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Fast signal recovery from quadratic measurements
Miguel Moscoso, Alexei Novikov, George Papanicolaou and Chrysoula Tsogka

Abstract—We present a novel approach for recovering a sparse
signal from cross-correlated data. Cross-correlations naturally
arise in many fields of imaging, such as optics, holography and
seismic interferometry. Compared to the sparse signal recovery
problem that uses linear measurements, the unknown is now
a matrix formed by the cross correlation of the unknown
signal. Hence, the bottleneck for inversion is the number of
unknowns that grows quadratically. The main idea of our
proposed approach is to reduce the dimensionality of the problem
by recovering only the diagonal of the unknown matrix, whose
dimension grows linearly with the size of the problem. The
keystone of the methodology is the use of an efficient Noise
Collector that absorbs the data that come from the off-diagonal
elements of the unknown matrix and that do not carry extra
information about the support of the signal. This results in a
linear problem whose cost is similar to the one that uses linear
measurements. Our theory shows that the proposed approach
provides exact support recovery when the data is not too noisy,
and that there are no false positives for any level of noise.
Moreover, our theory also demonstrates that when using cross-
correlated data, the level of sparsity that can be recovered
increases, scaling almost linearly with the number of data. The
numerical experiments presented in the paper corroborate these
findings.

Index Terms—quadratic data, `1-minimization, noise, model
reduction

I. INTRODUCTION

Reconstruction of signals from cross correlations has inter-
esting applications in many fields of science and engineering
such as optics, quantum mechanics, electron microscopy, an-
tenna testing, seismic interferometry, or imaging in general
[9], [12], [21], [19]. Using cross correlations of measurements
collected at different locations presents several advantages
since the inversion does not require knowledge of the emitter
positions, or the probing pulses shapes as only time differ-
ences matter. Cross correlations have been used, for example,
when imaging is carried out with opportunistic sources whose
properties are mainly unknown [7], [8], [6], [13].

In many applications, we seek information about an object
or a signal ρ ∈ CK given data b ∈ CN most often related
through a linear transformation

Aρ = b , (1)

where A ∈ CN×K is the measurement or model matrix. When
the signal ρ is compressed or when the data is scarce, N <
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K, in which case (1) is underdetermined and infinitely many
signals or objects match the data. However, if the signal ρ is
sparse so only M � K components are different than zero,
`1-minimization algorithms that solve

ρ`1 = argmin ‖ρ‖`1 , subject to Aρ = b (2)

can recover the true signal efficiently even when N � K.
On the other hand, there are situations in which it is difficult

or impossible to record high quality data, b, and it is more
convenient to use the cross-correlated data contained in the
matrix

B = b b∗ ∈ CN×N (3)

to find the desired information about the object or signal ρ
(see [7] and references therein).

One way to address this problem is to lift it to the matrix
level and reformulate it as a low-rank matrix linear system,
which can be solved by using nuclear norm minimization
as it was suggested in [4], [3] for imaging with intensities-
only. This makes the problem convex over the appropriate
matrix vector space and, thus, the unique true solution can
be found using well established algorithms with increased
storage requirements as they involve the SVD of the iterate
matrix unknown [1]. Furthermore, the big caveat is that the
computational cost rapidly becomes prohibitive because the
dimension of the problem increases quadratically with K,
making its solution infeasible when the problem is large

In this paper we suggest a different approach. We propose
to consider the linear matrix equation

AXA∗ = B (4)

for the correlated signal X = ρρ∗ ∈ CK×K , vectorize both
sides so

vec(AXA∗) = vec(B) , (5)

and use the Kronecker product ⊗, and its property
vec(PQR) = (RT ⊗ P )vec(Q), to express the matrix mul-
tiplications as the linear transformation

(Ā ⊗ A) vec(X) = vec(B) . (6)

Thus, we can promote the sparsity of the sought signal
using `1-minimization algorithms that are more efficient than
nuclear norm minimization ones, as they do not require heavy
operations that involve matrix factorizations. However, the
dimension of the unknown vec(X) in (6) also increases
quadratically with K, so this approach by itself would still
be impractical when K is not small.

Hence, we propose to use a Noise Collector to reduce
the dimensionality of problem (6). The Noise Collector was
introduced in [17] to eliminate the clutter in the recovered
signals when the data are contaminated by additive noise. In
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this paper, we use the Noise Collector to absorb part of the
signal instead. Specifically, we treat the signal that corresponds
to the K2 −K off-diagonal entries in the matrix X as noise.
Using the Noise Collector allows us to ignore these entries and
construct a linear system with the same number of unknowns
as the original problem (1) that uses linear data. Thus, a
dimension reduction from K2 to K unknowns is achieved with
almost no extra computational cost (see Section IV-A), as the
number of operations used by the Noise Collector is of the
same order as the ones needed to solve the original problem
with linear measurements. In other words, the cost of solving
the sparse signal recovery problem using cross-correlated data
also grows linearly with K using the proposed approach.

The main result of this paper is Theorem 3 which says
that under certain decoherence conditions on the matrix A,
we can find the support of an M-sparse signal exactly if the
data is noise-free or the noise is low enough. Furthermore,
Theorem 3 shows that the level of sparsity M that can be
recovered increases from O(

√
N/
√

lnN) to O(N/
√

lnN)
when quadratic cross correlation data are used instead of the
linear ones.

The numerical experiments included in this paper support
the results of Theorem 3. They show that the support of a
signal can be found exactly if the noise in the data is not too
large with almost no extra computational cost with respect
to the original problem (1) that considers linear data with
no correlations. Once the support has been found, a trivial
second step allows us to find the signal, including its phases.
The reconstruction is exact when there is no noise in the data
and the results are very satisfactory even for noisy data with
low signal to noise ratios. That is, our numerical experiments
suggest that the approach presented here is robust with respect
to additive noise. Additional properties of this approach are
that for any level of noise the solution has no false positives,
and that the algorithm is parameter-free, so it does not require
an estimation of the energy of the off-diagonal signal that we
need to absorb, or of the level of noise in the data.

The paper is organized as follows. In Section II, we
summarize the model used to generate the signals to be
recovered, which in our case are images. In Section III, we
present the theory that supports the proposed strategy for
dimension reduction when correlated data are used to recover
the signals. Section IV explains the algorithm for carrying
out the inversion efficiently. Section V shows the numerical
experiments. Section VI summarizes our conclusions. The
proofs of the theorems are given in A.

II. PASSIVE ARRAY IMAGING

We consider processing of passive array signals where the
object to be imaged is a set of point sources at positions ~zj
and (complex) amplitudes αj , j = 1, . . . ,M . The data used to
image the object are collected at several sensors on an array;
see Figure 1. The imaging system is characterized by the array
aperture a, the distance L to the sources, the bandwidth B and
the central wavelength λ0 of the signals.

zj

xr

xr′ L

a

h

λ

Fig. 1. General setup for passive array imaging. The source at ~zj emits a
signal that is recorded at all array elements ~xr , r = 1, . . . , Nr .

The sources are located inside an image window IW dis-
cretized with a uniform grid of points ~yk, k = 1, . . . ,K. Thus,
the signal to be recovered is the source vector

ρ̃ = [ρ̃1, . . . , ρ̃K ]ᵀ ∈ CK , (7)

whose components ρ̃k correspond to the amplitudes of the M
sources at the grid points ~yk, k = 1, . . . ,K, with K � M .
This vector has components ρ̃k = αj if ~yk = ~zj for some
j = 1, . . . ,M , while the others are zero.

Denoting by G(~x, ~y;ω) the Green’s function for the propa-
gation of a wave of angular frequency ω from point ~y to point
~x, we define the single-frequency Green’s function vector that
connects a point ~y in the IW with all the sensors on the array
located at points ~xr, r = 1, . . . , Nr, so

g(~y;ω) = [G(~x1, ~y;ω), G(~x2, ~y;ω), . . . , G(~xN , ~y;ω)]ᵀ ∈ CNr .

In three dimensions, G(~x, ~y;ω) =
exp{iω|~x− ~y|/c0}

4π|~x− ~y|
if the

medium is homogeneous. Hence, the signals of frequencies ωl
recorded at the sensors locations ~xr are

b(~xr, ωl) =

M∑
j=1

αjG(~xr, ~zj ;ωl) , r = 1, . . . , Nr .

They form the single-frequency data vector b(ωl) =
[b(~x1, ωl), b(~x2, ωl), . . . , b(~xN , ωl)]

ᵀ ∈ CNr . As several fre-
quencies ωl, l = 1, . . . , Nf , are used to recover (7), all the
recorded data are stacked in the multi-frequency column data
vector

b = [b(ω1)ᵀ, b(ω2)ᵀ, . . . , b(ωNf )ᵀ]ᵀ ∈ CN ,withN = NrNf .
(8)

A. The inverse problem with linear data

When the data (8) are available and reliable, one can form
the linear system

Aρ = b (9)

to recover (7). Here, A is the N × K measurement matrix
whose columns ak are the multi-frequency Green’s function
vectors

ak =
1

ck
[g(~yk;ω1)ᵀ, g(~yk;ω2)ᵀ, . . . , g(~yk;ωNf )ᵀ]ᵀ ∈ CN ,

(10)
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where ck are scalars that normalize these vectors to have `2-
norm one, and

ρ = diag(c1, c2, . . . , cK) ρ̃, (11)

where ρ̃ is given by (7). Then, one can solve (9) for the
unknown vector ρ using a number of `2 and `1 inversion
methods to find the sought image. In general, `2 methods are
robust but the resulting resolution is low. On the other hand,
`1 methods provide higher resolution but they are much more
sensitive to noise in the data. Hence, they cannot be used with
poor quality data unless one carefully takes care of the noise.

B. The inverse problem with quadratic cross correlation data

In many instances, imaging with cross correlations helps
to form better and more robust images. This is the case, for
example, when one uses high frequency signals and has a low-
budget measurement system with inexpensive sensors that are
not able to resolve the signals well. Another situation is when
the raw data (8) can be measured but it is more convenient
to image with cross correlations because they help to mitigate
the effects of the inhomogeneities of the medium between the
sources and the sensors [2], [10]

Assume that all the cross-correlated data contained in the
matrix

B = b b∗ ∈ CN×N (12)

are available for imaging. Then, one can consider the linear
system

AXA∗ = B , (13)

and seek the correlated image X = ρρ∗ ∈ CK×K that
solves it. The unknown matrix X is rank 1 and, hence,
one possibility is to look for a low-rank matrix by using
nuclear norm minimization as it was suggested for imaging
with intensities-only in [4], [3]. This is possible in theory,
but it is unfeasible when the problem is large because the
number of unknowns grows quadratically and, therefore, the
computational cost rapidly becomes prohibitive. For example,
to form an image with 1000× 1000 pixels one would have to
solve a system with 1012 unknowns.

Instead, we suggest the following strategy. We propose to
vectorize both sides of (13) so

vec(AXA∗) = vec(B) , (14)

where vec(·) denotes the vectorization of a matrix formed by
stacking its columns into a single column vector. Then, we
use the Kronecker product ⊗, and its property vec(PQR) =
(RT ⊗P )vec(Q), to express the matrix multiplications as the
linear transformation

(Ā ⊗ A) vec(X) = vec(B) . (15)

With this formulation of the problem we can use an `1
minimization algorithm to form the images, which is much
faster than a nuclear norm minimization algorithm that needs
to compute the SVD of the iterate matrices. However, with
just this approach the main obstacle is not overcome, as
the dimensionality still grows quadratically with the number
of unknowns K. Hence, we propose a dimension reduction

strategy that uses a Noise Collector [17] to absorb a component
of the data vector that does not provide extra information about
the signal support. We point out that this component is not a
gaussian random vector as in [17], but a deterministic vector
resulting from the off-diagonal terms of X that are neglected.

III. THE NOISE COLLECTOR AND DIMENSION REDUCTION

A. The Noise Collector

The Noise Collector [17] is a method to find the vector
χ ∈ CK in

T χ = d0 + e , (16)

from highly incomplete measurement data d = d0 + e ∈ CN
possibly corrupted by noise e ∈ CN , where 1 � N < K.
Here, T is a general measurement matrix of size N×K, whose
columns have unit length. The main results in [17] ensure that
we can still recover the support of χ when the data is noisy
by looking at the support of χτ found as

(χτ ,ητ ) = arg minχ,η (τ‖χ‖`1 + ‖η‖`1) ,
subject to Tχ+ Cη = d,

(17)

with an O(1) no-phantom weight τ , and a Noise Collector
matrix C ∈ CN×Σ with Σ = N β , for β > 1. If the
noise e is Gaussian, then the columns of C can be chosen
independently and at random on the unit sphere SN−1 ={
x ∈ RN , ‖x‖`2 = 1

}
. The weight τ > 1 is chosen so it is

expensive to approximate e with the columns of T , but it
cannot be taken too large because then we lose the signal χ
that gets absorbed by the Noise Collector as well. Intuitively, τ
is a measure of the rate at which the signal is lost as the noise
increases. For practical purposes, τ is chosen as the minimal
value for which χ = 0 when the data is pure noise, i.e., when
d0 = 0. The key property is that the optimal value of τ does
not depend on the level of noise and, therefore, it is chosen
in advance, before the Noise Collector is used for a specific
task. We have the following result.

Theorem 1: [17] Fix β > 1, and draw Σ = N β columns to
form the Noise Collector C, independently, from the uniform
distribution on SN−1. Let χ be an M -sparse solution of the
noiseless system Tχ = d0, and χτ the solution of (17) with
d = d0 + e. Denote the ratio of minimum to maximum
significant values of χ as

γ = min
i∈supp(χ)

|χi|
‖χ‖`∞

. (18)

Assume that the columns of T are incoherent, so that

|〈ti, tj〉| 6
1

3M
for all i and j. (19)

Then, for any κ > 0, there are constants τ = τ(κ, β), c1 =
c1(κ, β, γ), and N0 = N0(κ, β) such that, if the noise level
satisfies

max (1, ‖e‖`2) 6 c1
‖d0‖2`2
‖χ‖`1

√
N

lnN
, (20)

then supp(χτ ) = supp(χ) for all N > N0 with probability
1− 1/N κ.

To gain a better understanding of this theorem, let us
consider the case where T is the identity matrix (the classical
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denoising problem) and all coefficients of d0 = χ are either 1
or 0. Then ‖d0‖2`2 = ‖χ‖`1 = M . In this case, an acceptable
level of noise is

‖e‖`2 . ‖d0‖`2

√
N

M lnN
∼
√
N

lnN
. (21)

The estimate (21) implies that we can handle more noise as
we increase the number of measurements. This holds for two
reasons. Firstly, a typical noise vector e is almost orthogonal
to the columns of T , so

|〈ti, e〉| 6 c0

√
lnN
N
‖e‖`2 (22)

for some c0 = c0(κ) with probability 1−1/N κ. In particular,
a typical noise vector e is almost orthogonal to the signal
subspace V . More formally, suppose V is the M -dimensional
subspace spanned by the column vectors tj with j in the
support of χ, and let W = V ⊥ be the orthogonal complement
to V . Consider the orthogonal decomposition e = ev + ew,
such that ev is in V and ew is in W . Then,

‖ev‖`2 .

√
M

N
‖e‖`2

with high probability that tends to 1, as N → ∞. In
Theorem 1, a quantitative estimate of this convergence is
1−1/N κ. It means that if a signal is sparse so M � N , then
we can recover it for very low signal-to-noise ratios. Secondly,
and more importantly, if the columns of the noise collector C
are also almost orthogonal to the signal subspace, then it is too
expensive to approximate the signal d0 with the columns of C
and, hence, we have to use the columns of the measurement
matrix T . If we draw the columns of C, independently, from
the uniform distribution on SN−1, then they will be almost
orthogonal to the signal subspace with high probability. It
is again estimated as 1 − 1/N κ in Theorem 1. Finally, the
incoherence condition (19) implies that it is too expensive to
approximate the signal d0 with columns T that are not in the
support of χ and, hence, there are no false positives.

In Theorem 1 we used randomness twice: the noise vector
e was random and the columns of the noise collector were
drawn at random. Note that in both cases randomness could
be replaced by deterministic conditions requiring that e and the
columns of C are almost orthogonal to the signal subspace. It is
natural to assume that the noise vector e is a random variable
and, as we explain in [17], the columns of C are random
because it is hard to construct a deterministic C that satisfies
the almost orthogonality conditions. In the present work we
still construct the matrix C randomly, but we sometimes treat
the vector e as deterministic, as for example, in our Theorem 2.
Inspection of the proofs in [17] shows that the only condition
on e we need to verify from Theorem 1 is (22). Thus, the next
Theorem is a deterministic reformulation of Theorem 1. The
proof is given in A.

Theorem 2: Assume conditions on χ, T , and C are as in
Theorem 1 and define γ as in (18). Then, for any κ > 0,
there are constants τ0 = τ0(κ, β), c0 = c0(κ, β), and
N0 = N0(κ, β, γ), α = α(c0, κ, β) such that the following
two claims hold.

(i) If e satisfies (22) for all ti, i 6∈ supp (χ); all columns
of T satisfy

|〈ti, tj〉| 6 c0

√
lnN√
N

(23)

for all i and j; the sparsity M is such that

M 6 α

√
N√

lnN
; (24)

and τ > τ0, then supp(χτ ) ⊂ supp(χ) with probability 1 −
1/N κ.

(ii) If, in addition, the noise is not large, so

|〈tm, e〉| 6 min
i∈supp(χ)

|χi|/2 (25)

for all tm, m ∈ supp(χ), and

‖e‖`2 6 c1‖χ‖`1 (26)

for some c1, then supp(χ) = supp(χτ ) for all N > N0 with
probability 1− 1/N κ.

In contrast to Theorem 1, we require in Theorem 2 condi-
tion (22) to hold only for for ti, i 6∈ supp (χ), that is for
the columns of T outside the support of χ. For the columns
inside the support, i ∈ supp (χ), we relax condition (22)
to condition (25). Thus Theorem 2 has slightly weaker as-
sumptions than Theorem 1. For a random e this weakening
in not essential, because one needs to know the support of
χ in advance. It turns out that for our e this weakening will
become important (see Remark 1 in the end of B) .

B. Dimension reduction for quadratic cross correlation data

The N2×K2 linear problem (15) that uses quadratic cross
correlation data is notoriously hard to solve due to its high
dimensionality. Therefore, we propose the following strategy
for robust dimensionality reduction. The idea is to treat the
contribution of the off-diagonal elements of X = ρρ∗ ∈
CK×K as noise and, thus, use the Noise Collector to absorb
it. Namely, we define

χ = diag(X) = [|ρ1|2, |ρ2|2, . . . , |ρK |2]T , (27)

and re-write (15) as

T χ+ C η = d , (28)

where we replace the off-diagonal elements by the Noise
Collector term C η and

T = (Ā ⊗ A)χ (29)

contains only the K columns of Ā ⊗ A corresponding to χ.
Thus, the size of χ is K and the size of T is N × K, with
K = K and N = N2. In practice, the measurements may be
subsampled as well, so the size of the system can be further
reduced to N ×K, with N = O(N) and K = K.

Problem (28) can be understood as an exact linearization of
the classical phase retrieval problem, where all the interference
terms ρiρ∗j for i 6= j are absorbed in C η, with η being an
unwanted vector considered to be noise in this formulation. In
other words, the phase retrieval problem with K unknowns
has been transformed to the linear problem (28) that also
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has K unknowns. Note, though, that in phase retrieval only
autocorrelation measurements are considered, while in (28) we
also use cross-correlation measurements.

In the next theorem we use all the measurements d ∈ CN ,
soN = N2 in (28). This is done for simplicity of presentation,
but in practice N = O(N) measurements are enough. We
will choose a solution of (28) using (17). As in Theorems 1
and 2, the vector η in (28) has N β entries that do not
have physical meaning. Its only purpose is to absorb the off-
diagonal contributions in e = d− Tχ. We point out that the
magnitude of e is not small if M ≥ 2. Indeed, the contribution
of χ = diag(X) to the data d is of order M , while the
contribution of the off-diagonal terms of X is of order M2.
Furthermore, the vector e is not independent of χ anymore.

Theorem 3: Fix |ρi|. Suppose the phases ρi/|ρi| are inde-
pendent and uniformly distributed on the (complex) unit circle.
Suppose X is a solution of (15), χ = diag(X) is M -sparse,
and T = (Ā ⊗ A)χ : CK → CN , K = K and N = N2. Fix
β > 1, and draw Σ = N β columns for C, independently, from
the uniform distribution on SN−1. Denote

∆ =
√
N max

i6=j
|〈ai,aj〉|, (30)

and define γ as in (18). Then, for any κ > 0, there are con-
stants α = α(κ, γ,∆), τ = τ(κ, β), and N0 = N0(κ, β, γ,∆)
such that the following holds. If M 6 αN/

√
lnN and χτ is

the solution of (17), then supp(χ) = supp(χτ ) for allN > N0

with probability 1− 1/N κ.
The proof of Theorem 3 is given in B. In Theorem 3

the scaling for sparse recovery is M 6 αN/
√

lnN . This
result is in good agreement with our numerical experiments,
see Figure 7. In order to obtain this scaling we introduced
our probabilistic framework - in Theorem 3 assuming that
the phases of the signals are random. The idea is that a
vector with random phases better describes a typical signal in
many applications. The dimension reduction, however, could
be done without introducing the probabilistic framework. We
state and prove a deterministic version of Theorem 3 in C for
completeness. In this case the scaling for sparse recovery is
more conservative: M 6 α

√
N/
√

lnN , and it does not agree
with our numerical experiments.

IV. ALGORITHMIC IMPLEMENTATION

A key point of the proposed strategy is that the M -sparsest
solution of (28) can be effectively found by solving the
minimization problem

(χτ ,ητ ) = arg min
χ,η

(τ‖χ‖`1 + ‖η‖`1) , (31)

subject to T χ+ Cη = d,

with an O(1) no-phatom weight τ . Here, T is anN×K matrix,
C an N ×N β matrix, with β close to one, χ is a K×1 vector
and η is a N β×1 vector. The main property of this approach
is that if the matrix T is incoherent enough, so its columns
satisfy assumption (19) of Theorem 1, the `1-norm minimal
solution of (31) has a zero false discovery rate for any level
of noise, with probability that tends to one as the dimension
of the data N increases to infinity.

To find the minimizer in (31), we define the function

F (χ,η, z) = λ (τ‖χ‖`1 + ‖η‖`1) (32)

+
1

2
‖Tχ+ Cη − d‖2`2 + 〈z,d− Tχ− Cη〉

for a no-phantom weight τ , and determine the solution as
max
z

min
χ,η

F (χ,η, z). (33)

This strategy finds the minimum in (31) exactly for all values
of the regularization parameter λ. Thus, the method is fully
automated, meaning that it has no tuning parameters. To
determine the exact extremum in (33), we use the iterative soft
thresholding algorithm GeLMA [16] that works as follows.

Pick a value for the no-phantom weight τ ; for optimal
results calibrate τ to be the smallest value for which χ = 0
when the algorithm is fed with pure noise. In our numerical
experiments we use τ = 2. Next, pick a value for the
regularization parameter, for example λ = 1, and choose step
sizes ∆t1 < 2/‖[T | C]‖2 and ∆t2 < λ/‖T‖1. Set χ0 = 0,
η0 = 0, z0 = 0, and iterate for k > 0:

r = d− T χk − C ηk ,
χk+1 = S τ λ∆t1(χk + ∆t1 T

∗(zk + r)) ,

ηk+1 = Sλ∆t1(ηk + ∆t1 C∗(zk + r)) ,

zk+1 = zk + ∆t2 r , (34)

where Sr(yi) = sign(yi) max{0, |yi| − r}.

A. The Noise Collector: construction and properties

To construct the Noise Collector matrix C ∈ CN×Nβ that
satisfies the assumptions of Theorem 1 one could draw N β

normally distributed N -dimensional vectors, normalized to
unit length. Thus, the additional computational cost incurred
for implementing the Noise Collector in (34), due to the terms
Cηk and C∗(zk + r), would be O(N β+1), which is not very
large as we use β ≈ 1.5 in practice. The computational cost of
(34) without the Noise Collector mainly comes from the matrix
vector multiplications T χk which can be done in O(NK)
operations and, typically, K � N .

To further reduce the additional computational time and
memory requirements we use a different construction proce-
dure that exploits the properties of circulant matrices. The idea
is to draw instead a few normally distributed N -dimensional
vectors of length one, and construct from each one of them a
circulant matrix of dimension N ×N . The columns of these
matrices are still independent and uniformly distributed on
SN−1, so they satisfy the assumptions of Theorem 1. The
full Noise Collector matrix is then formed by concatenating
these circulant matrices together.

More precisely, the Noise Collector construction is done in
the following way. We draw N β−1 normally distributed N -
dimensional vectors, normalized to unit length. These are the
generating vectors of the Noise Collector. To these vectors
are associated N β−1 circulant matrices Ci ∈ CN×N , i =

1Choosing two step sizes instead of the smaller one ∆t1 improves the
convergence speed.
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1, . . . ,N β−1, and the Noise Collector matrix is constructed
by concatenation of these N β−1 matrices, so

C = [C1 |C2 |C3 |. . . |CNβ−1 ] ∈ CN×N
β

.

We point out that the Noise Collector matrix C is not stored,
only theN β−1 generating vectors are saved in memory. On the
other hand, the matrix vector multiplications Cηk and C∗(zk+
r) in (34) can be computed using these generating vectors and
FFTs [11]. This makes the complexity associated to the Noise
Collector O(N β log(N )).

To explain this further, we recall briefly below how a matrix
vector multiplication can be performed using the FFT for a cir-
culant matrix. For a generating vector c = [c0, c1, . . . , cN−1],
the Ci circulant matrix takes the form

Ci =


c0 cN−1 . . . c1
c1 c0 . . . c2
...

. . .
...

cN−1 cN−2 . . . c0

 .
This matrix can be diagonalized by the Discrete Fourier
Transform (DFT) matrix, i.e.,

Ci = FΛF−1

where F is the DFT matrix, F−1 is its inverse, and Λ is
a diagonal matrix such that Λ = diag(Fc), where c is the
generating vector. Thus, a matrix vector multiplication Ciη is
performed as follows: (i) compute η̂ = F−1η, the inverse DFT
of η in N log(N ) operations, (ii) compute the eigenvalues of
Ci as the DFT of c, and component wise multiply the result
with η̂ (this step can also be done in N log(N ) operations),
and (iii) compute the FFT of the vector resulting from step
(ii) in, again, N log(N ) operations.

Consequently, the cost of performing the multiplication Cηk
is N β−1N log(N ) = N β log(N ). As the cost of finding the
solution without the Noise Collector is O(NK) due to the
terms T χk, the additional cost due to the Noise Collector is
negligible since K � N β−1 log(N ) because, typically, K �
N and β ≈ 1.5.

We emphasise that in the dimension reduced signal recovery
problem (28) that uses cross-correlated data, K = K and
N = O(N), so the computational cost of finding its sparsest
solution is O(NK), as the original problem that uses linear
data.

V. NUMERICAL RESULTS

We consider processing of passive array signals. We seek
to determine the positions ~zj and the complex amplitudes αj
of M point sources, j = 1, . . . ,M , from measurements of
polychromatic signals on an array of receivers; see Figure 1.
The source imaging problem is considered here for simplicity.
The active array imaging problem can be cast under the same
linear algebra framework even when multiple scattering is
important [5].

The array consists of Nr = 21 receivers located at
xr = −a2 + r−1

Nr−1a, r = 1, . . . , Nr, where a = 100λ is
the array aperture. The imaging window (IW) is at range
L = 100λ from the array and the bandwidth B = f0/3 of
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Fig. 2. The true χ = diag(X) = diag(ρρ∗), i.e., the absolute values squared
of the point sources amplitudes.. The dimension of the image is K = 1681.

the emitted pulse is 1/3 of the central frequency f0, so the
resolution in range is c/B = 3λ while in cross-range it is
λL/a = λ. We consider a high frequency microwave imaging
regime with central frequency f0 = 60GHz corresponding to
λ0 = 5mm. We make measurements for Nf = 21 equally
spaced frequencies spanning a bandwidth B = 20GHz. The
array aperture is a = 50cm, and the distance from the
array to the center of the IW is L = 50cm. Then, the
resolution is λ0L/a = 5mm in the cross-range (direction
parallel to the array) and c0/B = 15mm in range (direction
of propagation). These parameters are typical in microwave
scanning technology [14].

We consider an IW with K = 1681 pixels which makes
the dimension of X = ρρ∗ equal to K2 = 2825761. The
pixel dimensions, i.e., the resolution of the imaging system,
is 5mm × 15mm. The total number of measurements is
N = NrNf = 441. Thus, we can form N2 = 194481 cross-
correlations over frequencies and locations.

Let us first note that with these values for N and K,
which in fact are not big, we cannot form the full K2 ×K2

matrix (Ā ⊗ A) so as to solve (15) for the K2 × 1 vector
vec(X) because of its huge dimensions. Instead, we propose
to reduce the dimensionality of the problem to K unknowns
corresponding to diag(X), neglecting all the off-diagonal
terms that correspond to the interference terms ρkρ

∗
k′ for

k 6= k′. Their contributions to the cross-correlated data are
treated as noise, which is absorbed in a fictitious vector η
using a Noise Collector. We stress that this noise is never
small if M ≥ 2, as its contribution to the the cross-correlated
data is of order O(M2), while the contribution of diag(X) is
only of order O(M).

In the following examples, we consider imaging of M = 8
point sources; see Fig. 2. Instead of the N2 cross-correlated
data, which are in principle available, we only use N = 21N
cross-correlated data picked at random. This reduces even
more the dimensionality of the problem that we are solving.

In Fig. 3, we present the results when the used data is
noise-free. The left column shows the results when we use
the `1 algorithm (34); the top plot is the recovered image and
the bottom plot the recovered χ = diag(X) = diag(ρρ∗)
vector. The support of the sources is exact but the amplitudes
are not. If it is important for an application to recover the
amplitudes with precision, one can consider in a second step
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`1 with NC `2 2nd step
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Fig. 3. Imaging M = 8 sources using correlations and the NC. The dimension
of the image is K = 1681. The dimension of the linear data is N = 441.
The `1 images are obtained using 21N of the N2 correlation data. Noise
free data.

the full problem (15) for vec(X) with all the interference terms
ρkρ
∗
k′ for k 6= k′, but restricted to the exact support found in

the first step. If there is no noise in the data, this second step
finds the exact values of the amplitudes efficiently using an `2
minimization method; see the right column of Fig. 3.

In Figs. 4 and 5 we consider the same configuration of
sources but we add white Gaussian noise to the data. The
resulting SNR values are 10dB and 0dB, respectively. In both
cases, the solutions obtained in the first step look very similar
to the one obtained in Fig. 3 for noise free data. This is so,
because the noise in the data is dominated by the neglected
interference terms. The actual effect of the additive noise is
only seen in the 2nd step when we solve for vec(X), restricted
to the support, using an `2 minimization method. Indeed, when
the data are noisy we cannot recover the exact values of the
amplitudes. Still, since an `2 method is used on the correct
support, the reconstructions are extremely robust and give very
good results, even when the SNR is 0dB.

To illustrate the robustness of the reconstructions of the
entire matrix X = ρρ∗ we also plot in Fig. 6 the angle of Xτ

compared to the angle of X restricted on the support recovered
during the first step. We get an exact reconstruction for noise-
free data. The error in the reconstruction increases as the SNR
decreases but the results are very satisfactory even for the 0dB
SNR case.

Again, the big advantage of the proposed `1 minimization
approach that seeks only for the components of diag(X), and
uses a Noise Collector to absorb the interference terms that
are treated as noise, is that it is linear in the number of pixels
K instead of quadratic. This allows us to consider large scale
problems. Moreover, as we observed in the results of Figs. 3
to 6, the number of data N used to recover the images do not
need to be N2, but only a multiple of N .

In Fig. 7 we illustrate the performance of the proposed `1
approach for different sparsity levels M and data sizes N .
There is no additive noise added to the data in this figure.

`1 with NC `2 2nd step
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Fig. 4. Imaging M = 8 sources using correlations and the NC. The dimension
of the image is K = 1681. The dimension of the linear data is N = 441.
The `1 images are obtained using 21N of the N2 correlation data. Data with
10dB SNR.
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Fig. 5. Imaging M = 8 sources using correlations and the NC. The dimension
of the image is K = 1681. The dimension of the linear data is N = 441.
The `1 images are obtained using 21N of the N2 correlation data. Data with
0dB SNR.

Success in recovering the true support of the unknown χ
corresponds to the value 1 (yellow) and failure to 0 (blue).
The small phase transition zone (green) contains intermediate
values. The red line is the the estimate

√
N/(2

√
lnN ). These

results are obtained by averaging over 10 realizations.

VI. CONCLUSSIONS

In this paper, we consider the problem of sparse signal
recovery from cross correlation measurements. The unknown
in this case is the correlated matrix signal X = ρρ∗ whose di-
mension grows quadratically with the size K of ρ and, hence,
inversion becomes computationally unfeasible as K becomes
large. To overcome this issue, we propose a novel dimension
reduction strategy. Specifically, we vectorize the problem and
consider only the diagonal terms |ρi|2 of X as unknown. The
contribution of the off-diagonal interference terms ρiρ∗j for
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Fig. 6. Imaging M = 8 sources using correlations and the NC. The dimension of the image is K = 1681. The dimension of the linear data is N = 441.
The angle of the components of Xτ compared to angle of the components of the true X restricted on the support.
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Fig. 7. Algorithm performance for exact support recovery during the first
step using `1 and the Noise Collector. Success corresponds to the value 1
(yellow) and failure to 0 (blue). The small phase transition zone (green)
contains intermediate values. The red line is the estimate

√
N/(2

√
lnN ).

Ordinate and abscissa are the data used N and the sparsity M .

i 6= j is treated as noise, which is absorbed using the Noise
Collector approach introduced in [17]. In this way, we are
able to relate the (noisy) data to the diagonal terms |ρi|2 of
X through a linear transformation. This allows us to recover
the signal exactly using efficient `1-minimization algorithms.
The cost of solving this dimension reduced problem is similar
to the one using linear data. Furthermore, our numerical
experiments show that the suggested approach is robust with
respect to additive noise in the data. Finally, we point out
that when using cross-correlated data the maximum level
of sparsity that can be recovered increases to O(N/

√
lnN)

instead of O(
√
N/
√

lnN) for the linear data.
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APPENDIX

A. Proof of Theorem 2

Proof: To prove the first claim, we repeat the proof of
Theorem 2 from [17]. Define H1 as the convex hull of the

columns of C, and H2 as the convex hull of the columns ti
of T in the support of χ, as follows.

H1 = H1(τ) =

{
x ∈ RN

∣∣∣∣∣x = τ

Σ∑
i=1

ξici,

Σ∑
i=1

|ξi| 6 1

}
,

H2 =

x ∈ RN
∣∣∣∣∣∣x =

∑
i∈supp(χ)

ξiti,

K∑
i=1

|ξi| 6 1

 ,

and

H(τ) = {ξh1 + (1− ξ)h2, 0 6 ξ 6 1, hi ∈ Hi} .

Suppose the (M + 1)-dimensional space V is spanned by e
and the column vectors tj , with j in the support of χ. Denote
by tvi the orthogonal projections of ti on V . We will prove
that supp(χτ ) ⊂ supp(χ) if for any tj , j 6∈ supp(χ), we have
tvj ⊂ H(τ) strictly (i.e. tvj ∩ ∂H(τ) = ∅) Fix j 6∈ supp(χ),
and suppose

tvj = ξ0t0 +

M∑
k=1

ξktik , where all ik ∈ supp(χ), t0 =
e

‖e‖
.

(35)
Suppose |ξk| = maxn6M |ξn|. Multiply (35) by |ξk|tvk/ξk.
Using (22) and (23) we obtain

c0

√
lnN√
N

> |ξk|

(
1−Mc0

√
lnN√
N

)
Choose α in (24) so that

Mc0

√
lnN√
N

6
1

4
. (36)

Then, (
1−Mc0

√
lnN√
N

)
>

3

4
,

and therefore,

|ξk| 6
4c0
3

√
lnN√
N

for all k = 0, 1, 2, . . . ,M . Hence,
∑M
k=1 |ξk| 6 1/3. By the

Milman’s extension of the Dvoretzky’s theorem [15] we can
find τ0 = O(1) so that

4c0

√
lnN√
N

t0 := t̃0 ∈ H1(τ0)
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with probability 1− 1/N κ. Therefore,

tvj = ξ̃0t̃0 +
∑M
k=1 ξktik , where all ik ∈ supp(χ)

and |ξ̃0|+
∑M
k=1 |ξk| 6 1/3 + 1/3 6 2/3

and t̃0 ∈ H1(τ) for all τ > τ0. Therefore, tvj ⊂ H(τ) strictly.
To prove the second claim, we repeat the proof of The-

orem 3 from [17]. Estimate (36) implies we can assume
〈ti, tj〉 = 0 for i 6= j, i, j ∈ supp(χ) - this will only replace
the constant c1 in (26) to 2c1/

√
3 at most. Suppose V i are the

2-dimensional spaces spanned by e and ti for i ∈ supp(χ).
By the Milman’s extension of the Dvoretzky’s theorem [15] all
λH(τ)∩V i look like rounded rhombi depicted on Fig. 8, and
λH1(τ) ∩ V i ⊂ Biλτ with probability 1 − N−κ, where Biλτ
is a 2-dimensional `2-ball of radius λτc0

√
lnN/

√
N . Thus

λH(τ)∩ V i ⊂ Hi
λτ with probability 1−N−κ, where Hi

λτ is
the convex hull of Biλτ and a vector λf i, f i = χi‖χ‖−1

`1
ti.

Then supp(χτ ) = supp(χ), if there exists λ0 so that χiti + e
lies on the flat boundary of Hi

λ0
for all i ∈ supp(χ).

tiρi e

ti

tiχi + e

Fig. 8. An intersection of H(τ) with the span(ti, e) is a rounded rhombus.

If mini∈supp(χ) |χi| > γ‖χ‖∞, then there exists a constant
c2 = c2(γ) such that if χiti+e lies on the flat boundary of Hi

λ

for some i and some λ, then there exists λ0 so that χiti+ c2e
lies on the flat boundary of Hi

λ0
for all i ∈ supp(χ). If

|〈ti, χiti + e〉|
‖χiti + e‖`2

>
τc0
√

lnN√
N‖f i‖`2

=
τc0‖χ‖`1

√
lnN√

N|χi|
, (37)

then χiti + c2e lies on the flat boundary of Hi
λ.

Since |〈ti, χiti+e〉| > |χi|/2 by (25), inequality (37) holds
if

|χi|
‖χiti + e‖`2

>
2τc0‖χ‖`1

√
lnN√

N|χi|
.

By (26) and using ‖χ‖`1 6M the last inequality is true if

M 6

√
N

τc1c0
√

lnN
.

The last inequality is true if α in (24) is small enough. Thus,
supp(χτ ) = supp(χ).

B. Proof of Theorem 3

Proof: We need to verify that all conditions of Theorem 2
are satisfied. Choose c0, τ0, N0 and α so that Theorem 2 is
satisfied with probability 1− 1

3Nκ . Note that we can increase
c0, τ0, N0 and decrease α in this proof if necessary. We denote

by (Ā ⊗A)k,l the column of Ā ⊗A that arises from a tensor
product āk ⊗ al. If we use all N2 of the data the columns
Ā ⊗ A,then

〈(Ā ⊗ A)k,l, (Ā ⊗ A)m,n〉 =
∑N
i=1

∑N
j=1 āk,ial,jam,iān,j

= 〈am,ak〉〈al,an〉.

In particular, all columns of Ā ⊗A have length 1. Therefore,

|〈ti, tj〉| =
∣∣(Ā ⊗ A)i,i, (Ā ⊗ A)j,j

∣∣ = |〈ai,aj〉|2 6
∆2

N
,

and condition (23) is verified if we choose N0 large enough.
Now we obtain

λ1M 6 ‖e‖`2 6 λ2M (38)

with high probability. Note that (38) implies (26) because
γM 6 ‖χ‖`1 6M . We write

‖e‖2`2 = ‖χ‖2`1 + 2‖χ‖`1Ξ1 + Ξ2,

where
Ξ1 =

∑
k,l,k 6=l

ρ̄kρl〈ak,al〉, (39)

and

Ξ2 =
∑

all indices different

ρkρ̄lρ̄mρn〈am,ak〉〈al,an〉. (40)

By Hanson-Wright inequality (48)

P (|Ξ1| > t) 6 2 exp

(
− t2/32

‖M‖2F

)
where M is a matrix with components |ρkρl|〈ak,al〉, ‖M‖F
is its Frobenius (Hilbert-Schmidt) norm. Since |〈ak,al〉| 6
∆/
√
N , we obtain ‖M‖F 6 ∆M/

√
N (in our set-up

‖ρ‖`∞ = 1). Take t = γM/8 6 ‖χ‖`1/8 and obtain

P (|Ξ1| > γM/8) 6 2 exp (−cN) , c = c(γ),

which is negligible for large N . Thus

|Ξ1| 6
‖χ‖`1

8
(41)

with probability 1−2 exp (−cN). Observe that Ξ2 = (Ξ1)2−
Ξ3, where

Ξ3 =
∑

m=l or k=n or both

ρkρ̄lρ̄mρn〈am,ak〉〈al,an〉.

For Ξ3 we can use a deterministic estimate:

|Ξ3| 6 2
c20M

3

N
6 cα

‖χ‖2`1√
lnN

6
‖χ‖2`1

16
.

For (Ξ1)2 we use (41). Using the union bound, we obtain

1

2
‖χ‖2`1 6 ‖e‖2`2 6

3

2
‖χ‖2`1 (42)

with probability 1 − 2 exp (−cN). Thus, (38) holds with
probability 1− 2 exp (−cN).
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We will now prove (22). For m 6∈ supp(χ), consider a
random variable

Θm = 〈tm, e〉

=
∑
k,l,k 6=l

ρ̄kρl〈tm, (Ā ⊗ A)k,l〉

=
∑
k,l,k 6=l

ρ̄kρl〈am,ak〉〈am,al〉.

(43)

We have∣∣〈tm, (Ā ⊗ A)k,l〉
∣∣ = |〈am,ak〉〈am,al〉| 6

∆2

N
(44)

if m 6= k, and m 6= l. If M is a matrix with components
|ρkρl|〈am,ak〉〈am,al〉, then ‖M‖F 6 ∆2M/N . Using (38)
choose t = c0

√
lnN2

N ‖e‖`2 > c0
γ
2
M
√

lnN
N in Hanson-Wright

inequality (48) to obtain:

P
(
|Θm| > c0

√
lnN2

N ‖e‖`2
)

6 P

(
|Θm| > c0

γ

2

M
√

lnN

N

)
6 2 exp

(
−γ

2c20 lnN

128∆4

)
.

Then (22) holds with probability 1− 1
3Nκ if c0 is large enough.

We will now prove (25). For m ∈ supp(χ) decompose

Θm = 〈tm, e〉 = Θ1
m + Θ2

m

where

Θ1
m =

∑
k,l,k 6=l,k 6=m,l 6=m

ρ̄kρl〈am,ak〉〈am,al〉

and
Θ2
m =

∑
k,k 6=m

(ρ̄mρk + ρ̄kρm) 〈am,ak〉 (45)

The distribution of the random variable Θ1
m has exactly the

same behavior as Θm for m 6∈ supp(χ). We therefore have

P
(
|Θ1
m| >

γ
4 ‖χ‖`∞

)
6 2 exp

(
−c N2

∆4M2

)
6 2 exp(−c̃ lnN/α2)

6
1

6

1

N κ
,

by Hanson-Wright inequality 48 if α is small enough. . If
m = l (or m = k) then∣∣〈tm, (Ā ⊗ A)k,m〉

∣∣ = |〈am,ak〉| 6
∆√
N
. (46)

If we condition on ρm, then Θ2
m is a sum of independent

random variables. Therefore by Hoeffding’s inequality

P
(
|Θ2
m| > t

)
6 2 exp

(
−c t

2

b2

)
, where b2 6

c20M

N
6

∆2α

lnN
.

Choosing t appropriately we obtain

P
(
|Θ2
m| >

γ

4
‖χ‖`∞

)
6

1

6

1

N κ
.

by choosing α small enough. Using the union bound we
conclude that

P
(
|Θm| >

γ

2
‖χ‖`∞

)
6

1

3

1

N κ

for m ∈ supp(χ). Applying the union bound we conclude
that conditions (25), (22) and estimates in Theorem 2 hold
with probability 1− 1

Nκ . This completes the proof.
Remark 1: The proof of Theorem 3 reveals why we had

to assume (25) for m ∈ supp(χ). When m 6∈ supp(χ) then
〈tm, e〉 is estimated in (43) using (44). When m ∈ supp(χ)
then 〈tm, e〉 contains Θ2

m given by (45). For Θ2
m we cannot

use (44), and we have to use a weaker estimate (46).

C. A deterministic version of Theorem 3

Theorem 4: Suppose X is a solution of (15), χ = diag(X)
is M -sparse, d ∈ CN , N = N2, and T = (Ā ⊗ A)χ :
CK → CN . Fix β > 1, and draw Σ = N β columns for
C, independently, from the uniform distribution on SN−1 and
define γ as in (18) and ∆ as in (30). Then, for any κ > 0,
there are constants α = α(κ, γ,∆), τ = τ(κ, β), and N0 =
N0(κ, β, γ,∆) such that the following holds. If M 6 α

√
N

and χτ is the solution (17), then supp(χ) = supp(χτ ) for all
N > N0 with probability 1− 1/N κ.

Proof: We need to verify that all conditions of Theorem 2
are satisfied non-probabilistically. Conditions (23) is already
verified in the proof of Theorem 3 under even weaker assump-
tions than in Theorem 4. Therefore we only need to verify
estimates (26), (25) and (22).

Since
e =

∑
k 6=l

ρ̄kρl(Ā ⊗ A)k,l,

we have

‖e‖2`2 6
2∆√
N

∑
all indices

χk |ρm1
| |ρm2

|

+
∆2

N

∑
all indices

|ρm1 | |ρm2 | |ρk1 | |ρk2 |

+
∑
k,m

χkχm

and thus
‖e‖2`2 6 2∆α‖χ‖`1‖ρ‖2`2 + ∆2α2‖ρ‖4`2 + ‖χ‖2`1

= (1 + ∆α)2‖χ‖2`1 .
Thefore estimate (26) holds.

A non-probabilistic version of estimate (25) is as follows.
For m ∈ supp(χ) we have

|〈tm, e〉| =

∣∣∣∣∣∣
∑
k,l,k 6=l

ρ̄kρl〈tm, (Ā ⊗ A)k,l〉

∣∣∣∣∣∣
6 2

∑
k,k 6=m

|ρk| |ρm|
∣∣〈tm, (Ā ⊗ A)k,m〉

∣∣
+

∑
k,l,k 6=l 6=m

|ρk| |ρl|
∣∣〈tm, (Ā ⊗ A)k,l〉

∣∣
6

2∆√
N

∑
k

|ρk| |ρm|+
∆2

N

∑
k,l

|ρk| |ρl|

6

(
2∆M√
N

+
∆2M2

N

)
‖ρ‖2`∞

=

(
2∆M√
N

+
∆2M2

N

)
‖χ‖`∞

6
γ

2
‖χ‖`∞ .
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if α is small enough.
We now obtain a lower bound on ‖e‖`2 . For Ξ1 and Ξ2

in (39) and (40), respectively, we have

|Ξ1| 6
∆M2

√
N

6 ∆αM, |Ξ2| 6
∆2M4

N
6 ∆2α2M2.

Since

‖e‖2`2 = ‖χ‖2`1 + 2‖χ‖`1Ξ1 + Ξ2, and ‖χ‖`1 = M

we can choose α so that

M/2 = ‖χ‖`1/2 6 ‖e‖2`2 .

To show (22) observe that∣∣〈tm, (Ā ⊗ A)k,l〉
∣∣ = |〈am,ak〉〈am,al〉| 6 ∆2/N,

because m 6= k, and m 6= l. Therefore

|〈tm, e〉| =

∣∣∣∣∣∣
∑
k,l,k 6=l

ρ̄kρl〈tm, (Ā ⊗ A)k,l〉

∣∣∣∣∣∣
6

∆2M2

N
6

∆2α‖e‖`2√
N

,

and (22) follows either for choosing α small or lnN large.

D. Hansen-Wright’s Inequality for bounded symmetric ran-
dom variables

For simplicity of presentation all random variables here are
real. Suppose Xi are independent sub-gaussian random vari-
ables, E(Xi) = 0, and the sub-gaussian norms ‖Xi‖ψ2

6 K.
Consider

Ξ =
∑
i,j

XjXimij ,

where mij are entries of a deterministic M×M diagonal-free
(i.e. mii = 0) matrix M. The Hanson-Wright inequality (see
e.g. [18]) is

P (|Ξ| > t) 6 2 exp

(
−cmin

(
t2

K4‖M‖2F
,

t

K2‖M‖

))
(47)

where ‖M‖F is the Frobenius (Hilbert-Schmidt) norm of M,
and ‖M‖ is its operator norm. If we use this inequality in the
proof of our Theorem 3, then the result becomes weaker than
Theorem 1 by a factor of

√
lnN because in our setting

min

(
t2

K4‖M‖2F
,

t

K2‖M‖

)
=

t

K2‖M‖
.

In order to obtain Theorem 3 in its present form, we need
a slight strengthening of (47). Our proof is a modification
of two proofs from [20] and [18]. It may already exist in
the literature, but we were not able to find it. Therefore we
provide it here for the reader’s convenience. We assume that
our random variables are symmetric and bounded. This holds
if a random variable is uniformly distributed on the (complex)
unit circle as in Theorem 3.

Theorem 5: (Hansen-Wright inequality for bounded sym-
metric random variables) Suppose Xi are independent sym-
metric random variables, with ‖Xi‖`∞ 6 K. Let Ξ =∑
i6=j XjXimij . Then

P (|Ξ| > t) 6 2 exp

(
− t2/32

K4‖M‖2F

)
. (48)

Proof: By replacing Xi with Xi/K we can assume K =
1. By Chebyshev’s inequality

P (Ξ > t) = P
(
eλΞ > eλt

)
6 e−λtE

(
eλΞ
)

(49)

for any λ > 0. We now use decoupling. Consider independent
Bernoulli random variables µi = 0 or 1 with probability 1/2.
Since E(µi)(1−µj) = 1/4 for i 6= j we conclude Ξ = 4EµΞµ,
where

Ξµ =
∑
i 6=j

µj(1− µi)XjXimij ,

and Eµ is conditional expectation with respect to µ =
(µ1, . . . , µM ). Using independence of X = (X1, . . . , XM )
and µ, and applying Jensen’s inequality we obtain

E
(
eλΞ
)

= EX
(
eλΞ
)
6 EXEµ

(
e4λΞµ

)
= EµEX

(
e4λΞµ

)
where EX is conditional expectation with respect to X . This
implies there exist a realization of µ such that EX

(
eλΞ
)
6

EX
(
e4λΞµ

)
for this µ. Fix this µ and the corresponding

set of indices Λµ = {i|δi = 1}. Then we can write
Ξµ =

∑
i6=j,i∈Λµ,j∈Λcµ

XjXimij . Since the random variables
Xi, i ∈ Λµ and Xi, i ∈ Λcµ are independent, their distribution
will not change if we replace Xi, i ∈ Λcµ by X

′

i , i ∈ Λcµ,
where X

′

i is an independent copy of Xi. In other words we
have

EX,X′
(
eλΞ
)
6 EX

(
e4λΞ̃µ

)
,

where Ξ̃µ =
∑
i6=j,i∈Λµ,j∈Λcµ

X
′

jXimij .

We now claim that

EX,X′
(
e4λΞ̃µ

)
6 EX,X′

(
e4λΞ̃

)
, where Ξ̃ =

∑
i 6=j

X
′

jXimij .

Indeed, Lemma 6.1.2 in [20] states that E (F (Y )) 6
E (F (Y + Z)) for any convex function F , if Y and Z are
independent and E(Z) = 0. In our case we take F (x) = e4λx,
Y = Ξ̃µ and Z = Ξ̃ − Ξ̃µ. If we condition on Xi, i ∈ Λµ
and X

′

i , i ∈ Λcµ, then Y is fixed, Z is independent Y
and its conditional expectation is zero. Hence the following
decoupling estimate is obtained.

E
(
eλΞ
)
6 E

(
e4λΞ̃

)
, where Ξ̃ =

∑
i 6=j

X
′

jXimij . (50)

By independence

E
(
e4λΞ̃

)
=
∏
i 6=j

E
(
e4λmijXiX

′
j

)
.

Since random variables are symmetric

E
(
e4λmijXiX

′
j

)
=

1

2
E
(
e

4λmij

∣∣∣XiX′j∣∣∣ + e
−4λmij

∣∣∣XiX′j∣∣∣)
6 E

(
e

8λ2m2
ij

∣∣∣XiX′j∣∣∣2) 6 e8λ2m2
ij .
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Using the last two estimates in (50) we obtain

E
(
eλΞ
)
6 e8λ2‖M‖2F .

Plugging the lsat inequality in 49 and optimizing over λ we
obtain

P (Ξ > t) 6 inf
λ>0

e−λt+8λ2‖M‖2F < e
− t2

32‖M‖2
F .

REFERENCES

[1] BECK, AMIR, and TEBOULLE, MARC, A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems, SIAM J. Img. Sci.
2 (2009), pp.183–202.

[2] A. BAKULIN AND R. CALVERT, The virtual source method: Theory and
case study, Geophysics, 71 (2006), pp. SI139–SI150.
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