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Abstract. We consider the problem of imaging sparse scenes from a few noisy data
using an ¢;-minimization approach. This problem can be cast as a linear system of
the form Ap = b, where A is an N x K measurement matrix. We assume that the
dimension of the unknown sparse vector p € C¥ is much larger than the dimension
of the data vector b € CV, i.e, K > N. We provide a theoretical framework that
allows us to examine under what conditions the ¢;-minimization problem admits a
solution that is close to the exact one in the presence of noise. Our analysis shows
that £1-minimization is not robust for imaging with noisy data when high resolution is
required. To improve the performance of ¢1-minimization we propose to solve instead
the augmented linear system [A|C]p = b, where the N x 3 matrix C is a noise collector.
It is constructed so as its column vectors provide a frame on which the noise of the data,
a vector of dimension N, can be well approximated. Theoretically, the dimension ¥ of
the noise collector should be e which would make its use not practical. However, our
numerical results illustrate that robust results in the presence of noise can be obtained
with a large enough number of columns ¥ < 10K.
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1. Introduction

In this paper, we are interested in imaging problems formulated as
Ap=1b, (1)

so the data vector b € CV is a linear transformation of the unknown vector p € CK
that represents the image. The model matrix A € C¥*X_ which is given to us, depends
on the geometry of the imaging system and the sought resolution. Typically, the linear
system is underdetermined because only a few linear measurements are gathered, so
N < K. Hence, there exist infinitely many solutions to and, thus, it is a priori not
possible to find the correct one without some additional information.

We are interested, however, in imaging problems with sparse scenes. We seek
to locate the positions and amplitudes of a small number M of point sources that
illuminate a linear array of detectors. This means that the unknown vector p is M-
sparse, with only a few M < K non-zero entries. Under this assumption, falls under
the compressive sensing framework [24] [I8, 25, [10]. It follows from [I8] that the unique
M-sparse solution of can be obtained with /;-norm minimization when the model
matrix A is incoherent, i.e., when its mutual coherencdj] is smaller than 1/(2M). The
same result can be obtained assuming A obeys the M-restricted isometry property [10],
which states that all sets of M-columns of A behave approximately as an orthonormal
system.

In our imaging problems, these incoherence conditions can be satisfied only for
coarse image discretizations that imply poor resolution. To retain the resolution and
recover the position of the sources with higher precision we propose to extend the theory
to allow for some coherence in A. To this end, we show that uniqueness for the minimal
¢;-norm solution of can be obtained under less restrictive conditions on the model
matrix A. More specifically, given the columns of A that correspond to the support of
p, we define their vicinities as the sets of columns that are almost parallel [f] to them.
With this definition, our first result set out in Proposition (1| states that if the sources
are located far enough from each other, so that their vicinities do not overlap, we can
recover their positions exactly with noise-free data. Furthermore, in the presence of
small noise, their position is still approximately recoverable, in the sense that most of
the solution vector is supported in the vicinities while some small noise (grass) is present
away from them.

This result finds interesting applications in imaging. As we explain in Section [2]
in array imaging we seek to find the position of point sources that are represented as
the non-zero entries of p. Our result states under what conditions the location of these
objects can be determined with high precision. It can be also used to explain super-
resolution, i.e., the significantly superior resolution that ¢;-norm minimization provides
compared to the conventional resolution of the imaging system, i.e., the Rayleigh
T The mutual coherence of A is defined as max;.; |(a;, a;)|, where the column vectors a; € CV of A

are normalized to one, so that ||a;|l,, =1 Vi=1,..., K.
I The vicinity of a column a; is defined as the set of all columns a; such that |(a;,a;)| > 1/(3M).
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resolution. For instance, super-resolution has been studied using sparsity promotion
for sparse spike trains recovery from band-limited measurements. Donoho [17] showed
that spike locations and their weights can be exactly recovered for a cutoff frequency
fe if the minimum spacing A between spikes is large enough, so A > 1/f.. Candes
and Fernandez-Granda [13] showed that ¢;-norm minimization guarantees the exact
recovery if A > 1/2f.. Super-resolution has also been studied for highly coherent model
matrices A that arise in imaging under the assumption of well-separated objects when
the resolution is below the Rayleigh threshold [26] 21) 22| [, 6]. These works include
results regarding the robustness of super-resolution in the presence of noise.

Our theory also addresses the robustness to noise of the minimal ¢;-norm solution.
Specifically, we show that for noisy data the solution p can be separated into two parts:
(1) the coherent part which is supported inside the vicinities, and (2) the incoherent
part, usually referred to as grass, that is small and it is present everywhere. A key
observation of our work is that the ¢;-images get worse as v/ N when there is noise in
the data and, thus, /;-norm minimization fails when the number of measurements N is
large. This basically follows from in Proposition (1| which relates the ¢; norm of the
solution to the ¢5 norm of the data, so

[olle; < v [[Blle,.

The key quantity here is the constant -, which for usual imaging matrices A is
proportional to v/N.

To overcome this problem we introduce in Proposition [2| the noise collector matrix
C € CV*® and propose to solve instead of the augmented linear system [A|C]p = b.
The dimension of the unknown vector p is, thus, augmented by > components which
do not have any physical meaning. They correspond to fictitious sources that allow us
to better approximate the noisy data. The natural question is how to build the noise
collector matrix. Theoretically, the answer is given in the proof of Proposition [2| in
Section [3| which is constructive. The key is that the column vectors of [A|C] form
now a frame in which the noisy vector b can be well approximated. As a consequence,
we obtain a bound on the constant v (y < 18M?) which is now independent of N.
The drawback of this construction is that we need exponentially many vectors, that is
Y < eV, This would suggest that the noise collector may not be practical. However, the
numerical experiments show that with a large enough number of columns in C selected
at random (as i.i.d. Gaussian random variables with mean zero and variance 1/N) the
/1-norm minimization problem is regularized and the minimal /;-norm solution is found.

The paper is organized as follows. In Section [2, we formulate the array imaging
problem. In Section [3| we present in a abstract linear algebra framework the conditions
under which ¢;-minimization provides the exact solution to problem (1)) with and
without noise. This section contains our main results. In Section 4] we illustrate with
numerical simulations how our abstract theoretical results are relevant in imaging sparse
sources with noisy data. Section [5| contains our conclusions.
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Figure 1. General setup of a passive array imaging problem. The sources located at
Z;, j=1,...,M are at distance L from the array and inside the image window IW.
They emit a signal and the response is recorded at all array elements &,., r = 1,..., N.

2. Passive array imaging

We consider point sources located inside a region of interest called the image window
IW. The goal of array imaging is to determine their positions and amplitudes using
measurements obtained on an array of receivers. The array of size a has N receivers
separated by a distance h located at positions &,, r = 1,..., N (see Figure [I). They
can measure single or multifrequency signals with frequencies w;, [ = 1,...,5. The M
point sources, whose positions Z; and complex-valued amplitudes a; € C, 7 =1,..., M,
we seek to determine, are at a distance L from the array. The ambient medium between
the array and the sources can be homogeneous or inhomogeneous.

In order to form the images we discretize the IW using a uniform grid of points ¥,
k=1,..., K, and we introduce the true source vector

p:[pl,...,pK]TG(CK,

such that

aj, if ||Z; — Yl < grid-size, for some j =1,..., M,
Pk = .
0, otherwise.

We will not assume that the sources lie on the grid, i.e., typically Z; # ¥, for all j and
k. To write the data received on the array in a compact form, we define the Green’s
function vector

at location gy in the IW, where G(Z,y;w) denotes the free-space Green’s function of
the homogeneous medium. This function characterizes the propagation of a signal of
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angular frequency w from point ¥ to point &, so represents the signal received at
the array due to a point source of amplitude one, phase zero, and frequency w at y. If
the medium is homogeneous

exp (i—wmz;y')

— ) 3
PP )

G(Z,9g;w

~—

The signal received at &, at frequency w; is given by

M
b(&y, w) = 0;G(&, Zj3w). (4)
j=1
If we normalize the columns of A to one and stack the data in a column vector
1 S L -
b= \/Ts[b(ml’wl)’ b(Zs, w1), ..., (XN, ws)]T, (5)
then the source vector p solves the system A p = b, with the (N - S) x K matrix
T T )
g9(G;w1)  g(Yo;wi) 9(Yr;wr)
{ { 1
! ! f 1 )
A— 1 g(Y;w2)  g(Yosw2) 9(Yx; w2) a a a (6)
~ VNS ¢ l ! b o
: : : oy +
) ) )
g(Y;ws) g(Ya;ws) 9(Yx;ws)
{ { {

The system A p = b relates the unknown vector p € CX to the data vector b € CV9),
This system of linear equations can be solved by appropriate ¢ and ¢; methods.

Remark 1 For simplicity of the presentation, we restricted ourselves to the passive
array imaging problem where we seek to determine a distribution of sources. The active
array imaging problem can be cast under the same linear algebra framework assuming
the linearized Born approximation for scattering [14)]. In that case, we still obtain a
system of the form As p = b, where p is the reflectivity of the scatterers, b is the data,
and A, is a model matrix for the scattering problem defined similarly to (@ Even more,
when multiple scattering is not negligible the problem can also be cast as in ; see [15]
for details. Therefore, the theory presented in the next sections can be applied to the
scattering problems provided that the matriz Ay satisfies the assumptions of Propositions

[ and 2.

3. /; minimization-based methods

In the imaging problems considered here we assume that the sources occupy only a
small fraction of the image window IW. This means that the true source vector p is
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sparse, so the number of its entries that are different than zero, denoted by M, is much
smaller than its length K. Thus, we assume M = |supp(p)| < K. This prior knowledge
changes the imaging problem substantially because we can exploit the sparsity of p by
formulating it as an optimization problem which seeks the sparsest vector in CX that
equates model and data. Thus, for a measurement vector b we solve

p,, = argmin ||p||,,, subject to Ap = b. (7)

Above, and in the sequel, we denote by || - ||e,, || - |le; and || - ||, the lo, ¢1 and ¢4, norms
of a vector, respectively.

In the literature of compressive sensing, we find the following theoretical
justification of the ¢;-norm minimization approach. If we assume decoherence of the
columns of A, so

e 0
then the M-sparse solution of Ap = b is unique, and it can be found as the solution
of [24, 18, 25]. Numerically, the ¢;-norm minimization approach works under less
restrictive conditions than the decoherence condition suggests. In fact, our imaging
matrices almost never satisfy .

Consider a typical imaging regime with the central wavelength \g. Assume we use
S = 36 equally spaced frequencies covering a bandwidth that is 10% of the central
frequency. The size of the array is a and the distance between the array and the IW
is L = a. An IW of size is 30\y x 30)\, is discretized using a uniform grid with mesh
size Ao/2 X Ag/2. For such parameters, every column vector a; has at least sizty two
other column vectors a; so that |(a;,a;)| > 1/16. Thus, our matrices are fairly far
from satisfying the decoherence condition (8| if we want to recover, say, 8 sources.
Numerically, however, the /; minimization works flawlessly.

Physically, a pair of columns a; and a; are coherent, so |(a;,a;)| ~ 1, if the
corresponding grid-points in the image are close to each other. In other words, when a;
lies in a vicinity of @; (and vice versa). We assume, though, that the sources are far apart
and, thus, the set of columns indexed by the support of the true source vector p does
satisfy the decoherence condition (8)). The above observation motivates the following
natural conjecture. Perhaps, the ¢; minimization works well because it suffices to satisfy
only on the support of p. Our theoretical results support this conjecture.

3.1. Main results

When data is perturbed by small noise, the following qualitative description of the ¢;
image could be observed. Firstly, some pixels close to the points where the sources
are located become visible. Secondly, a few pixels away from the sources are also visible.
The latter is usually referred to as grass. In order to quantify the observed results we
need to modify the decoherence condition and introduce the vicinities.
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Definition 1 Let p € CX be an M-sparse solution of Ap = b, with support T = {i :
pi # 0} . For any j € T define the corresponding vicinity of a; as

5= {k + Nawal > g3, }- )

For any vector n € CK its coherent misfit to p is

Colp,m) = |pj— >_{aj, ar)ml, (10)

jeT kes;

whereas its incoherent remainder with respect to p is

In(p, TI) - Z ’nk|7 T = UJGTS]" (11)
kg

Proposition 1 Let p be an M-sparse solution of Ap = b, and let T be its support.
Suppose the vicinities S; from Deﬁmtion do not overlap, and let v > 0 be defined as

v = s%p Hi”?, where € is the minimal {y—norm solution of A& = ¢.(12)
Let ps be the minimal El-n207"m solution of the noisy problem

min || psle,, subject to Aps = b, (13)
with ||b — bs|e, < . Then,

Co(p, ps) < 379, (14)
and

In(p, ps) < 576. (15)

If 6 =0, and Y does not contain collinear vectors, we have exact recovery: ps = p.

Proposition [I]is proved in[Appendix A] As it follows from this proof, our pessimistic
bound 1/(3M) could be sharpened to the usual bound (8) found in the literature. We

did not strive to obtain sharper results because it will make the proofs more technical
and, more importantly, because the concept of vicinities describes well the observed
phenomena in imaging with this bound.

When there is no noise so § = 0, Proposition [I] tells us that the M-sparse solution
of Ap = b can be recovered exactly by solving the ¢; minimization problem under a less
stringent condition than . Note that we allow for the columns of A to be close to
collinear. When there is noise so § # 0, this Proposition shows that if the data b is not
exact but it is known up to some bounded vector, the solution ps of the minimization
problem is close to the solution of the original (noiseless) problem in the following
sense. The solution p; can be separated into two parts: the coherent part supported in
the vicinities S; of the true solution, j € T', and the incoherent part, which is small for

1 Below and in the rest of the paper the notation p; means the ith entry of the vector p. In contrast,
we use the notation p; to represent the ith vector of a set of vectors.
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low noise, and that is supported away from these vicinities. Other stability results can
be found in 10} 1T}, 19, 34] 26], 211, 22, [5].

Let us now make some comments regarding the relevance of this result in imaging.
Vicinities, as defined in @D, are related to the classical o-norm resolution theory. Indeed,
recall Kirchhoff migration imaging given by the ¢5-norm solution

pr = A'D, (16)

where A* is the conjugate transpose of A. Note that is an ¢y solution because
it is an approximation of the least-squares solution obtained via the normal equations
[3,[4]. The approximation consists in assuming that A*A is close to the identity matrix.
Typically A*A is close to a diagonal matrix in which case has to be modified
accordingly to provide the correct amplitude of p,,. Since b = Ap the resolution
analysis of KM relies on studying the behaviour of the inner products |[(a;, ax)|. We
know from classical resolution analysis [7] that the inner products |(a;, ax)| are large
for points y,, that fall inside the support of the KM point spread function, whose size
is AL/a in cross-range (parallel to the array) and ¢/B in range (perpendicular to the
array). Given the definition of the vicinities @D, we expect the size of the vicinities to be
proportional to these classical resolution limits, with an appropriate scaling factor that
is inversely proportional to the sparsity M. This intuition is confirmed by our numerical
simulations in Section {| (see Figure [4]).

Under this perspective, one could argue that Proposition [I] tells us the well-
known result that a good reconstruction can be obtained for well-separated sources.
Proposition [, however, gives us more information, it provides an ¢;-norm resolution
theory for imaging: when vicinities do not overlap, there is a single non-zero element of
the source associated within each vicinity. Permitting the columns of A to be almost
collinear inside the vicinities allows for a fine discretization inside the vicinities and
therefore the source can be recovered with very high precision. Furthermore, recovery
is exact for noiseless data.

The assumptions in Proposition |1 are sufficient conditions but not necessary. Our
numerical simulations illustrate exact recovery in more challenging situations, where the
vicinities are not well separated (see Figure |3).

For noisy data, Proposition [1| says that it is the concept of vicinities that provides
an adequate framework to look at the error between the true solution and the one
provided by the ¢;-norm minimization approach. Specifically, the error is controlled by
the coherent misfit and the incoherent remainder , which are shown to be small
when the noise is small in ¢5. This means that the reconstructed source is supported
mainly in the vicinities S; of the true solution, j € T', and the grass in the image is low,
i.e., the part of the solution supported away from the vicinities S; is small.

Proposition [1] implies that a key to control the noise is the constant v defined in
. In general, we have v = O(\/N ). Indeed, let y be the minimum ¢;-norm solution of
the problem Ap = b such that its support has at most size N. Let A, be the submatrix
of A that contains the columns that correspond to the non-zero entries of y. Then, the
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minimum ¢, solution p satisfies (by Cauchy-Schwartz |||, < VN||z|s,, Yz € CV)

el < lylles < VNIlylle < VN[[(AA) A, 1B]]e.-

Assuming decoherence of the columns of A,, we conclude that H(AZAy)_lAZ 0 S C,
with C' independent of N. Thus | p|l,, < CV/N||bl|¢,. A similar lower bound arises if, for
example, A is invertible. This means that typically the quality of the image deteriorates
as the number of measurements N — oo. The remedy that we propose to this is to
augment the imaging matrix A with a “noise collector” C as described in the following

Proposition.

Proposition 2 There ezists a N x ¥ noise collector matriz C, with ¥ < eV, such that
the columns of the augmented matriz D = [A|C] satisfy ||d;| = 1,

1
|<a’iacj>| < 3_M Vi and j, (17)
1 .
(e, ¢5)| < s LA (18)
and there is a positive constant
v < 18M2, (19)
such that
Vb, 3 p such that Dp = b and ||plle, < 7]|ble,- (20)
Proof: Let d; = a;, for i = 1,..., K. We will construct iteratively a sequence of
vectors di 1 = ¢, diio = Ca, ..., dxix = cx such that for each s =1...%

1
|<dk7dK+$>| < ma Vk < s+ K.

The iteration will terminate at a finite step, say, ¥. At the termination step we will
have that for any b, ||bl|,, = 1 there exists k < X + K such that

1
di,b)| > —. 21
(i )| > = (21)
The finite time termination is a consequence of a volume growth estimate. Namely,
if holds for all ¢« # j < X, then the points ¢;, i« = 1,2,...% are centers of non-

overlapping balls of radius r. The radius is bounded below:

>1 h —\/1 1
T 204, whnere o« = 9M2

Thus the iteration will terminate at a finite step. Furthermore, if r < /2 then the
number X < eNog %2 a5 the dimension N — 00, because (r/v/2)NE ~ 1.

Let us finally estimate v in ((19). Without loss of generality, we may assume
|blle, = 1. By our construction, there exists k¥ < ¥ + K such that holds. Thus
we can choose d,, and ¢; so that |¢;] < 1 and by = b — ¢1d,, satisfies ||by]ls, < .
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Using inductively we can find a sequence {d,,}°,, and a sequence {¢;}32,, so that
lcil < o'~! and the vectors b, = b — Y"1, ¢;d,, satisfy ||b,]ls, < a”. Therefore,

b= i ¢id, (22)
i=1

and
ol <D lel Y0t = o <180 (23)
=1 =1
by the triangle inequality. U

Proposition [2| is an important result as it shows that the constant v in (12) can be
made independent of N by augmenting the columns of the linear system with columns of
a noise collector matrix C. The columns of C are required to be decoherent to the columns
of A (see (L7)), and decoherent between them (see (18))). Recalling that the columns of
A for the imaging problem are Green’s vectors corresponding to points in the imaging
window, we stress that the columns of C do not admit a physical interpretation. They do
not correspond to any points in the imaging window or elsewhere. Similarly, the X last
components of the augmented unknown vector p in do not have a physical meaning.
They correspond to fictitious auxiliary unknowns that are introduced to regularize the
¢1-norm minimization problem.

The drawback of this theory is that the size of the noise collector is exponential
¥ < eV. This makes it impractical. Our numerical experiments, however, indicate
great improvement in the performance of /;-norm minimization with ¥ < 10K when
the columns of C are selected at random (its entries are i.i.d. Gaussian random variables
with mean zero and variance 1/N). This works well for additive mean zero uncorrelated
noise. For other types of noise, the idea is to construct a library that represents the
values that the noise vector db takes. It is the elements of this library that should be
used as columns of the noise collector matrix C. A different approach can be followed
when the noise db is sparse so its £;-norm is small. Then, C could be simply taken as
the N x N identity matrix I. This approach has been proposed and analyzed in [27]
and provides exact recovery for sparse noise vectors db.

In the next section, we present numerical results to illustrate the relevance of our
theory in imaging sparse sources. We focus our attention in the case of additive mean
zero uncorrelated noise which is not sparse. The results show a dramatic improvement
using the noise collector.

4. Imaging results in the framework of Propositions (1| and

We illustrate here the relevance of Propositions|ljand [2/in imaging. We compare p,, , the
¢1-norm solution of and the f5-norm Kirchhoff migration solution . Our results
illustrate:
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(i) The well-known super-resolution for /;, meaning that p, determines the support
of the unknown p with higher accuracy than the conventional resolution limits,
provided the assumptions of Proposition (1] are satisfied.

(ii) The equally well known sensitivity of ¢; to additive noise. This is made more
precise in the imaging context where the constant v in grows with the number
of measurements as v/ NS, where NS is the total number of measurements acquired
by N receivers at S frequencies. We observe that, for a given level of noise, the
f1-norm reconstruction deteriorates as the number of measurements increases.

(iii) The noise collector matrix C stabilizes ¢;-norm minimization in the presence of
noise.

We also show how the bandwidth, the array size, and the number of sources affect
the vicinities defined in @ The numerical results are not specialized to a particular
physical regime. They illustrate only the role of the Propositions 1] and [2 in solving the
associated linear systems.

Numerical method to solve the {1 minimization problem (@

The solution of @ can be found accurately and efficiently by many numerical
minimization techniques. Here are some of them: orthogonal matching pursuit [9],
homotopy [33] 32, 20], interior-point methods [Il, 37], gradient projection [23], sub-
gradient descent methods in primal and dual spaces [29] ], and proximal gradient in
combination with iterative shrinkage-thresholding [30, B1], 2]. In this work we chose to
solve using the Generalized Lagrange Multiplier Algorithm (GeLMA) [2§], a semi-
implicit version of the primal-dual method [16].

The formulation of GeLMA starts with a standard optimization argument that
the solution of equals the solution of the following min-max problem. Define the
function

1
F(p,z) = 7llplle + 5l Ap = BllZ, + (z,b — Ap) (24)
for p € CK and z € CV, and determine the solution of as
Py, = argp max mpln F(p,z). (25)

Solutions of — and agree for any value of the regularization parameter 7
in (24) (see [28]). In practice, 7 is used to adjust the thresholding level TAt of the

semi-implicit discretization of —

Pri1 = Srat(pp + At A (2 +b— Apy)),

Zp1 = 2K+ At (b—Apy). (26)
Here, S, is the component-wise shrinkage-thresholding operator: for any y = rei® € C
we have S;(re®) = e®max{0,|r| — t}. GeLMA sets p, = 0, 29 = 0, and At =
min{2/||A|?*,7/||A||}, and iterates till convergence to (7).
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Imaging setup

The images are obtained in a homogeneous medium with an active array of N = 25
transducers. We collect measurements corresponding to S = 25 frequencies equispaced
in the bandwidth. Thus, the length of the data vector b is NS = 625. The ratios
between the array size a and the distance L to IW, and between the bandwidth 2B and
the central frequency wy vary in the numerical experiments, so the classical Rayleigh
resolution limits change. The size of the IW is fixed. It is discretized using a uniform
grid of K = 3721 points of size A\y/2 in range and cross-range directions.

The images have been formed by solving the ¢;-norm minimization problem
using the algorithm GeLMA (26).

Results for noiseless data. Super-resolution and {1-reconstructions
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Figure 2. Imaging with no noise M = 4 sources. On the top row we show the /5
image, p,,, on the left and the /; image, p, , on the right. On the bottom row left
image we plot the solution vector p, with red stars and compare it with the true
solution vector p plotted with green circles. The vicinities S;, j = 1,..., M for the
four targets are plotted with different colors in the bottom right image. In this example
we use large array aperture and large bandwidth; a/L = 1/2 and (2B)/wy = 1/2.

Figures show the results obtained for a relatively large array and a relatively
large bandwidth corresponding to ratios a/L = 1/2 and (2B)/wy = 1/2 when the data
is noiseless. On the top row, from left to right we show the p,, solution and the
p,, solution obtained from . On the bottom row, the comparison between p, (red
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Figure 3. Same as Figure 2| but for M = 8 sources.

stars) and the true solution p (green circles) is shown on the left and the vicinities S;
defined in @ are plotted with different colors on the right. Figure [2| (resp. Figure [3)
is for M = 4 (resp. M = 8) sources. The exact locations of the sources are indicated
with white crosses in the top row images. The M = 4 sources in Figure [2| are very far
apart: their vicinities do not overlap as it can be seen in the bottom right image. In
this case, all the conditions of Proposition [1| are satisfied and we find the exact source
distribution by ¢;-norm minimization. The M = 8 sources in Figure |3| are closer, and
their vicinities are larger; according to (9)) the size of the vicinities increases with M.
In fact, their vicinities overlap as it can be seen in the bottom right image. Still, the
/1-norm minimization algorithm finds the exact solution.

The classical resolution limits for this setup are cy/(2B) = 2\ in range and
ML /a = 2)\g in cross-range. This means that the resolution of the ¢5-norm solutions is of
the order O(2)); see the top left image of Figures[2]and [3] Recall that our discretization
is Ao/2, that is four times finer than the classical resolution limit. Thus, each source
roughly corresponds to a four-by-four-pixel square, which is what the p,, solutions show.
Note that for M = 8, because two sources are quite close, the p,, solution only displays
7 sources. The ability of /;-norm minimization to determine the location of the sources
with better accuracy than the classical resolution limits is referred to as super-resolution.

We stress that if the IW is discretized using a very fine grid, with a grid size smaller
than the classical resolution limit, then the columns of the matrix A are almost parallel
and the decoherence condition is violated. The columns that are almost parallel to
those indexed by the support of the true solution are contained in the vicinities @
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Figure 4. Vicinities @I) for different array and bandwidth sizes. From left to right
and top to bottom the ratios (a/L,2B/wy) are: (1/2,1/2), (1/2,1/4), (1/4,1/2) and
(1/4,1/4).

The number of columns that belong to the vicinities depends on the imaging system.
To illustrate the effect of the array and bandwidth sizes on the size of the vicinities we
plot in Figure [4] the vicinity of one source for M = 4. From left to right and top to
bottom we plot the vicinities for [a/L,2B/wy| = [1/2,1/2], [a/L,2B/wo] = [1/2,1/4],
la/L,2B/wo] = [1/4,1/2], and [a/L,2B/wy] = [1/4,1/4]. As expected, the size of the
vicinity is proportional to the resolution estimates A\gL/a and ¢o/(2B) in cross-range
and range, respectively.

Results for noisy data. Stabilization of £1-norm minimization using the noise collector
matrix C

We add now mean zero uncorrelated noise to the data. We examine the results for
different values of the signal-to-noise ratio (SNR). As we specify in the captions, our
SNR is either 0dB (100% of noise) or 4dB (40% of noise). We consider first the same
imaging configuration as in Figure [2] with M = 4 sources. The number of data is
NS = 625 and the number of unknowns is K = 3721. In the top row of Figure
we plot the minimal /;-norm image obtained by solving problem @) when the SNR is
4dB. The true solution is shown with white crosses. It is apparent that, even for this
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moderate level of noise, ;-norm minimization fails to give a good image.

The problem can be alleviated using the noise collector matrix C, as it can be seen
in the results shown in the bottom row of Figure )l To construct the noise collector
matrix C that verifies the assumptions of Proposition [2| we take its columns c; to be
random vectors in CV¥ with mean zero and variance 1/(N.S). Their fy-norm tends to
one as NS — oo, and we check that conditions and are satisfied. In theory,
the number of columns ¥ should be very large, of the order of eV, but in practice, we
obtain stable results with ¥ of the order of 10%, which is roughly 3K.

The solution p,, € C*** obtained with the noise collector can be decomposed into
two vectors; the vector p,, € CX corresponding to the sought solution in the IW, and
the vector p,,,;.. € C* that absorbs the noise. We display these two vectors in the bottom
right plot of Figure 5 The first K components correspond to p;,, and the remaining
> components to p,, ... 1t is remarkable that the vector p,, is very close to the true
solution and that it contains only some small grass. This means that both the coherent
misfit and the incoherent remainder are now small. This is in accordance
with the theoretical error estimates and , where ~ is now independent of the
dimension of the data vector NS; see (|19).
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Figure 5. Imaging with noisy data, SNR = 4dB. The top and the bottom rows show
the results without and with the noise collector, respectively. The left columns show
the p,, images (the true solution is displayed with white crosses) and the right columns
show the comparison (red stars) with the true solution (green circles). In the bottom
right image, the first K = 3721 components of the solution corresponding to the IW
are plotted with red stars, and the ¥ = 12000 next components corresponding to the
noise collector are plotted with black stars.
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In the next figures, we consider an imaging setup with a large aperture a/L = 1
and a large bandwidth (2B)/wy = 1. Moreover, we increase the pixel size to g in both
range and cross-range directions, so the Rayleigh resolution is of the order of a pixel.
With this imaging configuration, the columns of the model matrix A are less coherent
than in the previous numerical experiments. We plot in Figure [6] the ¢;-norm image for
a SNR = 4dB. With a less coherent matrix A the results are very good. This highlights
the inherent difficulty in imaging when high resolution is required as in Figure [9].

cross-range in AO

range in A\, 0 500 1000 1500 2000

Figure 6. Low resolution images with a moderate level of noise in the data so
SNR = 4dB. NS = 625 measurements. K = 1681 pixels in the images.

For the particular low imaging resolution configuration considered in Figure [6] we
obtain good results for a large noise level corresponding to SNR = 0dB; see the top
row of Figure [7| where N .S = 625 as before. However, when we increase the number of
measurements to NS = 1369, the image obtained with /;-norm minimization turns out
to be useless; see the bottom row of Figure [7] This illustrates the counter-intuitive fact
that ¢;-norm minimization does not always benefit from more data, at least if the data
is highly contaminated with noise. This is so because the constant v in depends
on the length of the data vector b as v/NS.

As before, this problem can be fixed with the noise collector as we illustrate in
Figure 8] Again, the noise is effectively absorbed for both NS = 625 (top row) and
NS = 1369 (bottom row) measurements using a matrix collector with a relatively small
number of columns, many less than V¥ as Proposition [2| suggests.

We finish with one last example that shows that the use of the noise collector makes
¢1-norm minimization competitive for imaging sparse scenes because it provides stable
results with super-resolution even for highly corrupted data. We consider the example
with M = 8 sources and SNR = 0dB. The array and the bandwidth are relatively
large (a/L = 1/2, (2B)/wy = 1/2), so the classical ¢3-norm resolution is of the order
O(2)), as in Figure (f]). In Figure [0 we show, from left to right, (i) the minimal ¢;-
norm solution without noise collector, which fails to give a good image, (ii) the fy-norm
solution , which is stable to additive noise but does not resolve nearby sources, and
(iii) the minimal ¢;-norm solution with the noise collector, which provides a very precise
and stable image.
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Figure 7. Low resolution images with a high level of noise in the data so SNR = 0dB.
1369 measurements.

Top row: NS = 625 measurements.

K = 1681 pixels in the images.
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Figure 8. Same as Fig. [7|but with a noise collector matrix C with ¥ = 12000 columns.
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Figure 9. High resolution images with a high level of noise in the N.S = 625 data, so
SNR = 0dB. From left to right: plain p, without noise collector, p,,, and p,, using a
noise collector. K = 3721 pixels in the images.

5. Discussion

In this paper, we consider imaging problems that can be formulated as underdetermined
linear systems of the form A p; = bs, where A is an N x K model matrix with N < K,
and b;s is the N-dimensional data vector contaminated with noise. We assume that
the solution is an M-sparse vector in CX, corresponding to the K pixels of the IW. We
consider additive noise in the data, so the data vector can be decomposed as bs = b+ b,
where b is the data vector in the absence of noise and 0b is the noise vector. We
provide a theoretical framework that allows us to examine under what conditions the
¢1-minimization problem admits a solution that is close to the exact one. We also have
shown that, for our imaging problems, /;-minimization fails when the noise level is high
and the dimension N of the data vector bs increases. The reason is that the error is
proportional to the square root of V.

To alleviate this problem and increase the robustness of /;-minimization, we propose
a regularization strategy. In particular, we seek the solution of [A|C] ps = bs, where
the N x ¥ matrix C is a noise collector. Thus, the unknown p; is now a vector in
CK+®. The first K components of the unknown correspond to the distribution of
sources in the IW, while the ¥ next components do not correspond to any physical
quantity. They are introduced to provide a fictitious source distribution given by an
appropriate linear combination of the columns of C that produces a good approximation
to db. The main idea is to create a library of noises. The columns of the noise collector
matrix are elements of this library and they are constructed to be incoherent with
respect to the columns of A. Theoretically, the dimension Y of the noise collector
increases exponentially with N, which suggests that it may not be useful in practice.
Our numerical results show, however, robustness for ¢;-minimization in the presence
of noise when a large enough number of columns ¥ = 10K is used to build the noise
collector matrix.

Our first findings on the noise collector are very encouraging. We have shown
that its use improves dramatically the robustness of /;-norm reconstructions when the
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data are corrupted with additive uncorrelated noise. Many other questions ought to be
addressed. Some directions of our future research concern the following aspects: what
happens with other types of noise?, can we design noise collectors adaptively depending
on the noise in the data?, what if the noise comes from wave propagation in a random
medium?, can we design a noise collector for this case?, how much do we need to know
about the noise so as to design a good noise collector?, can we retrieve this information
from the data? Some of these questions will be addressed somewhere else.
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Appendix A. Proof of Proposition

We will now prove auxiliary lemmas that we will use in the proof of Propostion [I}

Lemma 1 Let B be an M x M Hermitian matriz such that b; = 1, and |b;;| < ¢ for
all i # j. Assume (M — 1)c < 1, then any eigenvalue \ of B satisfies

1—-(M—=1)c< A< 1+ (M —1)e (A.1)

Proof: Suppose Bp = Ap. By the triangle inequality for any row i we have
> bip; > b
J# J#

< (M — 1)c¢, we obtain ({A.1]).

pi| — < il < |pil +

Since ‘Z];ﬁz bijpj

O

Lemma 2 Suppose v is defined by (19). Let p, and p, be minimizers of |||, , subject
to An = by and An = by, respectively. Then, there exists & such that A& = by,

1€ller < lalley +27[[b1 = b2l (A.2)

and

1€ = palley < YN1b1 — balle, (A.3)

Proof: Let us first show that
ol = llpalle | < 11 = balle,. (A4)

Assume, for definiteness, that ||p;|l¢, > ||p2]le,- Then,

l[oilles = N2l | = llpilles = llp2ler-

Suppose p; is a minimizer of ||n||,,, subject to An = by — by. Since A(py, + p3) = by,
and p; is a minimizer of ||n||s,, subject to An = by, it follows ||p;|le, < |lpy + £slle; -
By and the triangle inequality

102 + Pslle < ll2lley + 7101 = balle,.
Thus, (A.4) holds.

Let € = p, + p3, where p4 is a minimizer of ||n|,, subject to An = b; — by. Then,
A€ = by, and inequality (A.3) follows from (12). Using (A.4), (A.3)), and the triangle

inequality we obtain

||€||f1 < ||p2H51 + ||€ - pQHfl < ||p1||£1 + 2’7Hb1 - b2||52'
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Lemma 3 Suppose Ap = AE = b, where p is M-sparse, and & is arbitrary. Assume
vicinities @ do not overlap. Then,

1
(30(p7£):§ §In(p7€) (A“5)
In particular,
[olle; < NI€lle,- (A.6)

Proof: For any u € CM, we have
0= (Ar (ApA7) ™ 1. Alp = €)) = (1, (A7 A7) AT A(p — 6)

since 0 = A(p — £). By Lemma , the largest eigenvalue of (.A"‘TATY1 is smaller than
3/2. Thus,

D e =Y laj an bl < gz > laj, ax)iél, T = Ujers;.

JET JET keS, JET kgY

Choose p;, so that ;| =1 and

D =Y > (aj, g = Co(p,§).

jET JET keS,

We can estimate
31 1
Co(p.&) < s D D |Gl <D 1&l.
23M 4 2
JET kg kg T
which is equivalent to (A.5]). Observe that (see ((10])
lplle, = Y16l < Co(p.&).

kET
O

Proof: [Proof of Proposition (1] If p and ps are minimizers of ||n||,,, subject to An = b
and An = bs, respectively, we can apply Lemma [2l and conclude there exists & such that
AE = b,

1€lle, < Nlplley + 270, (A.7)
and

1€ = pslle, < 0. (A.8)

Since
lplle, < Co(p. &)+ > I&1.
jeT

by Lemma [3| we have
1 1
Il < 232161+ 161 = €]l — 2n(p.&). (A9)

j€T JET
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Comparing (A.9) and (A.7]) we conclude
In(p, &) < 494. (A.10)
By the triangle inequality and , we have
In(p, p;5) < In(p, &) + [|€ — pslle, < 570
Hence, we have obtained . From and , we obtain
Co(p, §) < 276.
By the triangle inequality and , we have

Co(p, ps) < Co(p. &) + 1€ — pslley < 376.

If the noise level 6 = 0, then Co(p, &) = In(p, &) = 0. It means supp(p;) C Y. Since
Aps = Ap, we can use (A.6). Note that the inequality (A.6) becomes strict if T does
not contain collinear vectors. Thus, we conclude ps; = p. ([l
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