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We present a holographic imaging approach for the case in which a single element is used to collect
intensity-only data at different frequencies and positions. By using an appropriate illumination strategy
we recover, for each position, i.e.,, scan location, field cross-correlations over different frequencies. The
problem is that these field cross-correlations are asynchronized, so the proposed method needs to align
them first in order to image coherently. This is the main result of the paper: a simple algorithm to syn-
chronize field cross-correlations at different locations, so one can recover full field data up to a global
phase that is common to all scan locations. The recovered data are coherent over space and frequency,
and thus, they are used to form high-resolution three dimensional images. Imaging with intensity-only
data is therefore as good as coherent imaging with full data. In addition, we use an /;-norm minimization
algorithm that promotes the low dimensional structure of the images allowing for deep high-resolution

imaging. © 2020 Optical Society of America
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1. INTRODUCTION

Imaging with intensity-only measurements is an important and
challenging problem in fields such as x-ray crystallography.
Only the magnitude squared of the spatial Fourier transform of
the image can be measured while the phase is lost. This raises
the well-known phase retrieval problem, which attempts to re-
construct the missing phases. Loss of phase information occurs
in optics as well because optical sensors such as CCD cameras
cannot record phases. Phase retrieval is also important in ap-
plications where the sampled phase information is polluted by
unavoidable phase errors.

Two well known approaches to the phase retrieval problem
in optics are holography [1] and coherent diffraction imaging
[2]. In holography, the reconstruction of the missing phases is
done with a controlled reference beam that creates interference
fringes within the diffraction pattern that are proportional to
the modulus of the Fourier transform of the object to be im-
aged. The fringes are related in a known way to the unrecorded
phases. Coherent diffraction imaging, however, does not use a
reference beam to recover the missing phase information. The
images are formed using only intensity patterns. Yet, since
wave propagation is coherent, the phases are encoded in these
patterns and can be, in principle, recovered using iterative phase-
retrieval algorithms [3] that exploit redundancies in the data,

such as oversampling of the diffraction patterns. This is also
the approach in ptychography that records the patterns from
a series of partially overlapping regions, giving rise to data
redundancies [4]. Because these imaging modalities generate
two-dimensional diffraction patterns, depth-resolved images
are formed by assembling these patterns using tomographic
methods. This, for example, allows for non-invasive, free-label
cell imaging in biomedical research that requires minimal cell
manipulation [5, 6].

On the other hand, optically sectioning of a sample often
requires its mechanical movement rotating it around a fixed axis
to acquire a full set of projections. Such acquisition procedure
may introduce unwanted artifacts in the reconstructions due
to translational and rotational misalignments that degrade the
quality of the resulting images [7]. To reduce this problem, we
propose to produce holographic data from intensity measure-
ments. Since these data are inherently centered, this approach
has the advantage of being fully alignment-free allowing for re-
constructions even in the presence of constant drifts or random
vibrations due mechanical rotations of the sample during the
registration process. It is a direct method and, therefore, iterative
phase-retrieval algorithms are avoided, so there are no conver-
gence issues. The method does not require oversampling, as it is
often the case in coherent diffraction imaging or ptychography.
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In addition, we also propose to use an ¢1-norm minimization
method that allows for high-resolution imaging. The basic idea
is that, often, the images have a low dimensional structure, so
they admit a sparse representation in certain bases, and this
knowledge makes possible to recover the fine scale information
lost in the data when we promote it with these methods [8-10].

We consider a moving single source and photodetector that
scans a sample. For example, the source-detector pair may rotate
around a circle acquiring the reflected data from the sample at
different angles and frequencies. The sample is far from the
source-detector pair so the illumination is a plane wave. Under
these conditions, we solve a phase retrieval problem for one
dimensional Fourier data for each source-detector position.

To fix ideas, let us consider M point-like reflectors with re-
flectivities 0js j =1,..., M. They are within a size a4 small box
referred to as the imaging window (IW), which is discretized
using K grid points y;, k = 1,...,K. If we illuminate the IW
from a position x,, r = 1,..., N, with a multifrequency vector
e = (e1,e,...,es), then the collected intensity at x;, is given by

2
S K Cw
br(e)? = C |1 ) prere® 8| 1)
1=1k=1

where C is a geometric factor and i = vV=1. In Eq. (1), we
ascribe the reflectivity p; to the grid point that contains an object
with that reflectivity. Otherwise, a grid point has reflectivity
zero. A basic example of an illumination vector is e;, the vector
with 1 in the /-th coordinate and 0’s elsewhere. It represents an
illumination with amplitude 1 and phase 0 at frequency wj.

Moreover, we assume that the reflectivity vector p =
(01,02, ---,pk] is M-sparse with M < K. This is often true
in applications where the reflectivity to be imaged does not oc-
cupy the entire scene but rather a small part of the IW. We stress
that in this work we assume that the solution is sparse in its
canonical basis for clarity of exposition only. If p is not sparse,
we can apply a sparsifying transform A, such as p = Ax, where
x is a sparse vector, and solve for x instead. In this new basis,
simplicity or structure shows up as sparsity in x.

The most difficult task is to determine the support of this
vector, i.e., the values of y; such that p; # 0. This is the com-
binatorial part of the imaging problem which is NP-hard [11].
Once the support is known, it is straightforward to estimate the
values of the reflectivities by restricting the inversion to the sup-
port. Note that if the detectors can record the phases it would be
trivial to determine the distances |x, — y,| by a simple inverse
Fourier transform of b, = [b,(e1),br(e2), ..., by (es)]" for each
source-detector position x,. Then, the locations y, of the objects
would be obtained by well-established imaging methods.

When phases are missing from the measurements, as in
Eq. (1), we cannot determine the distances |x, — y, | directly by
an inverse Fourier transform. We can determine, however, pair-
wise distances between the targets locations. Still, the problem
is that the pairwise distances for each source-detector position
are not referred to the same point and, thus, we have to refer
them to a common one if we want to image coherently.

The method has two stages. First, from the intensity data at
each source-detector position, we recover field cross-correlations
corresponding to coherent sources of different frequencies.
These cross-correlations are the same as the ones obtained from
full data, up to a global phase that is different for each source-
detector position. The field cross-correlations obtained from
intensity data cannot be used coherently to determine, in princi-
ple, the locations y; of the targets. To use them coherently over

all scan positions they need to be synchronized or aligned first.
To do so, we refer the unknown global phases to the total reflec-
tivity, which is a common quantity to all scan positions. This is
the second stage of the imaging method introduced in [12]. With
this strategy, we show that imaging with intensity-only data is
as good as imaging with full data.

2. CROSS CORRELATION-BASED STRATEGY

We can recover field cross-correlated data [13-15]
my, = by(e)br(ey), LI'=1,...,5, 2

from intensity measurements using the polarization identities

1
Re(nfy) = 5 (|br(er+e)* = br(en)]? = br(er)), @)

r 1 )
Im(myy) = 5 <|br(el —iep)> — |br(e))]* — \br(ezf)|2) . @)

where Re(-) and Im(-) denote the real and imaginary parts
of a complex number, respectively. Naturally, |b(e; + ey )|*
represents the intensity measured at x, when two signals of
frequencies w; and wy are sent simultaneously from x5, and
by (e; — iey)|? represents the intensity measured when the sig-
nal of frequency wy has a phase shift of 7t rad with respect to the
signal of frequency wj. This can be easily accomplished by using
a half-wave plate. Since all the quantities on the right-hand side
of (3)-(4) are intensities, we can recover the cross-correlations
(2) using an appropriate protocol of illuminations, even when
phases are not recorded.

The cross-correlations mj;, are obtained through quadratic
quantities. Therefore, there is an undetermined global phase
which is independent of frequency but depends on the position
xr of the detector. These global phases are essential if we want
to superpose images coherently for all the detector locations.
Indeed, the unknown phase for each detector means that we can
only determine pairwise differences in the distances |x; — y, | of
the targets. This is the main difficulty that needs to be overcome.

Recovery of the cross-correlations (2) up to a global phase
amounts to recovering the full data up to a global phase as
well. Indeed, setting the phase of b, (e1) equal to zero, we can
form the vector B, with components 8,1 = /mj; and B,; =
mgl/1 /mi, 1 =2,...,5, that only differs from the full data
vector b, in a global phase factor et ie., B, =b; e . Thus, by
using Eq. (1) we find the locations of the targets associated to
each photodetector x;, up to a reference point, by solving the
system

Arp, = By ®)
for the reflectivity vector p,, where
ei2%|x,.—yl\ eiz%l\x,—yz\ ez‘Z%‘\x,—yK\
eiz“’%pc,—yl\ eiZ%‘x'_yz‘ giszz‘x'_yK‘
Ar -
eiz%\xﬁyl\ eiz”TS\x,fy2| eiz”—f\xﬁyK\

6
The subscript 7 is used to stress that Eq. (5) uses data recovered
from position x; only. We stress that p, does not represent the
true reflectivity vector, but the sum of the reflectivities located at
the same distance r from the photodetector. For a sparse reflectiv-
ity vector, the solution p, can be found by using ¢;-optimization
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algorithms. In the simulations shown below, we use a gen-
eralized Lagrangian multiplier algorithm (GeLMA) [16]. For
noise-free data, exact recovery is guaranteed under the assump-
tion that the mutual coherence of each matrix A, is smaller than
1/(2My), M; being the number of non zero components of p,.
We recall that the mutual coherence of a matrix A is defined as

- ir &7/ 7
I nll;éi]XKﬂz “]>| (7)

where a; € CN are the columns of A normalized to one. A
measurement matrix is incoherent if y is small. The value of u
depends on the properties of the imaging set-up, such as the
aperture of the optical array or the sought image resolution. As
a rule of thumb, the larger the optical aperture, the smaller ,
and the higher the resolution, i.e., the more image details we
want to resolve, the larger y is.

Once the solution vector p, has been found for each x;, we
compute the total reflectivities Z,Ile ©rx seen by each photode-
tector, which is a common quantity for all of them that only
differs in the unknown phase factors ¢/, This motivates the
key observation that we can refer all recovered quantities to the
same global phase. To this end, we define

K
¢ = TPk _ i) 1 N ®

ZkK:1 01,k
The choice of r = 1 in the denominator is, of course, arbitrary.
With this choice, ¢; = 1. Multiplying the recovered data vector
B, by the complex conjugate of Eq. (8), we get &8, = by(e;)e'®1,
Vr=2,...,N,and ] = 1,...,5. This second step defines the
holographically recovered data

b?(el) =B, VIi=1,...,S.

9)
bf’(el) =Py, Vr=2,...,Nand 1 =1,...,S,

whose phases are now coherent over different detector positions
and frequencies. Thus, the images can be formed as if data with
phases were recorded.

Indeed, once the data (9) are obtained, we can use any imag-
ing method to determine the positions of the scatterers. Here we
show results obtained with the traditional Kirchhoff migration
(KM) imaging method and the ¢;-optimization approach. KM is
a direct imaging ¢-method which can be written as

N S,
PMyy) = L Y e P ). (10)
r=11=1

However, when the scene is sparse, meaning that only a few
M components of p are different than zero so M < K, {1-
optimization algorithms that solve [11]

min||pll;,, subjectto Ap = b", 11

can recover the true scene efficiently, even when the data are
scarse so N < K. These methods provide better resolution than
l>-methods but they are more sensitive to noise in the data, in
general. In Eq. (11), we form A and b" by stacking A, and bi’,
respectively, so

Ay b
A; bl

A= ) ,and b" = ] . (12)
An by

In the noiseless case, £1 minimization Eq. (11) provides the exact
support of p when the mutual coherence y defined in (7) is
smaller than 1/(2M). For a general matrix A of size N x K,
with N < K, p > 1/ V/'N. This implies that number of non
zero components of p must satisfy M < +/N/2. This is true
regardless the resolution of the image one wants to form.

Obviously, things get more complicated when the data is
noisy. In this case, the resolution is limited by the noise and,
hence, it cannot be made arbitrarily small. Nevertheless, resolu-
tion can be enhanced in the presence of noise by using a so called
Noise Collector that absorbs the unwanted signals efficiently [17].
With the Noise Collector, exact support is guarantee for Noise to
Signal Ratios smaller than V/N/+v/MInN, when the reflectors
are well separated. When we solve for p, in Eq. (5), N is the
number of frequencies. Once the data are aligned, so we can use
it all coherently for the final reconstruction, N is the number of
frequencies multiplied by the number of spatial measurements
locations.

If the reflectors are not well separated, then it can be shown
that the coherent part of the solution is supported inside the
vicinities of the true solution, and the incoherent part, whose
support is outside them, is small [18]. The vicinities are defined
as the set of pixels whose corresponding columns in .A are almost
parallel to the columns corresponding to the true support. The
size of a vicinity is of the order of the Rayleigh resolution limits.

3. NUMERICAL EXPERIMENTS

We consider a reflection imaging setup in optics: A single source
illuminates the imaging window (IW) and a single photodetec-
tor is used to collect the reflected intensity. Then by moving
the source-detector (or the sample) we obtain measurements
corresponding to N locations x, on a plane at distance R = 1 cm
from the center of the IW.

The scanning setups used in the numerical simulations are
illustrated in Figure 1: a single source-detector either moves
on a circle (left) or on a two dimensional grid (right). The first
scanning configuration is equivalent to the situation in which
the object to be imaged is rotated at a known angles. Using an
appropriate illumination protocol, we recover the phase cross-
correlations my,, I, I'’=1,...,S, from intensity measurements at
each of the N locations x, forr = 1,...,N. We use N = 16 for
both measurement configurations shown in Figure 1. We use
S = 30 stepped frequencies w; = wp + (I —1)Aw, 1 =1,...,S,
with 52 = 400 THz and %—‘;T’ = 5 THz, covering the spectrum of
visible light [400, 600] THz.

The medium between the source-detector and the reflectors
is homogeneous. The size of the IW is 36um x 36um x 36um,
and the pixel size is 1.2um x 1.2uym x 1.2um. Thus, the number
of unknowns is 313 = 29791, while the total number of measure-
ments is 30 X 16 = 480 and, therefore, the linear systems in Eq.
(5) are underdetermined and infinitely many solutions p, can
fit the data. However, only M = 10 grid point locations in the
IW have a non zero reflectivity, so an ¢;-minimization algorithm
should be able to find their unique sparse solution.

Once these solutions p, have been found, we retrieve the
holographic data b}'(e;),l =1...,S,r =1,..., N, following the
methodology proposed in Section 2 (see Eq. (9)). These data
have phases that are now coherent over frequencies and scan
locations and can be used for imaging the unknown reflectivity.
The corresponding imaging results are shown in Figure 2. In
this numerical experiment, the single source-detector rotates
around the IW on a circle, as shown in the top left image of
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Fig. 1. The scanning setups used in the numerical simulations.
A single source-detector is conducting measurements on a
plane located at a distance of 1cm from the center of the IW
(green stars) and measures the reflected intensity. Two mea-
surement configurations are considered in which the single
source-detector either moves on a circle (left) or on a two di-
mensional grid (right). The measurements can be obtained by
either moving the source-detector or the sample. The blue area
depicts the imaging window IW. A zoom of the IW is shown
on the bottom plot.

Figure 1. The top panel in Figure 2 shows the true reflectivity we
seek to find. The bottom left panel is the fp-image (10), shown
here for comparison purposes only. The bottom right panel in
Figure 2 is the /1-image obtained by solving (11). In Figure 2,
we plot the absolute value of the reflectivity normalized by its
maximal value. The ¢1-method recovers exactly the location of
the reflectors, allowing for deep tissue high-resolution imaging,
while the />-image has non-zero values at many other pixels
(here we plot the thresholded KM image showing only the values
above 0.3). These results illustrate that imaging with intensity-
only data is as good as imaging with full data when the proposed
methodology is used. Similar results are obtained when the
single source-detector moves on a two dimensional grid, as
shown in the top right image of Figure 1.

If, in addition to the support, one is interested in recovering
the value of the reflectivity as well, then it is trivial to apply an
£y-method but restricted to the found support only, which makes
the problem overdetermined and simple to solve. The values
of the reflectivity at the locations of the reflectors obtained this
way are given in Table 1. We show the values at the scatterers
location divided by the total reflectivity. We see from the results
in Table 1 that the scanning configuration in which a source-
detector moves on a two-dimensional grid provides a better
quantitative reconstruction of the reflectivity. This has been
observed consistently with other simulations not shown here.
We think that this improved performance is due to the increased
phase diversity of the data in this setup. Indeed, when the
source-detector is moving on a circle the distance from each
location to the IW is less diverse.

oo

20 i 20 -

Fig. 2. Top panel: the true reflectivity. Bottom left: pXM ob-

tained from Eq. (10). Bottom rightl: image p“! computed by
solving problem (11). In all images we plot the amplitude of
the complex valued reflectivity |p|. SNR = 10 dB.

4. CONCLUSIONS

We presented in this paper a computational imaging method-
ology that allows us to obtain three dimensional images from
intensity only data acquired with a single source-detector el-
ement. The method has two steps. In the first step we use
frequency diverse illuminations and the polarization identities
to recover full cross-correlated data. These data are known up to
a phase ¢/ which is frequency independent but depends on the
measurement location x,. The second step of the method aims
to referring all the cross-correlated data to the same global phase
e'%. This second step recovers holographic data whose phases
are coherent over different detector positions and frequencies.
In other words, the second step synchronizes, or aligns, the data
to image coherently so depth can be resolved. This is achieved
by exploiting the fact that the total reflectivity must be inde-
pendent of the measurement location. A key element of the
method is the exact recovery of M-sparse reflectivity vectors
under the usual assumption that the mutual coherence of the
sensing matrix is smaller then 1/(2M). The proposed approach
is non-iterative, in contrast with most of the algorithms used
for imaging with intensities-only, and allows for exact phase
recovery without any constraint on the reflectivity except the
sparsity. As usually in compressive sensing this implies that the
solution of highly underdetermined problems can be obtained,
meaning that the number of data can be much smaller than the
number of unknowns so the images can be resolved with high
accuracy.
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Circular

2d Grid

True

0.1109 — 0.0253i

0.1034 — 0.0270i

0.1014 — 0.0260i

0.0735 — 0.0009i

0.0860 — 0.0111:

0.0862 — 0.0128i

0.0970 — 0.0014:

0.0938 — 0.0022i

0.0906 — 0.0078i

0.0513 + 0.0018: | 0.0681 + 0.0115: | 0.0704 + 0.0097i
0.1121 + 0.0428; | 0.1092 + 0.0382i | 0.1061 + 0.0407:
0.1225 + 0.0403: | 0.1081 + 0.0392: | 0.1112 + 0.0363i
0.0964 + 0.0260: | 0.1060 + 0.0269i | 0.1068 + 0.0313i
0.1280 — 0.0142; | 0.1319 4+ 0.0019; | 0.1327 — 0.0000i

0.0973 — 0.0304i

0.0905 — 0.0351i

0.0926 — 0.0361i

0.1109 — 0.0387i

0.1029 — 0.0422i

0.1020 — 0.0354i

Table 1. True and recovered values of the reflectivity at the
location of the scatterers. We give the values at the reflector
locations divided by the total reflectivity.
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