Sec 3.2, Ex 19 Suppose M is another subgroup of G of order $|N|$. To show that $M = N$, it suffices to show $|N : M \cap N| = 1$, for then $M \cap N = N$, which means $M = N$ since they have the same order.

Since N is normal in G, M is contained in the normaliser of N. Hence MN is a subgroup of G, and we have the lattice of subgroups of G:

\[
\begin{array}{c}
MN \\
M \\
N \\
M \cap N
\end{array}
\]

From this we have $|N : M \cap N| = |MN : M| = |MN : N|$, which must divide the index $|G : N|$ (we have the inclusions $N \subset MN \subset G$).

On the other hand, $|N : M \cap N|$ must also divide $|N|$. So the positive integer $|N : M \cap N|$ divides both $|N|$ and $|G : N|$, which are coprime, forcing $|N : M \cap N|$ to be 1.

sec 3.2, Ex 21 Suppose Q has a proper subgroup H of finite index. Say $n = |Q : H| = |Q/H|$ (since Q is abelian, any subgroup is normal, and so we can quotient by it). Then for any $q \in Q$, we have $n(q + Q) = 0 + Q$, the identity element in Q/H. That is, for any $q \in Q$, we have $nq \in H$. But for any $q \in Q$, q/n is also in Q (n is a positive integer), and so $n(q/n) = q$ is in H. We have shown $Q \subset H$, contradicting H being a proper subgroup. Therefore, Q does not have a proper subgroup with finite index.

Consider the quotient homomorphism $\phi : Q \to Q/Z$. If Q/Z had a proper subgroup H of finite index, then $\phi^{-1}(H)$ would also be proper subgroup of finite index (note that $|Q : \phi^{-1}(H)| = |Q/Z : H|$). So Q/Z cannot have a proper subgroup of finite index by the previous paragraph.

Sec 3.3, Ex 10 (The techniques here are similar to those used in Exercise 19 in Section 3.2.) Since N is normal in G, HN is a subgroup of G, and we can consider the lattice of subgroups of G:

\[
\begin{array}{c}
HN \\
H \\
N \\
H \cap N
\end{array}
\]
Since H is a Hall subgroup of G, it is also a Hall subgroup of HN. But $|HN : H| = |N : H \cap N|$, so $1 = ([H], |HN : H|) = ([H], |N : H \cap N|)$, and so $1 = ([H \cap N], |N : H \cap N|)$ since $|H \cap N|$ divides H. Therefore, $H \cap N$ is a Hall subgroup of N.

As for HN/N, we have:

- $|HN/N| = |HN : N| = |H : H \cap N|$, which divides $|H|;

Since $|H|$ and $|G : H|$ are coprime, $|HN/N|$ and $|G/N : HN/N|$ are coprime, and so HN/N is a Hall subgroup of G/N.

Sec 3.4, Ex 4 We can do induction on the order of the finite abelian group. Let $P(m)$ be the statement ‘for any finite abelian group A of order m, and any positive integer $n|m$, there is a subgroup of A of order $n’$. Clearly $P(1)$ is true. Suppose $P(k)$ is true for all $1 \leq k < m$, for some fixed integer m. Let us show that $P(m)$ holds:

Take any finite abelian group A of order m. Let $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ be the prime factorisation of m, where the p_i are distinct primes, and $\alpha_i > 0$ for all i. Take any positive integer n dividing m, and let $n = p_1^{\beta_1} \cdots p_k^{\beta_k}$ be the prime factorisation of n. Note that $0 \leq \beta_i \leq \alpha_i$ for all i.

If $\beta_i = 0$ for all i, then $n = 1$, and clearly A has a subgroup of order 1, the trivial subgroup. So we might as well assume that there is an index j such that $\beta_j > 0$. Then p_j is a prime dividing $|A|$, and by Cauchy’s Theorem, A has an element of order p_j; let H be the subgroup of A of order p_j generated by this element. Consider the quotient homomorphism $\phi : A \to A/H$. Then n/p_j is an integer dividing $|A/H|$, and A/H is a finite abelian group of order strictly less than m. By our induction hypothesis, A/H has a subgroup B of order n/p_j. Then $\phi^{-1}(B)$ is a subgroup of A of order $(n/p_j) \cdot p_j = n$, as desired.

Sec 3.4, Ex 5 Suppose G is a solvable group, with a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_t = G$$

(1)

where each quotient G_{i+1}/G_i is abelian.

Let H be any subgroup of G. Then we have a chain of subgroups of H

$$1 = H \cap G_0 \leq H \cap G_1 \leq \cdots \leq H \cap G_t = H \cap G = H.$$

(2)

Since $G_i \triangleleft G_{i+1}$ for each i, we have $H \cap G_i \triangleleft H \cap G_{i+1}$ for each i. To show that $H \cap G_{i+1}/H \cap G_i$ is abelian, consider the group homomorphism ψ that is the composition of group homomorphisms

$$H \cap G_{i+1} \hookrightarrow G_{i+1} \rightarrow G_{i+1}/G_i.$$

The kernel of ψ is exactly $H \cap G_i$ (think about it - which elements in $H \cap G_{i+1}$ go to the identity element under the composite?), and by the first isomorphism theorem, $H \cap G_{i+1}/H \cap G_i = H \cap G_{i+1}/\ker(\psi)$ is isomorphic to $\im(\psi)$, a subgroup of G_{i+1}/G_i.

2
which is abelian. So \(H \cap G_{i+1}/H \cap G_i \) itself is abelian, and so the series ((2)) satisfies the requirements for \(H \cap G \) to be a solvable subgroup.

Now, let \(Q \) be any quotient of \(G \). To say \(Q \) is a quotient of \(G \) is to say there is a surjective homomorphism \(\phi : G \to Q \). Consider the chain of subgroups of \(Q \) obtained by mapping the subgroups in ((1)) into \(Q \):

\[
1 = \phi(G_0) \leq \phi(G_1) \leq \cdots \leq \phi(G_s) = \phi(G) = Q. \tag{3}
\]

We show that this chain of subgroup make \(Q \) a solvable group. Fix any index \(i \). We need to show that \(\phi(G_i) \) is normal in \(\phi(G_{i+1}) \) and \(\phi(G_{i+1})/\phi(G_i) \) is abelian:

- \(\phi(G_i) \trianglelefteq \phi(G_{i+1}) \): take any \(\tilde{g} \in \phi(G_i) \) and \(\tilde{h} \in \phi(G_{i+1}) \). Then \(\tilde{g} = \phi(g) \) and \(\tilde{h} = \phi(h) \) for some \(g \in G_i \) and \(h \in G_{i+1} \). Then \(hgh^{-1} = \phi(h)\phi(g)\phi(h)^{-1} = \phi(hgh^{-1}) \), where \(hgh^{-1} \in G_i \) because \(G_i \) is normal in \(G_{i+1} \). This means \(\phi(hgh^{-1}) \in \phi(G_i) \), and so we have normality.

- \(\phi(G_{i+1})/\phi(G_i) \) is abelian: let \(\psi \) be the homomorphism \(G_{i+1} \to \phi(G_{i+1}) : x \mapsto \phi(x) \) (that is, \(\psi \) is obtained by restricting the domain of \(\phi \) to \(G_{i+1} \), and the image of \(\phi \) to \(\phi(G_{i+1}) \)). Then the subgroup \(\phi(G_i) \) of \(\phi(G_{i+1}) \) corresponds to a subgroup \(H \) of \(G_{i+1} \) (see the fourth isomorphism theorem), and \(H \) contains \(G_i \). By part (5) of the fourth isomorphism theorem, \(H \) is normal in \(G_{i+1} \) because \(\phi(G_i) \) is normal in \(\phi(G_{i+1}) \). Besides, we have a surjective homomorphism

\[
G_{i+1}/G_i \to G_{i+1}/H : xG_i \mapsto xH.
\]

Since \(G_{i+1}/G_i \) is abelian, so is the quotient \(G_{i+1}/H \cong \phi(G_{i+1})/\phi(G_i) \).

Therefore, \(Q \) is solvable.

Sec 3.4, Ex 7 Take any normal subgroup \(H \trianglelefteq G \). If \(H = 1 \) or \(G \), then any composition series of \(G \) has \(H \) as one of the terms. So suppose \(H \) is strictly bigger than \(1 \) and strictly smaller than \(G \). Take any composition series of \(H \) and \(G/H \), say

\[
1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_s = H \quad \text{and} \quad 1_{G/H} = I_0 \triangleleft I_1 \triangleleft \cdots \triangleleft I_t = G/H,
\]

where all the \(H_{i+1}/H_i \) and \(I_{j+1}/I_j \) are simple groups.

Let \(\phi : G \to G/H \) be the quotient homomorphism. Then we have a chain of subgroups

\[
\phi^{-1}(I_0) \leq \phi^{-1}(I_1) \leq \cdots \leq \phi^{-1}(I_t)
\]

where \(\phi^{-1}(I_i) \) is normal in \(\phi^{-1}(I_{i+1}) \) by part (5) of the fourth isomorphism theorem, and \(\phi^{-1}(I_{i+1})/\phi^{-1}(I_i) \cong I_{i+1}/I_i \) is simple. Besides, each \(\phi^{-1}(I_i) \) contains \(\ker(\phi) = H \).

Now we obtain a chain of subgroups of \(G \)

\[
1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_s = H \leq \phi^{-1}(I_0) \leq \phi^{-1}(I_1) \leq \cdots \leq \phi^{-1}(I_t).
\]

Since \(\phi^{-1}(I_0) = H \) and \(\phi^{-1}(I_t) = G \), this is a composition series for \(G \), and \(H \) is one of the terms.
Sec 3.4, Ex 12 (i) implies (ii): suppose (i) holds. Take any simple group \(G \) whose order is odd and greater than 1. By hypothesis, \(G \) is solvable, and so must be abelian. So \(G \) is now an abelian simple group. If \(|G| \) is not a prime number, then there is a prime \(p \) dividing \(|G| \), and \(p < |G| \). By Cauchy’s Theorem, there is a subgroup \(H \) of order \(p \) in \(G \). Then \(H \) is a proper subgroup of \(G \), contradicting \(G \) being simple. So \(|G| \) must be prime, and (ii) holds.

(ii) implies (i): suppose (ii) holds. Take any finite group \(G \) of odd order. Take any composition series \(\cdots \triangleleft G_i \triangleleft G_{i+1} \triangleleft \cdots \) of \(G \). Each quotient \(G_{i+1}/G_i \) is a simple group by the definition of a composition series. Besides, for each \(i \), \(|G_{i+1} : G_i| \) divides \(|G_{i+1}| \), which divides \(|G| \), and so \(|G_{i+1} : G_i| \) is odd. By assumption, the order of \(G_{i+1}/G_i \) is prime, and so \(G_{i+1}/G_i \) is cyclic, and in particular, abelian. Therefore, \(G \) is solvable.