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The ability to detect sparse signals from noisy high-dimensional
data is a top priority in modern science and engineering. It is well
known, that a sparse solution of the linear system Aρ = b0 can be
found efficiently with an `1-norm minimization approach if the data
is noiseless. However, detection of the signal from data corrupted by
noise is still a challenging problem as the solution depends, in gen-
eral, on a regularization parameter whose optimal value is not easy
to choose. We propose a new efficient approach that does not re-
quire any parameter estimation. We introduce a no-phantom weight
τ and the Noise Collector matrix C, and solve an augmented system
Aρ + Cη = b0 + e, where e is the noise. We show that the `1-norm
minimal solution of this system has zero false discovery rate for any
level of noise, with probability that tends to one as the dimension of
b0 increases to infinity. We obtain exact support recovery if the noise
is not too large, and develop a Fast Noise Collector Algorithm which
makes the computational cost of solving the augmented system com-
parable to that of the original one. We demonstrate the effectiveness
of the method in applications to passive array imaging.
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We want to find sparse solutions ρ ∈ RK for1

Aρ = b, [1]2

from highly incomplete measurement data b = b0 + e ∈ RN ,3

corrupted by noise e, where 1� N < K. In the noiseless case,4

ρ can be found exactly by solving the optimization problem (1)5

ρ∗ = arg min
ρ
‖ρ‖`1 , subject to Aρ = b, [2]6

provided the measurement matrix A ∈ RN×K satisfies ad-
ditional conditions, e.g., decoherence or restricted isometry
properties (2, 3), and the solution vector ρ has a small num-
ber M of nonzero components or degrees of freedom. When
measurements are noisy, exact recovery is no longer possible.
However, the exact support of ρ can still be determined if the
noise is not too strong. The most commonly used approach is
to solve the `2-relaxed form of Eq. 2

ρλ = arg min
ρ

(
λ‖ρ‖`1 + ‖Aρ− b‖2`2

)
, [3]

known as Lasso in the statistics literature (4). There are7

sufficient conditions for the support of ρλ to be contained8

within the true support, see e.g. Fuchs (5), Tropp (6), Wain-9

wright (7), and Maleki et al (8) . These conditions depend10

on the signal-to-noise ratio (SNR), which is not known and11

must be estimated, and on the regularization parameter λ,12

which must be carefully chosen and/or adaptively changed (9).13

Although such an adaptive procedure improves the outcome,14

the resulting solutions tend to include a large number of “false15

positives” in practice (10). Belloni et al (11) proposed to solve 16

the square-root Lasso minimization problem instead of Eq. 3, 17

which makes the regularization parameter λ independent of 18

the SNR. Our contribution is a new computationally efficient 19

method for exact support recovery, with no false positives, in 20

noisy settings. It also does not require an estimate on SNR. 21

Main Results. Suppose ρ is an M -sparse solution of
system 1 with no noise, where the columns of A have unit
length. Our main result ensures that we can still recover the
support of ρ when the data is noisy by looking at the support
of ρτ found as

(ρτ ,ητ ) = arg min
ρ,η

(τ‖ρ‖`1 + ‖η‖`1 ) , [4]

subject to Aρ+ Cη = b0 + e,

with an O(1) weight τ , and an appropriately chosen Noise 22

Collector matrix C ∈ RN×Σ, Σ � K. The minimization 23

problem 4 can be understood as a relaxation of 2, as it works 24

by absorbing all the noise, and possibly some signal, in Cητ . 25

The following theorem shows that if the signal is pure 26

noise, and the columns of C are chosen independently and 27

at random on the unit sphere SN−1 =
{
x ∈ RN , ‖x‖`2 = 1

}
, 28

then Cητ = e for any level of noise, with large probability. 29

Theorem 1 (No phantom signal): Suppose b0 = 0 and 30

e/‖e‖`2 is uniformly distributed on SN−1. Fix β > 1, and 31

draw Σ = Nβ columns for C, independently, from the uniform 32

distribution on SN−1. For any κ > 0 there are constants 33

τ = τ(κ,β) and N0 = N0(κ,β) such that, for all N > N0, ρτ , 34

the solution of Eq. 4, is zero with probability 1− 1/Nκ. 35

This Theorem guarantees, with large probability, a zero 36

false discovery rate in the absence of signals with meaningful 37

information. The key to a zero false discovery rate is the 38

choice of a no-phantom weight τ . Next, we generalize this 39
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result for the case in which the recorded signals carry useful40

information.41

Theorem 2 (Zero false discoveries): Let ρ be an M -sparse42

solution of the noiseless system Aρ = b0. Assume κ, β, the43

Noise Collector, and the noise are the same as in Theorem 1.44

In addition, assume that the columns of A are incoherent,45

in the sense that |〈ai,aj〉| ≤ 1
3M . Then, there are constants46

τ = τ(κ,β) and N0 = N0(κ,β) such that supp(ρτ ) ⊆ supp(ρ)47

for all N > N0 with probability 1− 1/Nκ.48

This Theorem holds for any level of noise and the same49

value of τ as in Theorem 1. The incoherence conditions in50

Theorem 2 are needed to guarantee that the true signal does51

not create false positives elsewhere. Theorem 2 guarantees52

that the support of ρτ is inside the support of ρ. The next53

Theorem shows that if the noise is not too large, then ρτ and54

ρ have exactly the same support.55

Theorem 3 (Exact support recovery): Keep the same as-56

sumptions as in Theorem 2. Let γ = mini∈supp(ρ) |ρi|/‖ρ‖`∞ .57

There are constants τ = τ(κ,β), c1 = c1(κ,β, γ), and58

N0 = N0(κ,β) such that, if the noise level satisfies ‖e‖`2 ≤59

c1‖b0‖2`2‖ρ‖
−1
`1

√
N/
√

lnN then, for all N > N0, supp(ρτ ) =60

supp(ρ) with probability 1− 1/Nκ.61

To elucidate an interpretation of the last Theorem consider62

a model case where A is the identity matrix and all coefficients63

of b0 = ρ are either 1 or 0. Then ‖b0‖2`2 = ‖ρ‖`1 = M . In64

this case, an acceptable relative level of noise is65

‖e‖`2/‖b0‖`2 .
√
N/
√
M lnN . [5]66

This means that ‖e‖`2 .
√
N/
√

lnN , and it implies that each67

coefficient of b0 may be corrupted by O(1/
√

lnN) on average,68

and some coefficients of b0 may be corrupted by O(1).69

Motivation. We are interested in imaging sparse scenes,70

accurately, using limited and noisy data. Such imaging prob-71

lems arise in many areas such as medical imaging (12), struc-72

tural biology (13), radar (14), and geophysics (15). In imaging,73

the `1-norm minimization method in Eq. 2 is often used, see74

e.g. (16–21), as it has the desirable property of super-resolution,75

that is, the enhancement of the fine scale details of the images.76

This has been analyzed in different settings by Donoho and77

Elad (22), Candès and Fernandez-Granda (23), Fannjiang and78

Liao (24), and Borcea and Kocyigit (25), among others. We79

want to retain this property in our method when the data is80

corrupted by additive noise.81

However, noise fundamentally limits the quality of the im-82

ages formed with almost all computational imaging techniques.83

Specifically, `1-norm minimization produces images that are84

unstable for low SNR due to the ill-conditioning of super-85

resolution reconstruction schemes. The instability emerges86

as clutter noise in the images, or grass, that degrades the87

resolution. Our initial motivation to introduce the Noise Col-88

lector matrix C was to regularize the matrix A and, thus, to89

suppress the clutter in the images. We proposed in (26) to90

seek the minimal `1-norm solution of the augmented linear91

system Aρ + Cη = b. The idea was to choose the columns92

of C almost orthogonal to those of A. Indeed, the condition93

number of [A | C] becomes O(1) when O(N) columns of C are94

taken at random. This essentially follows from the bounds on95

the largest and the smallest nonzero singular values of random96

matrices, see e.g. Theorem 4.6.1 in (27).97

The idea to create a dictionary for noise is not new. For98

example, the work by Laska et al. (28) considers a specific99

version of the measurement noise model so b = Aρ+Ce, where 100

C is a matrix with fewer (orthonormal) columns than rows, 101

and the noise vector e is sparse. C represents the basis in 102

which the noise is sparse and it is assumed to be known. Then, 103

they show that it is possible to recover sparse signals and 104

sparse noise exactly. We stress that we do not assume here 105

that the noise is sparse. In our work, the noise is large (SNR 106

can be small) and is evenly distributed across the data, so it 107

cannot be sparsely accommodated. 108

To suppress the clutter, our theory in (26) required expo- 109

nentially many columns, so Σ . eN . This seemed to make the 110

Noise Collector impractical, but the numerical experiments 111

suggested that O(N) columns were enough to obtain excellent 112

results. We address this issue here and explain why the Noise 113

Collector matrix C only needs algebraically many columns. 114

Moreover, to absorb the noise completely, and thus improve 115

the algorithm in (26), we introduce now the no-phantom weight 116

τ in Eq. 4. Indeed, by weighting the columns of the Noise 117

Collector matrix C with respect to those in the model matrix 118

A, the algorithm now produces images with no clutter at all, 119

no matter how much noise is added to the data. 120

Finally, we want the Noise Collector to be efficient, with 121

almost no extra computational cost with respect to the Lasso 122

problem in Eq. 3. To this end, the Noise Collector is con- 123

structed using circulant matrices that allows for efficient matrix 124

vector multiplications using FFTs. 125

We now explain how the Noise Collector works and re- 126

duce our Theorems to basic estimates in high-dimensional 127

probability. 128

The Noise Collector 129

The method has two main ingredients: the Noise Collector 130

matrix C and the no-phantom weight τ . The construction of 131

the Noise Collector matrix C starts with the following three 132

key properties. Firstly, its columns should be sufficiently 133

orthogonal to the columns of A, so it does not absorb signals 134

with “meaningful” information. Secondly, the columns of 135

C should be uniformly distributed on the unit sphere SN−1
136

so that we could approximate well a typical noise vector. 137

Thirdly, the number of columns in C should grow slower than 138

exponential with N , otherwise the method is impractical. 139

One way to guarantee all three properties is to impose 140

|〈ai, cj〉| <
α√
N
∀i, j , and |〈ci, cj〉| <

α√
N
∀i 6= j, [6] 141

with α > 1, and fill out C drawing ci at random with rejec- 142

tions until the rejection rate becomes too high. Then, by 143

construction, the columns of C are almost orthogonal to the 144

columns of A, and when the rejection rate becomes too high 145

this implies that we can not pack more N-dimensional unit 146

vectors into C and, thus, we can approximate well a typical 147

noise vector. Finally, the Kabatjanskii-Levenstein inequality 148

(see discussion in (29)) implies that the number Σ of columns 149

in C grows at most polynomially: Σ ≤ Nα2
. The first estimate 150

in Eq. 6 implies that any solution Cη = ai satisfies, for any 151

i ≤ N , ‖η‖`1 &
√
N . This estimate measures how expensive 152

it is to approximate columns of A, i.e. the meaningful signal, 153

with the Noise Collector. In turn, the no-phantom weight τ 154

should be chosen so that it is expensive to approximate noise 155

using columns of A. It cannot be taken too large, though, 156

because we may lose the signal. In fact, one can prove that 157

if τ ≥
√
N/α, then ρτ ≡ 0 for any ρ and any level of noise. 158
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Intuitively, τ characterizes the rate at which the signal is lost159

as the noise increases. The most important property of the160

no-phantom weight τ is that it does not depend on the level of161

noise, so it is chosen before we start using the Noise Collector.162

It is, however, more convenient for the proofs to use a163

probabilistic version of Eq. 6. Suppose that the columns of C164

are drawn, independently, at random. Then, the dot product165

of any two random unit vectors is still typically of order 1/
√
N ,166

see e.g. (27). If the number of columns grows polynomially, we167

only have to sacrifice an asymptotically negligible event where168

our Noise Collector does not satisfy the three key properties,169

and the decoherence constraints in Eq. 6 are weakened by a170

logarithmic factor only. This follows from basic estimates in171

high-dimensional probability. We will state them in the next172

Lemma after we interpret problem 4 geometrically.173

Consider the convex hulls174

H1 =

{
x ∈ RN

∣∣∣∣∣x =
Σ∑
i=1

ξici,
Σ∑
i=1

|ξi| ≤ 1

}
, [7]175

176

H2 =

{
x ∈ RN

∣∣∣∣∣x =
K∑
i=1

ξiai,
Σ∑
i=1

|ξi| ≤ 1

}
, [8]177

and H(τ) = {ξh1/τ + (1− ξ)h2, 0 ≤ ξ ≤ 1,hi ∈ Hi}. Theo-178

rem 1 states that for a typical noise vector e we can find179

λ0 > 0 such that e ∈ λ0∂H1 and e 6∈ λ∂H(τ) for any λ < λ0.180

Lemma 1 (Typical width of convex hulls Hi): Suppose181

Σ = Nβ , β > 1, vectors ci ∈ SN−1, i = 1, 2, . . . , Σ, are drawn182

at random and independently, and e ∈ SN−1 . Then, for any183

κ > 0 there are constants c0 = c0(κ,β), α =
√

(β − 1)/2 and184

N0 = N0(κ,β), such that for all N ≥ N0185

max(max
i≤K

(|〈ai, e〉|), max
i≤Σ

(|〈ci, e〉|)) < c0
√

lnN/
√
N , [9]186

and187

α
√

lnNe/
√
N ∈ H1, [10]188

with probability 1− 1/Nκ.189

We sketch the proof of estimates 9 and 10 in Section Proofs.190

Estimate 9 can also be derived from the Milman’s version of191

Dvoretzky’s theorem (30). Informally, inequality 9 states that192

H1 and H2 are contained in the `2-ball of radius c0
√

lnN/
√
N193

except for a few spikes in statistically insignificant directions.194

See Figure 1-left. Inequality 10 states that H1 contains an195

`2-ball of radius α
√

lnN/
√
N except for a few statistically196

insignificant directions.197

These inequalities immediately imply Theorem 1. We just198

need to explain how to choose the no-phantom weight τ . There199

will be no phantoms if H2/τ is strictly inside the `2-ball of200

radius α
√

lnN/
√
N . This could be done if τ > c0/α.201

If columns of A are orthogonal to each other, then The-202

orem 2 follows from Theorem 1. We just need to project203

the linear system in Eq. 4 on the span of ai, i 6∈ supp(ρ),204

and apply Theorem 1 to the projections. If, in addition,205

we assume b0 = a1ρ1, then the proof of Theorem 3 is illus-206

trated on Figure 1-right. In detail, a typical intersection of207

V = span(a1, e) and H(τ) is a rounded rhombus because it is208

the convex hull of a1/τ and the `2-ball of radius c0
√

lnN/
√
N .209

If a1ρ1 +e ∈ λ0∂H(τ), then there are two options: 1) a1ρ1 +e210

lies on the curved boundary of the rounded rhombus, and then211

supp(ρτ ) = ∅; 2) a1ρ1 + e lies on the flat boundary of the212

rounded rhombus, and then supp(ρτ ) = supp(ρ). The sec- 213

ond option happens if the vector a1ρ1 + e intersects the flat 214

boundary of ∂H(τ). This gives the support recovery estimate 215

in Theorem 3. 216

a1ρ1
e

a

τ

a1ρ1 + e

Fig. 1. Left: A convex hull H1 is an `2 ball of radius O(
√

lnN/
√
N) with few

spikes. Right: An intersection of H(τ) with the span(a1, e) is a rounded rhombus.

In the general case the columns of the combined matrix 217

[A | C] are incoherent. This property allows us to prove Theo- 218

rems 2 and 3 in Section Proofs using known techniques, see 219

e.g. (26). In particular, we automatically have exact recovery 220

using (2) applied to [A | C] if the data is noiseless. 221

Lemma 2 (Exact Recovery): Suppose ρ is an M -sparse 222

solution of Aρ = b, and there is no noise so e = 0. In addition, 223

assume that the columns of A are incoherent: |〈ai,aj〉| ≤ 1
3M . 224

Then, the solution to Eq. 4 satisfies ρτ = ρ for all 225

M <
2
√
N

3c0τ
√

lnN
with probability 1− 1

Nκ
. [11] 226

227

Fast Noise Collector Algorithm 228

To find the minimizer in Eq. 4, we consider a variational 229

approach. We define the function 230

F (ρ,η, z) = λ (τ‖ρ‖`1 + ‖η‖`1 ) [12] 231

+1
2‖Aρ+ Cη − b‖2`2 + 〈z, b−Aρ− Cη〉 232

for a no-phantom weight τ , and determine the solution as 233

max
z

min
ρ,η

F (ρ,η, z). [13] 234

The key observation is that this variational principle finds the 235

minimum in Eq. 4 exactly for all values of the regularization 236

parameter λ. Hence, the method has no tuning parameters. To 237

determine the exact extremum in Eq. 13, we use the iterative 238

soft thresholding algorithm GeLMA (31) that works as follows. 239

First pick a value for β and τ . For optimal results, one can 240

calibrate τ to be the smallest constant such that Theorem 1 241

holds, that is, we see no phantom signals when the algorithm 242

is fed with pure noise. In our numerical experiments we use 243

β = 1.5 and τ = 2. 244

Next, pick a value for the regularization parameter λ, e.g. 245

λ = 1. Choose step sizes ∆t1 < 2/‖[A | C]‖2 and ∆t2 < 246

λ/‖A‖.∗ Set ρ0 = 0, η0 = 0, z0 = 0, and iterate for k ≥ 0: 247

r = b−Aρk − C ηk , 248

ρk+1 = S τ λ∆t1 (ρk + ∆t1A∗(zk + r)) , 249

ηk+1 = Sλ∆t1 (ηk + ∆t1 C∗(zk + r)) , 250

zk+1 = zk + ∆t2 r , [14] 251

∗Choosing two step sizes instead of the smaller one ∆t1 improves the convergence speed.
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where Sr(yi) = sign(yi) max{0, |yi| − r}.252

The Noise Collector matrix C is computed by drawing Nβ−1
253

normally distributed N -dimensional vectors, normalized to254

unit length. These are the generating vectors of the Noise255

Collector . From each of them, a circulant N ×N matrix Ci,256

i = 1, . . . ,Nβ−1, is constructed. The Noise Collector matrix257

is obtained by concatenation, so C = [C1 |C2 |. . . |CNβ−1 ]. Ex-258

ploiting the circulant structure of the matrices Ci, we perform259

the matrix vector multiplications Cηk and C∗(zk+r) in Eq. 14260

using the FFT (32). This makes the complexity associated to261

the Noise Collector O(Nβ log(N)). Note that only the Nβ−1
262

generating vectors are stored, and not the entire N×Nβ Noise263

Collector matrix. In practice, we use β ≈ 1.5 which makes264

the cost of using the Noise Collector negligible, as typically265

K � Nβ−1. The columns of the Noise Collector matrix C266

with this circulant structure are uniformly distributed on SN−1
267

and they satisfy Lemma 1. This implies that the Theorems of268

this paper are still valid for such C.269

Application to imaging270

We consider passive array imaging of point sources. The271

problem consists in determining the positions ~zj and the272

complex† amplitudes αj , j = 1, . . . ,M , of a few point sources273

from measurements of polychromatic signals on an array of274

receivers; see Figure 2. The imaging system is characterized275

by the array aperture a, the distance L to the sources, the276

bandwidth B and the central wavelength λ0.

zj

xr

xs
L

a

h

λ

Fig. 2. General setup for passive array imaging. The source at ~zj emits a signal that
is recorded at all array elements ~xr , r = 1, . . . ,Nr .

277

The sources are located inside an image window IW, which278

is discretized with a uniform grid of points ~yk, k = 1, . . . ,K.279

The unknown is the source vector ρ = [ρ1, . . . , ρK ]ᵀ ∈ CK ,280

whose components ρk correspond to the complex amplitudes281

of the M sources at the grid points ~yk, k = 1, . . . ,K, with282

K � M . For the true source vector we have ρk = αj if283

~yk = ~zj for some j = 1, . . . ,M , while ρk = 0 otherwise.284

Denoting by G(~x,~y;ω) the Green’s function for the propa-
gation of a signal of angular frequency ω from point ~y to point
~x, we define the single-frequency Green’s function vector that
connects a point ~y in the IW with all points ~xr, r = 1, . . . ,Nr,
on the array as

g(~y;ω) = [G(~x1,~y;ω),G(~x2,~y;ω), . . . ,G(~xN ,~y;ω)]ᵀ ∈ CNr .

In three dimensions, G(~x,~y;ω) = exp{iω|~x− ~y|/c0}
4π|~x− ~y| if the285

medium is homogeneous. The data for the imaging problem286

are the signals b(~xr,ωl) =
∑M

j=1 αjG(~xr,~zj ;ωl) recorded at287

†We chose to work with real numbers in the previous sections for ease of presentation but the results
also hold with complex numbers.

receiver locations ~xr, r = 1, . . . ,Nr, at frequencies ωl, l = 288

1, . . . ,S. These data are stacked in a column vector 289

b = [b(ω1)ᵀ, b(ω2)ᵀ, . . . , b(ωS)ᵀ]ᵀ ∈ CN ; N = NrS , [15] 290

with b(ωl) = [b(~x1,ωl), b(~x2,ωl), . . . , b(~xN ,ωl)]ᵀ ∈ CNr . 291

Then, Aρ = b, with A the N × K measurement matrix 292

whose columns ak are the multiple-frequency Green’s function 293

vectors 294

ak = [g(~yk;ω1)ᵀ, g(~yk;ω2)ᵀ, . . . , g(~yk;ωS)ᵀ]ᵀ ∈ CN , [16] 295

normalized to have length one. The system Aρ = b relates 296

the unknown vector ρ ∈ CK to the data vector b ∈ CN . 297

Next, we illustrate the performance of the Noise Collector 298

in this imaging setup. The most important features are that 299

(i) no calibration is necessary with respect to the level of noise, 300

(ii) exact support recovery is obtained for relatively large levels 301

of noise (i.e., ‖e‖`2 ≤ c1‖b0‖2`2

√
N/(‖ρ‖`1

√
lnN)), and (iii) 302

we have zero false discovery rates for all levels of noise, with 303

high probability. 304

We consider a high frequency microwave imaging regime 305

with central frequency f0 = 60GHz corresponding to λ0 = 306

5mm. We make measurements for S = 25 equally spaced 307

frequencies spanning a bandwidth B = 20GHz. The array has 308

N = 25 receivers and an aperture a = 50cm. The distance from 309

the array to the center of the imaging window is L = 50cm. 310

Then, the resolution is λ0L/a = 5mm in the cross-range 311

(direction parallel to the array) and c0/B = 15mm in range 312

(direction of propagation). These parameters are typical in 313

microwave scanning technology (33). 314
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Fig. 3. Noiseless data. The exact solution is recovered for any value of λ in Algorithm
14; Left: the true image. Right: the recovered solution vector, ρτ , is plotted with red
stars and the true solution vector, ρ, with green circles.

We seek to image a source vector with sparsity M = 12; 315

see the left plot in Fig. 3. The size of the imaging window 316

is 20cm×60cm and the pixel spacing is 5mm×15mm. The 317

number of unknowns is, therefore, K = 1681, and the number 318

of data is N = 625. The size of the Noise Collector is taken to 319

be Σ = 104, so β ≈ 1.5. When the data is noiseless, we obtain 320

exact recovery as expected; see the right plot in Fig. 3. 321

In Fig. 4, we display the imaging results, with and without 322

the Noise Collector, when the data is corrupted by additive 323

noise. The SNR = 1, so the `2-norms of the signals and 324

the noise are equal. In the left plot, we show the recovered 325

image using `1-norm minimization without the Noise Collector. 326

There is a lot of grass in this image, with many non-zero values 327

outside the true support. When the Noise Collector is used, 328

the level of the grass is reduced and the image improves; see 329

the second from the left plot. Still, there are several false 330

discoveries because we use τ = 1 in Algorithm 14. 331

In the third column from the left of Fig. 4 we show the 332

image obtained with a weight τ = 2 in Algorithm 14. With this 333
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no NC with NC and τ = 1 with NC and τ = 2 `2 on the support
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Fig. 4. High level of noise; SNR = 1. From left to right: `1-norm minimization without the noise collector; `1-norm minimization with a noise collector with Σ = 104 columns,
and τ = 1 in Algorithm 14; `1-norm minimization with a noise collector, and the correct τ = 2 in Algorithm 14; `2-norm solution restricted to the support. In the top row we
show the images, and in the bottom row the solution vector with red stars and the true solution vector with green circles.
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Fig. 5. Left: Algorithm performance for exact support recovery. Success corresponds to the value 1 (yellow) and failure to 0 (blue). The small phase transition zone (green)
contains intermediate values. The black line is the theoretical estimate

√
N/

√
M lnN . Ordinate and abscissa are the sparsity M and ‖e‖2/‖b0‖`2 . From left to right the

data size is N = 342, N = 625 and N = 961.

weight, there are no false discoveries and the recovered support334

is exact. This simplifies the imaging problem dramatically, as335

we can now restrict the inverse problem to the true support336

just obtained, and then solve an overdetermined linear system337

using a classical `2 approach. The results are shown in the338

right column of Fig. 4. Note that this second step largely339

compensates for the signal that was lost in the first step due340

to the high level of noise.341

In Figure 5 we illustrate the performance of the Noise342

Collector for different sparsity levels M and ‖e‖`2/‖b0‖`2343

values. Success in recovering the true support of the unknown344

corresponds to the value 1 (yellow) and failure to 0 (blue).345

The small phase transition zone (green) contains intermediate346

values. The black line is the theoretical prediction Eq. 5.347

These results are obtained by averaging over 10 realizations of348

noise. We show results for three values of data size N = 342,349

N = 625 and N = 961. In our experiments the non zero350

components of the unknown ρ take values in [0.6, 0.8] and,351

therefore, ‖b0‖`2/‖ρ‖`1 = cst/
√
M .352

Remark 1: We considered passive array imaging for ease353

of presentation. Same results hold for active array imaging354

with or without multiple scattering; see (34) for the detailed355

analytical setup.356

Remark 2: We have considered a microwave imaging regime.357

Similar results can be obtained in other regimes.358

Proofs 359

Proof of Lemma 1: Using the rotational invariance of all our 360

probability distributions inequality 9 is true if 361

P(max
i
|〈di, e〉| ≥ c0

√
lnN/

√
N) ≤ 1/Nκ, 362

where di, i = 1, 2, . . . ,K + Σ are (possibly dependent) 363

uniformly distributed on SN−1, and we can assume e = 364

(1, 0, . . . , 0). Denote the event 365

Ωt =
{

max
i
|〈di, e〉| ≥ t/

√
N
}

. 366

P
(
|〈di, e〉| ≥ t/

√
N
)
≤ 2 exp(−t2/2) for each di. We obtain 367

P (Ωt) ≤ 2(K + Σ) exp(−t2/2) using the union bound. Choos- 368

ing t = c0
√

lnN for sufficiently large c0, we get P (Ωt) ≤ 369

CNβN−c
2
0/2 ≤ N−κ, where c20 > 2(β + κ) and N ≥ N0. 370

Hence, Eq. 9 holds with probability 1−N−κ. 371

If N columns cj , j ∈ S of C satisfy 372

min
j∈S
|〈cj , e〉| ≥ θ, θ = α

√
lnN/

√
N , [17] 373

then their convex hull will contain θe with probability (1/2)N . 374

Therefore inequality 10 follows if 17 holds with probability 375

1−1/Nκ. Using the rotational invariance of all our probability 376

distributions we can assume e = (1, 0, . . . , 0). For each ci 377

P
(
|〈ci, e〉| ≥

t√
N

)
= 2√

2π

∫ ∞
t

e−
x2
2 dx ≥ 1

2e
−t2 . 378
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Split the index set 1, 2, . . . , Σ into N non-overlapping subsets379

Sk, k = 1, 2, . . . ,N of size Nβ−1. For each Sk380

P
(

max
i∈Sk

|〈ci, e〉| ≤
α
√

lnN√
N

)
≤
(

1− 1
2Nα2

)Nβ−1

≤ e−
1
2N

β−1
2

381

for α =
√

(β − 1)/2. By independence382

P (17 holds) ≥ ΠN
k=1P(max

i∈Sk
|〈ci, e〉| ≥ α

√
lnN/

√
N).383

Then P (17 holds) ≥ (1 − e− 1
2N

β−1
2 )N ≥ 1 − Ne− 1

2N
β−1

2 .384

Choosing N0 sufficiently large, we obtain 10. �385

Proof of Theorem 2: When columns ofA are not orthogonal,386

we will choose a τ smaller than that in Theorem 1 by a factor of387

two. Suppose theM -dimensional space V is the span of the col-388

umn vectors aj , with j in the support of ρ. Say, V is spanned389

by a1, . . . , aM . Let W = V ⊥ be the orthogonal complement390

to V . Consider the orthogonal decomposition ai = avi + awi391

for all i ≥M +1. Incoherence of ai implies that ‖awi ‖`2 ≥ 1/2392

for all i ≥ M + 1. Indeed, fix any i ≥ M + 1. Suppose393

avi =
∑M

k=1 ξkak, and |ξj | = maxk≤M |ξk| = ‖ξ‖l∞ . Thus,394

1
3M ≥ |〈aj ,avi 〉| ≥ |〈aj ,

∑M

k=1 ξkak〉| ≥ ‖ξ‖l∞
(
1− M−1

3M

)
.395

Then ‖ξ‖l∞ ≤ 1/(2M). So ‖avi ‖`2 ≤ ‖ξ‖`1 ≤M‖ξ‖l∞ ≤ 1/2,396

and ‖awi ‖`2 ≥ ‖ai‖`2 − ‖avi ‖`2 ≥ 1/2.397

Project system 4 on W . Then, we obtain a new system 4.398

The `2-norms of the columns of new A are at least 1/2. Oth-399

erwise, the new system satisfies all conditions of Theorem 1.400

Indeed, b0 is projected to zero. All ci and e/‖e‖`2 are pro-401

jected to vectors uniformly distributed on SN−M−1 by the402

concentration of measure, see e.g. (27). If any ai, i ≥M + 1,403

was used in an optimal approximation of b0 +e, then its projec-404

tion awi is used in an optimal approximation of the projection405

of b0 + e on W . This is a contradiction with Lemma 1, if we406

choose τ < c0/(2α) and recall ‖awi ‖`2 ≥ 1/2. �407

Proof of Theorem 3: Choose τ as in Theorem 2. Incoherence408

of ai implies we can argue as in the proof of Theorem 2 and409

assume 〈ai,aj〉 = 0 for i 6= j, i, j ∈ supp(ρ). Suppose V i are410

the 2-dimensional spaces spanned by e and ai for i ∈ supp(ρ).411

By Lemma 1 all λH(τ)∩V i look like rounded rhombi depicted412

on Fig. 1-right, and λH1 ∩V i ⊂ Biλ with probability 1−N−κ,413

where Biλ is a 2-dimensional `2-ball of radius λc0
√

lnN/
√
N .414

Thus λH(τ) ∩ V i ⊂ Hi
λ with probability 1−N−κ, where Hi

λ415

is the convex hull of Biλ and a vector λf i, f i = ρi‖ρ‖−1
`1
τ−1ai.416

Then supp(ρτ ) = supp(ρ), if there exists λ0 so that ρiai + e417

lies on the flat boundary of Hi
λ0 for all i ∈ supp(ρ).418

If mini∈supp(ρ) |ρi| ≥ γ‖ρ‖∞, then there is a constant419

c2 = c2(γ) such that if ρiai + e lies on the flat boundary420

of Hi
λ for some i and some λ, then there exists λ0 so that421

ρiai + c2e lies on the flat boundary of Hi
λ0 for all i ∈ supp(ρ).422

Suppose V is spanned by e and b0, Hλ ⊂ V is the convex hull423

of Bλ and λf , f = b0‖ρ‖−1
`1
τ−1, where Bλ ⊂ V is an `2-ball424

of radius λc0
√

lnN/
√
N . If b0 + c2e lies on the flat boundary425

of Hλ, then there must be an i ∈ supp(ρ) such that ρiai + c2e426

lies on the flat boundary of Hi
λ. If427

|〈b0, b0 + c2e〉|
‖b0‖`2‖b0 + c2e‖`2

≥ c0
√

lnN√
N‖f‖`2

, [18]428

then b0 + c2e lies on the flat boundary of Hλ. Since429

|〈b0, e〉| ≤ c0‖e‖`2‖b0‖`2/
√
N with probability 1 − N−κ,430

Eq. 18 holds if ‖e‖`2/‖b0‖`2 ≤ ‖f‖`2

√
N/(c2c0

√
lnN) ≤431

c1‖b0‖`2‖ρ‖−1
`1

√
N/
√

lnN . �432
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