p|l¢,, subject to Ap =b, 2]
p

provided the measurement matrix A € RV*X satisfies ad-
ditional conditions, e.g., decoherence or restricted isometry
properties (2, 3), and the solution vector p has a small num-
ber M of nonzero components or degrees of freedom. When
measurements are noisy, exact recovery is no longer possible.
However, the exact support of p can still be determined if the
noise is not too strong. The most commonly used approach is
to solve the fa-relaxed form of Eq. 2

py = argmin (Allplle, + IAp — Bl1Z,) , 3]
known as Lasso in the statistics literature (4). There are
sufficient conditions for the support of p, to be contained
within the true support, see e.g. Fuchs (5), Tropp (6), Wain-
wright (7), and Maleki et al (8) . These conditions depend
on the signal-to-noise ratio (SNR), which is not known and
must be estimated, and on the regularization parameter A,
which must be carefully chosen and/or adaptively changed (9).
Although such an adaptive procedure improves the outcome,
the resulting solutions tend to include a large number of “false
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positives” in practice (10). Belloni et al (11) proposed to solve
the square-root Lasso minimization problem instead of Eq. 3,
which makes the regularization parameter A independent of
the SNR. Our contribution is a new computationally efficient
method for exact support recovery, with no false positives, in
noisy settings. It also does not require an estimate on SNR.

Main Results. Suppose p is an M-sparse solution of
system 1 with no noise, where the columns of A4 have unit
length. Our main result ensures that we can still recover the
support of p when the data is noisy by looking at the support
of p, found as

(prsm.) = arg xoin (Tllplley + limlles) (4]
subject to Ap 4+ Cn = by + e,

with an O(1) weight 7, and an appropriately chosen Noise
Collector matrix C € R¥V*¥ ¥ > K. The minimization
problem 4 can be understood as a relaxation of 2, as it works
by absorbing all the noise, and possibly some signal, in Cn...
The following theorem shows that if the signal is pure
noise, and the columns of C are chosen independently and
at random on the unit sphere SV~ = {ZL‘ ERY ||z]ley = 1},
then Cn,. = e for any level of noise, with large probability.
Theorem 1 (No phantom signal): Suppose bp = 0 and
e/|lelle, is uniformly distributed on S¥~!. Fix 8 > 1, and
draw ¥ = N? columns for C, independently, from the uniform
distribution on SV, For any x > 0 there are constants
7= 7(k, 8) and No = Ny(k, 8) such that, for all N > No, p.,
the solution of Eq. 4, is zero with probability 1 — 1/N*.
This Theorem guarantees, with large probability, a zero
false discovery rate in the absence of signals with meaningful
information. The key to a zero false discovery rate is the
choice of a no-phantom weight 7. Next, we generalize this
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result for the case in which the recorded signals carry useful
information.

Theorem 2 (Zero false discoveries): Let p be an M-sparse
solution of the noiseless system Ap = by. Assume k, 3, the
Noise Collector, and the noise are the same as in Theorem 1.
In addition, assume that the columns of A are incoherent,
in the sense that [(a;,a;)| < 53;. Then, there are constants
7 =7(k,8) and No = No(k, B) such that supp(p,.) C supp(p)
for all N > Ny with probability 1 —1/N*.

This Theorem holds for any level of noise and the same
value of 7 as in Theorem 1. The incoherence conditions in
Theorem 2 are needed to guarantee that the true signal does
not create false positives elsewhere. Theorem 2 guarantees
that the support of p_ is inside the support of p. The next
Theorem shows that if the noise is not too large, then p_ and
p have exactly the same support.

Theorem 3 (Exact support recovery): Keep the same as-
sumptions as in Theorem 2. Let v = min;csupp(p) |0il/11pll¢oc -
There are constants 7 = 7(k,8), a1 = ci(w,8,7), and
No = No(k, B) such that, if the noise level satisfies ||ell¢, <
aHboH?ZHpHal\/N/\/lnN then, for all N > Ny, supp(p,) =
supp(p) with probability 1 — 1/N*.

To elucidate an interpretation of the last Theorem consider
a model case where A is the identity matrix and all coefficients
of bg = p are either 1 or 0. Then ||bo||7, = ||p|le; = M. In
this case, an acceptable relative level of noise is

lele/l1Bolle, < VN/VMInN. (5]

This means that |||, < V/N/vIn N, and it implies that each
coefficient of by may be corrupted by O(1/v/In N) on average,
and some coeflicients of by may be corrupted by O(1).

Motivation. We are interested in imaging sparse scenes,
accurately, using limited and noisy data. Such imaging prob-
lems arise in many areas such as medical imaging (12), struc-
tural biology (13), radar (14), and geophysics (15). In imaging,
the £1-norm minimization method in Eq. 2 is often used, see
e.g. (16-21), as it has the desirable property of super-resolution,
that is, the enhancement of the fine scale details of the images.
This has been analyzed in different settings by Donoho and
Elad (22), Candés and Fernandez-Granda (23), Fannjiang and
Liao (24), and Borcea and Kocyigit (25), among others. We
want to retain this property in our method when the data is
corrupted by additive noise.

However, noise fundamentally limits the quality of the im-
ages formed with almost all computational imaging techniques.
Specifically, ¢1-norm minimization produces images that are
unstable for low SNR due to the ill-conditioning of super-
resolution reconstruction schemes. The instability emerges
as clutter noise in the images, or grass, that degrades the
resolution. Our initial motivation to introduce the Noise Col-
lector matrix C was to regularize the matrix A and, thus, to
suppress the clutter in the images. We proposed in (26) to
seek the minimal ¢1-norm solution of the augmented linear
system Ap + Cn = b. The idea was to choose the columns
of C almost orthogonal to those of A. Indeed, the condition
number of [A|C] becomes O(1) when O(N) columns of C are
taken at random. This essentially follows from the bounds on
the largest and the smallest nonzero singular values of random
matrices, see e.g. Theorem 4.6.1 in (27).

The idea to create a dictionary for noise is not new. For
example, the work by Laska et al. (28) considers a specific
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version of the measurement noise model so b = Ap+Ce, where
C is a matrix with fewer (orthonormal) columns than rows,
and the noise vector e is sparse. C represents the basis in
which the noise is sparse and it is assumed to be known. Then,
they show that it is possible to recover sparse signals and
sparse noise exactly. We stress that we do not assume here
that the noise is sparse. In our work, the noise is large (SNR
can be small) and is evenly distributed across the data, so it
cannot be sparsely accommodated.

To suppress the clutter, our theory in (26) required expo-
nentially many columns, so 3 < e”. This seemed to make the
Noise Collector impractical, but the numerical experiments
suggested that O(NN) columns were enough to obtain excellent
results. We address this issue here and explain why the Noise
Collector matrix C only needs algebraically many columns.
Moreover, to absorb the noise completely, and thus improve
the algorithm in (26), we introduce now the no-phantom weight
7 in Eq. 4. Indeed, by weighting the columns of the Noise
Collector matrix C with respect to those in the model matrix
A, the algorithm now produces images with no clutter at all,
no matter how much noise is added to the data.

Finally, we want the Noise Collector to be efficient, with
almost no extra computational cost with respect to the Lasso
problem in Eq. 3. To this end, the Noise Collector is con-
structed using circulant matrices that allows for efficient matrix
vector multiplications using FFTs.

We now explain how the Noise Collector works and re-
duce our Theorems to basic estimates in high-dimensional
probability.

The Noise Collector
The method has two main ingredients: the Noise Collector
matrix C and the no-phantom weight 7. The construction of
the Noise Collector matrix C starts with the following three
key properties. Firstly, its columns should be sufficiently
orthogonal to the columns of A, so it does not absorb signals
with “meaningful” information. Secondly, the columns of
C should be uniformly distributed on the unit sphere SV 1
so that we could approximate well a typical noise vector.
Thirdly, the number of columns in C should grow slower than
exponential with NV, otherwise the method is impractical.
One way to guarantee all three properties is to impose

VN VN

with a > 1, and fill out C drawing ¢; at random with rejec-
tions until the rejection rate becomes too high. Then, by
construction, the columns of C are almost orthogonal to the
columns of A, and when the rejection rate becomes too high
this implies that we can not pack more N-dimensional unit
vectors into C and, thus, we can approximate well a typical
noise vector. Finally, the Kabatjanskii-Levenstein inequality
(see discussion in (29)) implies that the number ¥ of columns

|<ai7cj>| < Vi7j> and |<Ci7cj>| < Vi 75]1 [6}

in C grows at most polynomially: ¥ < N ® The first estimate
in Eq. 6 implies that any solution Cn = a; satisfies, for any
i < N, ||nlle, 2 V/N. This estimate measures how expensive
it is to approximate columns of A, i.e. the meaningful signal,
with the Noise Collector. In turn, the no-phantom weight 7
should be chosen so that it is expensive to approximate noise
using columns of A. It cannot be taken too large, though,
because we may lose the signal. In fact, one can prove that
if 7 > \/N/a, then p. = 0 for any p and any level of noise.
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Intuitively, 7 characterizes the rate at which the signal is lost
as the noise increases. The most important property of the
no-phantom weight 7 is that it does not depend on the level of
noise, so it is chosen before we start using the Noise Collector.

It is, however, more convenient for the proofs to use a
probabilistic version of Eq. 6. Suppose that the columns of C
are drawn, independently, at random. Then, the dot product
of any two random unit vectors is still typically of order 1/v/N,
see e.g. (27). If the number of columns grows polynomially, we
only have to sacrifice an asymptotically negligible event where
our Noise Collector does not satisfy the three key properties,
and the decoherence constraints in Eq. 6 are weakened by a
logarithmic factor only. This follows from basic estimates in
high-dimensional probability. We will state them in the next
Lemma after we interpret problem 4 geometrically.

Consider the convex hulls

3 )

H, = xERN:c:Z&Ci,Z\&ISl ) (7]
=1 i=1
K )

H, = xeRNﬂc:Z&ai,ZKi\Sl ) (8]
1=1 1=1

and H(1) = {€h1/7+ (1 —&)h2,0< ¢ < 1,h; € H;}. Theo-
rem 1 states that for a typical noise vector e we can find
Ao > 0 such that e € Ag0H; and e € AOH (1) for any A < Ao.

Lemma 1 (Typical width of convex hulls H;): Suppose
L =N" B>1, vectors ¢; € SV7!, i =1,2,...,%, are drawn
at random and independently, and e € S~ . Then, for any

k > 0 there are constants co = co(k,3), @ = /(8 —1)/2 and
No = No(k, B), such that for all N > Ny

max(max(| @i, €)]). max(|(ei, )])) < coVinN/VN, (9]

and
«a lnNe/\/Ne Hy,

with probability 1 — 1/N".

We sketch the proof of estimates 9 and 10 in Section Proofs.
Estimate 9 can also be derived from the Milman’s version of
Dvoretzky’s theorem (30). Informally, inequality 9 states that
H, and H; are contained in the £2-ball of radius covIn N/ VN
except for a few spikes in statistically insignificant directions.
See Figure 1-left. Inequality 10 states that H; contains an
{3-ball of radius avIn N/v/N except for a few statistically
insignificant directions.

These inequalities immediately imply Theorem 1. We just
need to explain how to choose the no-phantom weight 7. There
will be no phantoms if Hs/7 is strictly inside the £2-ball of
radius av/In N/+/N. This could be done if 7 > ¢o/c.

If columns of A are orthogonal to each other, then The-
orem 2 follows from Theorem 1. We just need to project
the linear system in Eq. 4 on the span of a;, i € supp(p),
and apply Theorem 1 to the projections. If, in addition,
we assume by = a1p1, then the proof of Theorem 3 is illus-
trated on Figure 1-right. In detail, a typical intersection of
V = span(ai, e) and H(7) is a rounded rhombus because it is
the convex hull of a1 /7 and the £-ball of radius covIn N/v/N.
If a1p1+e € \oOH (), then there are two options: 1) ai1p1+e
lies on the curved boundary of the rounded rhombus, and then
supp(p,) = 0; 2) a1p1 + e lies on the flat boundary of the

(10]
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rounded rhombus, and then supp(p,) = supp(p). The sec-
ond option happens if the vector a1pi + e intersects the flat
boundary of @H (7). This gives the support recovery estimate
in Theorem 3.

J1e

aip1 +e

ai P

Fig. 1. Left: A convex hull H; is an £3 ball of radius O(vIn N /v N) with few
spikes. Right: An intersection of H (7) with the span(a1, e) is a rounded rhombus.

In the general case the columns of the combined matrix
[A|C] are incoherent. This property allows us to prove Theo-
rems 2 and 3 in Section Proofs using known techniques, see
e.g. (26). In particular, we automatically have exact recovery
using (2) applied to [A|C] if the data is noiseless.

Lemma 2 (Exact Recovery): Suppose p is an M-sparse
solution of Ap = b, and there is no noise so e = 0. In addition,
assume that the columns of A are incoherent: |{a;,a;)| < =+

3M
Then, the solution to Eq. 4 satisfies p, = p for all
2V N 1
M < L with probability 1 — —. [11]
3coTvVIn N Nr

Fast Noise Collector Algorithm
To find the minimizer in Eq. 4, we consider a variational
approach. We define the function

F(p,m,z) =A(7llplle +lnlle)
1
+§||Ap +Cn— bz, + (z,b— Ap —Cn)

[12]

for a no-phantom weight 7, and determine the solution as
max min F(p,n, z). [13]
z pn

The key observation is that this variational principle finds the
minimum in Eq. 4 exactly for all values of the regularization
parameter A. Hence, the method has no tuning parameters. To
determine the exact extremum in Eq. 13, we use the iterative
soft thresholding algorithm GeLMA (31) that works as follows.

First pick a value for 8 and 7. For optimal results, one can
calibrate 7 to be the smallest constant such that Theorem 1
holds, that is, we see no phantom signals when the algorithm
is fed with pure noise. In our numerical experiments we use
B=15and 7 =2.

Next, pick a value for the regularization parameter A, e.g.
A = 1. Choose step sizes At; < 2/||[[A|C]||*> and Atz <
MA|* Set p, =0, ny =0, 2o = 0, and iterate for k > 0:

r:b—Apk—an7
Prt1 = Sraan (pp + At1 A (2 + 7)) ,
Mes1 = Saae, (M, + At1C* (2 + 7)) ,

Zk41 = 2k + Atar, [14]
*Choosing two step sizes instead of the smaller one At improves the convergence speed.
PNAS | June 28,2020 | vol. XXX | no. XX | 3
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where S, (y;) = sign(y;) max{0, |y;| — r}.

The Noise Collector matrix C is computed by drawing N°~*
normally distributed N-dimensional vectors, normalized to
unit length. These are the generating vectors of the Noise
Collector . From each of them, a circulant N x N matrix C;,
i=1,...,NP ! is constructed. The Noise Collector matrix
is obtained by concatenation, so C = [C1 [C2|...|Cys-1 ]. Ex-
ploiting the circulant structure of the matrices C;, we perform
the matrix vector multiplications Cn,, and C*(zx+7) in Eq. 14
using the FFT (32). This makes the complexity associated to
the Noise Collector O(N?log(N)). Note that only the N#~?
generating vectors are stored, and not the entire N x N* Noise
Collector matrix. In practice, we use 5 ~ 1.5 which makes
the cost of using the Noise Collector negligible, as typically
K > NP?~'. The columns of the Noise Collector matrix C
with this circulant structure are uniformly distributed on SV !
and they satisfy Lemma 1. This implies that the Theorems of
this paper are still valid for such C.

Application to imaging

We consider passive array imaging of point sources. The
problem consists in determining the positions Z; and the
complex’ amplitudes aj,j=1,..., M, of a few point sources
from measurements of polychromatic signals on an array of
receivers; see Figure 2. The imaging system is characterized
by the array aperture a, the distance L to the sources, the
bandwidth B and the central wavelength Ao.

Fig. 2. General setup for passive array imaging. The source at Z; emits a signal that
is recorded at all array elements &,.,r = 1,..., N,.

The sources are located inside an image window IW, which
is discretized with a uniform grid of points 4, k =1,..., K.
The unknown is the source vector p = [p1,...,px|T € C¥,
whose components pi correspond to the complex amplitudes
of the M sources at the grid points 4,, k = 1,..., K, with
K > M. For the true source vector we have p, = «; if
Y, = Z; for some j =1,..., M, while p, = 0 otherwise.

Denoting by G(&, §; w) the Green’s function for the propa-
gation of a signal of angular frequency w from point 4 to point
&, we define the single-frequency Green’s function vector that
connects a point 4 in the IW with all points &,, r = 1,..., N,,
on the array as

. G(EN, g;w)]T e CN .

exp{iw|® —gl/co} 1y,
dr|E — |
medium is homogeneous. The data for the imaging problem

are the signals b(Z,,w;) = Z;Vil a;G(&r, Zj;w;) recorded at

In three dimensions, G(&,¥y;w) =

TWe chose to work with real numbers in the previous sections for ease of presentation but the results
also hold with complex numbers.
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receiver locations &, r = 1,..., N, at frequencies w;, | =

1,...,S. These data are stacked in a column vector
b=[b(w1)T,b(ws)T,...,bws)"TeC” ; N=N,S, [15]

with b(w;) = [b(&1,wr),b(&@2,w1),...,b(ZN,w)]T € CNr.

Then, Ap = b, with A the N x K measurement matrix
whose columns aj, are the multiple-frequency Green’s function
vectors

ap = [g(gkuwl)T7g(ﬂk7w2)T7 . '7g(gk;wS)T]T € CN7 [16}

normalized to have length one. The system A p = b relates
the unknown vector p € C¥ to the data vector b € CV.

Next, we illustrate the performance of the Noise Collector
in this imaging setup. The most important features are that
(i) no calibration is necessary with respect to the level of noise,
(ii) exact support recovery is obtained for relatively large levels
of noise (i.c., [lelley < cillbolZ,VN/(|plle VIn N)), and (iii)
we have zero false discovery rates for all levels of noise, with
high probability.

We consider a high frequency microwave imaging regime
with central frequency fo = 60GHz corresponding to Ao =
5mm. We make measurements for S = 25 equally spaced
frequencies spanning a bandwidth B = 20GHz. The array has
N = 25 receivers and an aperture a = 50cm. The distance from

the array to the center of the imaging window is L = 50cm.

Then, the resolution is AgL/a = 5mm in the cross-range
(direction parallel to the array) and c¢o/B = 15mm in range
(direction of propagation). These parameters are typical in
microwave scanning technology (33).

true p

1 12
09
08 1
07
08
06
05 0.6
04
0 04
: 02
02
- o1
o

60 40 20 0 20 40 60 0 500 1000 1500 2000
range in A,

»

cross-range in A

Fig. 3. Noiseless data. The exact solution is recovered for any value of A in Algorithm
14; Left: the true image. Right: the recovered solution vector, p__, is plotted with red
stars and the true solution vector, p, with green circles.

We seek to image a source vector with sparsity M = 12;
see the left plot in Fig. 3. The size of the imaging window
is 20cmx60cm and the pixel spacing is Smmx15mm. The
number of unknowns is, therefore, K = 1681, and the number
of data is N = 625. The size of the Noise Collector is taken to
be ¥ = 10%, so 8 ~ 1.5. When the data is noiseless, we obtain
exact recovery as expected; see the right plot in Fig. 3.

In Fig. 4, we display the imaging results, with and without
the Noise Collector, when the data is corrupted by additive
noise. The SNR = 1, so the {3-norms of the signals and
the noise are equal. In the left plot, we show the recovered

image using ¢;-norm minimization without the Noise Collector.

There is a lot of grass in this image, with many non-zero values
outside the true support. When the Noise Collector is used,
the level of the grass is reduced and the image improves; see
the second from the left plot. Still, there are several false
discoveries because we use 7 = 1 in Algorithm 14.

In the third column from the left of Fig. 4 we show the
image obtained with a weight 7 = 2 in Algorithm 14. With this
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Fig. 4. High level of noise; SNR = 1. From left to right: £ -norm minimization without the noise collector; £ -norm minimization with a noise collector with > = 10* columns,
and 7 = 1 in Algorithm 14; ¢, -norm minimization with a noise collector, and the correct = = 2 in Algorithm 14; ¢2-norm solution restricted to the support. In the top row we
show the images, and in the bottom row the solution vector with red stars and the true solution vector with green circles.

Fig. 5. Left: Algorithm performance for exact support recovery. Success corresponds to the value 1 (yellow) and failure to O (blue). The small phase transition zone (green)
contains intermediate values. The black line is the theoretical estimate v/ N /+/M In N. Ordinate and abscissa are the sparsity M and ||el|2/||bo ||¢, - From left to right the

data size is N = 342, N = 625 and N = 961.

weight, there are no false discoveries and the recovered support
is exact. This simplifies the imaging problem dramatically, as
we can now restrict the inverse problem to the true support
just obtained, and then solve an overdetermined linear system
using a classical ¢2 approach. The results are shown in the
right column of Fig. 4. Note that this second step largely
compensates for the signal that was lost in the first step due
to the high level of noise.

In Figure 5 we illustrate the performance of the Noise
Collector for different sparsity levels M and |le]|e,/||bol|e,
values. Success in recovering the true support of the unknown
corresponds to the value 1 (yellow) and failure to 0 (blue).
The small phase transition zone (green) contains intermediate
values. The black line is the theoretical prediction Eq. 5.
These results are obtained by averaging over 10 realizations of
noise. We show results for three values of data size N = 342,
N = 625 and N = 961. In our experiments the non zero
components of the unknown p take values in [0.6,0.8] and,
therefore, ||bolley/|plle, = cst/v/M.

Remark 1: We considered passive array imaging for ease
of presentation. Same results hold for active array imaging
with or without multiple scattering; see (34) for the detailed
analytical setup.

Remark 2: We have considered a microwave imaging regime.
Similar results can be obtained in other regimes.
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Proofs
Proof of Lemma 1: Using the rotational invariance of all our
probability distributions inequality 9 is true if

P(max |(d;, e)| > coVInN/VN) < 1/N",

where d;, i = 1,2,...,K + X are (possibly dependent)
uniformly distributed on SV¥~!, and we can assume e =
(1,0,...,0). Denote the event

Q= {m?.x|<di7e>| > t/\/ﬁ}.

P (|<di,e)\ > t/\/ﬁ) < 2exp(—t?/2) for each d;. We obtain
P(Q:) < 2(K + %) exp(—t*/2) using the union bound. Choos-
ing t = coVIn N for sufficiently large co, we get P(Q:) <
CNPN=/2 < N7 where ¢2 > 2(8 + x) and N > No.
Hence, Eq. 9 holds with probability 1 — N~ ".

If N columns cj, j € S of C satisfy

r_nig|<cj,e)|29,0:avlnN/\/N, [17]
j€

then their convex hull will contain fe with probability (1/2)".
Therefore inequality 10 follows if 17 holds with probability
1—1/N". Using the rotational invariance of all our probability

distributions we can assume e = (1,0, ...,0). For each ¢;
t 2 k2 1 2
Pl [{ci,e)] > —= | = — e zdr>—-e .
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Split the index set 1,2,...,% into N non-overlapping subsets
Sk, k=1,2,...,N of size N°~. For each S

NA—L B-1
P | max [{c;, e)| < avin ¥ < (17 ;> <e 3N ?

i€Sy - VN
for « = /(8 — 1)/2. By independence

P (17 holds) > Hszl]P’(m%X l(ci,e)| > aVIn N/VN).
1€ESE

2No?

B—1 B—1
Then P (17 holds) > (1 —e 2V % )V > 1 — Ne 2V %
Choosing Ny sufficiently large, we obtain 10. O

Proof of Theorem 2: When columns of A are not orthogonal,
we will choose a 7 smaller than that in Theorem 1 by a factor of
two. Suppose the M-dimensional space V' is the span of the col-
umn vectors a;, with j in the support of p. Say, V' is spanned
by ai, ..., anm. Let W = V+ be the orthogonal complement
to V. Consider the orthogonal decomposition a; = a; + a;’
for all 4 > M + 1. Incoherence of a; implies that ||a;’||e, > 1/2
for all i > M + 1. Indeed, fix any ¢« > M + 1. Suppose
ay = 3L, Grar, and |¢| = maxizar |6k = [|€]li. Thus,
7 > lag.ad)l > a5, 50, &ean)l > 1lgl. (1 - 457)-
Then (€], < 1/(2M). S6 [latllex < 1€ley < M€l <172,
and [la¥ [l > llales - llaZlley > 1/2.

Project system 4 on W. Then, we obtain a new system 4.
The £3-norms of the columns of new A are at least 1/2. Oth-
erwise, the new system satisfies all conditions of Theorem 1.
Indeed, by is projected to zero. All ¢; and e/||el|¢, are pro-
jected to vectors uniformly distributed on SY~~! by the
concentration of measure, see e.g. (27). If any a;, 1 > M + 1,
was used in an optimal approximation of bp+ e, then its projec-
tion a;’ is used in an optimal approximation of the projection
of bp + e on W. This is a contradiction with Lemma 1, if we
choose 7 < ¢o/(2cx) and recall ||ay’||s, > 1/2. O

Proof of Theorem 3: Choose 7 as in Theorem 2. Incoherence
of a; implies we can argue as in the proof of Theorem 2 and
assume (a;,a;) = 0 for i # j, i,j € supp(p). Suppose V* are
the 2-dimensional spaces spanned by e and a; for @ € supp(p).
By Lemma 1 all \H (7)NV* look like rounded rhombi depicted
on Fig. 1-right, and AH; NV C BY with probability 1 — N~~,
where B; is a 2-dimensional ¢2-ball of radius AcovIn N/ VN.
Thus AH(7) N V¢ C HL with probability 1 — N™*, where H}
is the convex hull of B and a vector A\f;, f;, = pi||p||;117—71ai.
Then supp(p,.) = supp(p), if there exists Ag so that p;a; + e
lies on the flat boundary of Hﬁ\o for all i € supp(p).

If minsesupp(p) 1pil > 7llpllco, then there is a constant
c2 = c2(y) such that if p;a; + e lies on the flat boundary
of HY for some i and some A, then there exists Ao so that
pia; + cze lies on the flat boundary of Hio for all i € supp(p).
Suppose V' is spanned by e and by, Hx C V is the convex hull
of By and \f, f = b0||p|\£_117'717 where By C V is an £2-ball

of radius AcovIn N/v/N. If by 4 cze lies on the flat boundary
of H), then there must be an ¢ € supp(p) such that p;a; + coe
lies on the flat boundary of Hy. If

[{bo, bo + c2€)| covV/In N

[1Bolles [Ibo + c2elle, = /N fle,”

then by + cze lies on the flat boundary of H,. Since

[(bo,e)| < collelles]lbolle,/vV/N with probability 1 — N,

Eq. 18 holds if [lelle,/|[bolle; < [[fllez/N/(c2coVIn N) <
c1llbolez ol VN /VINN. O

18]
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