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1 Introduction; Transcendence of e and π

α is algebraic if there exists p ∈ Z[x], p 6= 0 with p(α) = 0, otherwise α is called
transcendental .

Cantor: Algebraic numbers are countable, so transcendental numbers exist,
and are a measure 1 set in [0, 1], but it is hard to prove transcendence for any
particular number.

Examples of (proported) transcendental numbers: e, π, γ, eπ,
√

2
√

2
, ζ(3),

ζ(5) . . .

Know: e, π, eπ,
√

2
√

2
are transcendental. We don’t even know if γ and ζ(5),

ζ(7), . . . are irrational or rational, and we know that ζ(3) is irrational, but not
whether or not it is transcendental! Lioville showed that the number

∞∑
n=1

10−n!

is transcendental, and this was one of the first numbers proven to be transcen-
dental.

Theorem 1 (Lioville). If 0 6= p ∈ Z[x] is of degree n, and α is a root of p,
α 6∈ Q, then ∣∣∣∣α− a

q

∣∣∣∣ ≥ C(α)

qn
.

Proof. Assume without loss of generality that α < a/q, and that p is irreducible.
Then by the mean value theorem,

p(α)− p(a/q) = (α− a/q)p′(ξ)
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for some point ξ ∈ (α, a/q). But p(α) = 0 of course, and p(a/q) is a rational
number with denominator qn. Thus

1/qn ≤ |α− a/q| sup
x∈(α−1,α+1)

|p′(x)|.

This simple theorem immediately shows that Lioville’s number is transcen-
dental because it is approximated by a rational number far too well to be al-
gebraic. But Lioville’s theorem is pretty weak, and has been improved several
times:

Theorem 2 (Thue). If 0 6= p ∈ Z[x] is of degree n, and α is a root of p, α 6∈ Q,
then ∣∣∣∣α− a

q

∣∣∣∣ ≥ C(α, ε)

qn/2+1+ε
,

where the constant involved is ineffective.

Theorem 3 (Roth). If α is algebraic, then∣∣∣∣α− a

q

∣∣∣∣ ≥ C(α, ε)

q2+ε
,

where the constant involved is ineffective.

Roth’s theorem is the best possible result, because we have

Theorem 4 (Dirichlet’s theorem on Diophantine Approximation). If α 6∈ Q,

then
∣∣∣α− a

q

∣∣∣ ≤ 1
q2 for infinitely many q.

Hermite: e is transcendental.
Lindemann: π is transcendental (∴ squaring the circle is impossible).
Weierstauß: Extended their results.

Theorem 5 (Lindemann). If α1, . . . , αn are distinct algebraic numbers, then
eα1 , . . . , eαn are linearly independent over Q.

Examples:

• Let α1 = 0, α2 = 1. This shows that e is transcendental.

• Let α1 = 0, α2 = πi. This shows that πi is transcendental.

Corollary 1. If α1, . . . , αn are algebraic and linearly independent over Q, then
eα1 , . . . , eαn are linearly independent.

Conjecture 1 (Schanuel’s Conjecture). If α1, . . . , αn are any complex numbers
linearly independent over Q then the transcendence degree of Q(α1, . . . , αn, e

α1 , . . . , eαn)
is at least n.
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If this conjecture is true, we can take α1 = 1, α2 = πi to find that Q(π, e)
has transcendence degree 2. This is an open problem!

Theorem 6 (Baker’s Theorem). Let α1, . . . , αn be nonzero algebraic numbers.
Then if logα1, . . . , logαn are linearly independent over Q, then they’re also
linearly independent over Q.

Exercise 1. Show that e is irrational directly and quickly by considering the
series for n!e.

Claim 1. en is irrational for every n ∈ N.

Proof. Let f ∈ Z[x]. Define

I(u; f) =

∫ u

0

eu−tf(t) dt =

∫ u

0

f(t) d(−eu−t) = −f(u)+euf(0)+

∫ u

0

eu−tf ′(t) dt.

Iterating this computation gives

I(u; f) = eu
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(u).

Note: f is a polynomial, so this is a finite sum. Now, assume en is rational. We
derive a contradiction by finding conflicting upper and lower bounds for I(n; f).
The upper bound is easy:

|I(n; f)| ≤ en max
x∈[0,n]

|f(x)|,

which grows like Cdeg f in the f aspect. Now our aim is to try to find
an f with I(n; f) ≥ (deg f)! to contradict this upper bound. Pick f(x) =
xp−1(x − n)p, where p is a large prime number. A short explicit computation
shows

f (j)(0) =


0 j ≤ p− 2

(p− 1)!(−n)p j = p− 1

≡ 0 (mod p!) j ≥ p,

and

f (j)(n) =

{
0 j ≤ p− 1

≡ 0 (mod p!) j ≥ p.

Assume p is large compared to n and the denominator of en. I(n; f) is
a rational integer divisible by (p − 1)! but not p!. So |I(n; f)| ≥ (p − 1)!.
Contradiction. So en is irrational.

Claim 2. e is transcendental.
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Proof. Suppose not. Then a0 + a1e+ . . .+ ane
n = 0, ai ∈ Z. Define I(u; f) as

before. Then
I(u; f) = eu

∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(u)

and so
n∑
k=0

akI(k, f) = −
n∑
k=0

ak
∑
j≥0

f (j)(k).

Now choose f(x) = xp−1(x− 1)p · · · (x− n)p. Similar to the above,

f (j)(0) =


0 j ≤ p− 2

(p− 1)!(−1)p · · · (−n)p j = p− 1

≡ 0 (mod p!) j ≥ p,

and for 1 ≤ k ≤ n

f (j)(k) =

{
0 j ≤ p− 1

≡ 0 (mod p!) j ≥ p.

Let p large compared to n and the coefficients a0, . . . , an. Then I(n; f) is
an integer divisible by (p − 1)! but not by p!, so |I(n; f)| ≥ (p − 1)!, but also
|I(n, f)| ≤ Cp as before. Contradiction.

Claim 3. π is transcendental.

Proof. Suppose not. Then πi is algebraic. Take α1 = πi, and let α2, . . . αn be
all of the other Galois conjugates of πi. Then

(1 + eα1)(1 + eα2) · · · (1 + eαn) = 0

because the first factor is 0. Expanding this, we get a sum of all possible terms
of the form

exp

 n∑
j=1

εjαj


where εj = 0, 1. Some of these exponents are zero and some are not. Call the
nonzero ones θ1, . . . , θd. Then we have

(2n − d) + eθ1 + · · ·+ eθd = 0.

As before, take our favorite auxiliary function,

I(u; f) = eu
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(u).

Then we have

(2n−d)I(0; f)+I(θ1; f)+· · ·+I(θd; f) = −(2n−d)
∑
j≥0

f (j)(0)−
d∑
k=1

∑
j≥0

f (j)(θk).

4



The right hand side of this expression is ∈ Q by Galois theory. Now take
A ∈ N to clear the denominators of the αj , i.e. so that Aα1, . . . , Aαn are all
algebraic integers. Then let f(x) = Adpxp−1(x− θ1)p · · · (x− θd)p. As before,

f (j)(0) ≡

{
0 (mod (p− 1)!) j = p− 1

0 (mod p!) else,

and f (j)(θk) is always divisible by p!. So again, we have a that the right hand
side of the above expression is an integer divisible by (p−1)! but not by p!, so it
is ≥ (p−1)! but also ≤ Cp by the same arguments as above. Contradiction.

Note the similarity of the last three proofs. We can generalize these, and
will do so in the next lecture.

2 Lindemann-Weierstrauss theorem

Now we generalize the proofs of the transcendence of e and π from last time.

Theorem 7 (Lindemann-Weierstrauß). Let α1, . . . , αn be distinct algebraic num-
bers. Then

β1e
α1 + · · ·+ βne

αn = 0

for algebraic β1, · · · , βn only if all βj = 0. i.e. eα1 , . . . , eαn are linearly inde-
pendent over Q.

This automatically gives us that e and π are transcendental, and proves a
special case of Schanuel’s conjecture.

Proof. Recall from the previous lecture that we defined

I(u, f) =

∫ u

0

eu−tf(t) dt = eu
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(u).

We will choose f to have a lot of zeros at integers or at algebraic numbers.
We proceed as before, but things get a little more complicated. First, we make
some simplifications.

First Simplification: All the βj can be chosen to be rational integers. Why?
Given a relation as in the theorem, we can produce another one with Z coeffi-
cients. We can consider∏

σ∈Gal(β1,...,βn)

(σ(β1)eα1 + · · ·+ σ(βn)eαn)

instead. This expression is still 0 (one of its factors is zero), and upon ex-
panding, it has rational coefficients. The expression for the each coefficient is
a symmetric expression in the various σ, therefore fixed by Gal(β1, . . . , βn) and
hence rational. We can then multiply through to clear denominators. If we show
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that all the coefficients of this new expression are zero, it can only be because
the original βi were all zero (look at diagonal terms).

Second Simplification: We can take α1, . . . , αn to be a complete set of Galois
conjugates. More specifically, we can assume that our expression is of the form

β1e
αn0+1 +β1e

αn0+2 + · · ·+β1e
αn1 +β2e

αn1+1 + · · ·+βne
αnt−1+1 + · · ·+βne

αnt ,

where e.g. αn0+1, . . . , αn1 is a complete set of Galois conjugates. Why can we
do this? Take the original α1, . . . , αn to be roots of some big polynomial. Let
αn+1, . . . , αN be the other roots of this polynomial. Take the product∏

(β1e
αk1 + · · ·+ βne

αkn )

where αk1 , . . . , αkn are some choice of n of the {αi}Ni=1, and the product is
over all possible such choices. The original linear form is one of these, so this
product equals 0. Expanding the product, we get a sum of terms of the form
eh1α1+···+hnαn , and if we do not simplify the coefficients βn1

· · ·βnm , then the
h1αk1 + · · ·+hnαkn which correspond to a given string of βs form a complete set
of conjugates. Again, the only way that all of the coefficients of this expanded
product are identically zero is if the original coefficients were all identically zero.
This can be seen easily by estimating the size of the largest coefficient involved
in this operation. So we are free to make these two simplifications.

We want to work with algebraic integers, but the α1, . . . , αn are a priori
any algebraic numbers, so choose some large integer A which will clear all the
denominators of the αi. Then for every 1 ≤ j ≤ n we define

fj(x) =
Anp(x− α1)p · · · (x− αn)p

(x− αj)
.

This polynomial does not have Z coefficients but does have algebraic integer
coefficients. We define

Jj =

n∑
k=1

βkI(αk, fj),

where p is a rational prime large compared to every other constant in the proof.
The plan is to show that J1 · · · Jn ∈ Z and that J1 · · · Jn is divisible by

((p − 1)!)n but not by p!. Which implies |J1 · · · Jn| ≥ ((p − 1)!)n, but then we
also have |J1 · · · Jn| ≤ Cp by trivially estimating the integral defining I(u, f),
causing a contradiction and proving the theorem.

Folding the definition of I(u, f) into that of Jj , we find

Jj =

n∑
k=1

βk

eαk∑
l≥0

f
(l)
j (0)−

∑
l≥0

f
(l)
j (αk)

 = −
n∑
k=1

βk
∑
l≥0

f
(l)
j (αk).

The second equality follows from the assumption
∑
βke

αk = 0. Now we compute
the derivatives of fj . If j 6= k

f
(l)
j (αk) =

{
0 l ≤ p− 1

≡ 0 (mod p!) l ≥ p,
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and if j = k

f
(l)
j (αk) =


0 l ≤ p− 2

Anp(p− 1)!
∏
i(αk − αi)p l = p− 1

≡ 0 (mod p!) l ≥ p.

Thus we see that each Jj is an algebraic integer divisible by (p− 1)! but not
by p! (using the first simplification).

Now we want to show J1 · · · Jn ∈ Z. Using the second simplification above,

Jj = −
∑

0≤r≤t−1

βnr+1

nr+1∑
k=nr+1

∑
l≥0

f
(l)
j (αk).

The interior two sums is over a complete set of Galois conjugates αk, so is Galois-
invariant, hence in the ground field Q(αj). After taking the product J1 · · · Jn,
we have an expression which is again Galois-invariant, hence J1 · · · Jn ∈ Q.
We assumed that A was large enough to cancel all denominators, and the first
simplification says that the β are integers, hence J1 · · · Jn is a rational integer.
In fact, it is a rational integer divisible by ((p − 1)!)n but not by p!. We know
that I(u, f) ≤ Cdeg f in the f aspect, hence |J1 · · · Jn| ≤ C ′p for some other
constant C ′. But this contradicts our lower bound!

But this proof seems totally unmotivated. How might one think of it? Well,
if you want to prove that e is irrational, you can use the rapidly converging
power series and truncate to obtain a simple proof (see exercise from previous
lecture). Similarly, to show that ez is irrational for algebraic z, one can use the
power series

ez =

N∑
j=0

zj

j!
+ (very small).

This leads us to the idea of Padé approximations:
The idea is to find B(z) and A(z) so that B(z)ez−A(z) has many vanishing

terms. We’ll choose B(z) to be a polynomial of degree L, say, and A(z) to be
degree M . We can choose the A and B so that the first L + M terms vanish:
write out the coefficients for A and B as L+M unknowns. Then we get a system
of L+M equations in L+M unknowns, so there is a solution. Therefore, it’s
possible to pick coefficients so that the first L + M terms of B(z)ez − A(z)
vanish.

Does this set-up seem familiar? It’s exactly the same thing as our favorite
interpolating function:

I(z, f) =

∫ z

0

ez−tf(t) dt = ez
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(z)

but now we think of f as depending on z. We might let f(t) be something like
f(t) = tM (z − t)L. Then

∑
f (j)(0) and

∑
f (j)(z) play the part of B(z) and

A(z).
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Now we move on to Baker’s theorem. It is of fundamental importance in
transcendence theory. For example, we have as a consequence the following
result in diophantine approximation: If 0 6= p ∈ Z[x] is a polynomial of degree
n, and h = height(p) = max |coeffs|, then

|p(e)| ≥ c(n, ε)h−n−ε.

Theorem 8 (Baker’s theorem on Linear forms in Logarithms). Let α1, . . . , αn
be nonzero algebraic numbers. Assume that logα1, . . . , logαn are linearly inde-
pendent over Q. Then 1, logα1, . . . , logαn are linearly independent over Q.

Also, there is a quantitative version of this theorem, which we’ll do later.
Note also that the homogeneous version of this theorem, i.e. that logα1, . . . , logαn
are linearly independent over Q, is slightly easier to prove. Baker’s theorem gen-
eralizes the work of Gelfond and Schneider, who independently proved Hilbert’s
7th problem in 1934: If α is algebraic, and β is an algebraic irrational, then αβ is
transcendental. i.e. this is the case n = 2 of Baker’s theorem: if logα1 and logα2

are linearly independent over Q, then β1 logα1 + β2 logα2 6= 0, β1, β2 ∈ Q, not
both zero. Note also that in these problems you’re allowed to pick any branch
of the logarithm you like, so long as you (of course) stick to that one branch
you’ve picked throughout the problem.

Baker’s theorem has many beautiful Corollaries. For example, eπ = (−1)−i 6∈
Q, and

√
2
√

2 6∈ Q. More impressively,

Corollary 2. Any Q linear combination of logarithms of algebraic numbers is
zero or transcendental.

Proof. Suppose we have some α1, . . . , αn for which

β1 logα1 + · · ·+ βn logαn = −β0 ∈ Q.

Then if logα1, . . . , αn are linearly independent over Q then we’re done. Oth-
erwise, logαn ∈ span(logα1, . . . , logαn−1). The corollary then follows by an
induction argument on the dimension.

Exercise: finish the details of this proof.

Corollary 3. If β0, β1, . . . , βn, α1, . . . , αn are all not zero, then eβ0αβ1

1 , . . . , αβnn
is transcendental.

Proof. Exercise.

Corollary 4. If 1, β1, . . . , βn are linearly independent over Q, and αi 6= 1or 0,
then αβ1

1 · · ·αβnn 6∈ Q.

Proof. Exercise.

Corollary 5. eπα+β is transcendental for all α, β ∈ Q, not both zero. π+logα 6∈
Q for any 0 6= α ∈ Q.

Proof. Exercise.
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3 Baker’s Theorem, Part I

We take the rest of the week to prove Baker’s Theorem, one of the most impor-
tant theorems in Transcendence theory.

Theorem 9 (Baker’s Theorem). Let α1, . . . , αn be algebraic and logα1, . . . logαn
be linearly independent over Q. Then for any β0, . . . , βn ∈ Q not all zero
β0 + β1 logα1 + · · ·+ βn logαn 6= 0

The homogeneous form (i.e. that β1 logα1 + · · ·+ βn logαn 6= 0) is slightly
easier. Baker’s theorem is a generalization of

Theorem 10 (Gelford-Schneider). β1 logα1 + β2 logα2 6= 0, so that α2 6= αβ1

1 ,
β1 ∈ Q\Q, α1, α2 algebraic.

This was Hilbert’s seventh problem, which Hilbert thought would be solved
after Fermat’s last theorem and the Riemann Hypothesis.

Here’s the plan:

1. A proposition involving an auxiliary function with various magical prop-
erties (the construction of which is the hardest part).

2. Why this implies Baker’s theorem in the Homogeneous case

3. The construction of the auxiliary function for the case of Gelfond-Schneider

4. Return to the general case

Proof. We can assume without loss of generality that βn = −1 Why? All the βi,
i ≥ 1 can be zero, because then β0 is 0 also. So we can divide through and change

βn to −1. Thus, we can assume there is a number αn = eβ0αβ1

1 · · ·α
βn−1

n−1 ∈ Q,
and try to derive a contradiction.

Let h ∈ N be large. Let L = h2− 1
4n

Proposition 1. There exists a function

φ(z) =

L∑
k0,...,kn=0

p(k0, . . . , kn)zk0αk1z1 . . . αknzn

where p(k0, . . . , kn) are integers not all zero with size not too big. i.e. |p(k0, . . . , kn)| ≤
exp(h3) and such that φj = dj

dzj φ(z) and φj(0) ≤ exp(−h8n) for all 0 ≤ j ≤ h8n.

How many values of p() are there? (L+ 1)n+1 so something like h2n. So the
properties we want in such a function aren’t completely trivial.

Now we go to the homogeneous case. We construct a similar

φ(z) =

L∑
k1,...,kn=0

p(k1, . . . , kn)αk1z1 . . . αknzn
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with |p(k1, . . . , kn)| ≤ exp(h3) and φj(0)� exp(−h8n) for j ≤ h8n. So what is
this derivative?

φj(0) =

L∑
k1,...,kn

p(k1, . . . kn)(k1 logα1 + · · ·+ kn logαn)j .

So there are (L + 1)n − 1 possible distinct values for the (k1 logα1 + · · · +
kn logαn), which we call ψ1, . . . ψR:=(L+1)n−1. The distinctness follows from the
assumed linear independence over Q. We are going to show that the φj(0) are
very very small. We’ll think of the p(k1, . . . , kn) as variables with coefficients
ψi. So if we are to have these values very close to zero, we must have some
serious approximate over-determination in the linear system above described.
i.e. very small determinant. Actually, this is the Vandermonde determinant:

|det


1 ψ1 ψ2

1 . . . ψR−1
1

...
. . .

...

1 ψR · · · ψR−1
R

 | =
∏
j<k

|ψj − ψk|.

Now we do row operations on this determinant to make the first row φj(0).
To do this, multiply the i-th row by the p(k1, . . . , kn) which corresponds to
that ψi and add it to the first row. Call the p(k1, . . . , kn) corresponding to ψ1

p(l1, . . . , ln), say. Then the above determinant is

=
1

|p(l1, . . . , ln)|
|det



φ0(0) φ1(0) φ2(0) . . . φR−1(0)
. . .

. . .

1 ψi . . . ψR−1
i

. . .
. . .


|.

Then we expand this determinant along the top row, which as we previously
remarked, will be shown to be very small. We’ll show that each of the terms in
the top row is � exp(−h8n), and we already know that each of the ψi are of
size CL for some constant C. Then the above determinant is

� exp(−h8n)(Ln)!(CL)L
2n

,

where the factors come from the size of the terms in the first row, the number
of terms, and the size of each of the ψi terms, respectfully. Recall that we set
L = h2−1/4n, so actually we have the above determinant is

� exp

(
−h

8n

2

)
.
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But then we know that the original product for the Vandermonde determinant
must be extremely small. There are L2n factors in the Vandermonde determi-
nant, so take the L2n-th root. Thus for some j < k,

|ψj − ψk| ≤ exp

(
−h8n

L2n

)
.

Great.
Next we have the following Lemma, which we will use to drive this estimate

on the determinant to a contradiction.

Lemma 1. If k1, . . . , kl are not all zero, |k1|, . . . , |kl| ≤ L and α1, . . . , αn are
algebraic with logα1, . . . , logαn linearly independent over Q, then |k1 logα1 +
· · ·+ kn logαn| ≥ C−L for some constant C.

Proof. If |k1 logα1+· · ·+kn logαn| is small, then we can also say |αk11 · · ·αknn −1|
is small. Choose A ∈ N such that Aαj , Aα

−1
j are all algebraic integers. Then

AnL(αk11 · · ·αknn −1) is an algebraic integer. So it’s at least norm 1 if not 0. But
because we assumed linear independence over Q, it can only be 0 if α1 · · ·αn
is a root of unity. In this case, however, the lemma is trivially verified. So
N(AnL(αk11 · · ·αknn − 1)) ≥ 1. But it’s also ≤ BL|αk11 · · ·αknn − 1|.

i.e. algebraic integers are norm at least 1, so they can’t get very close
together without being the same. The lemma now finishes the proof because
|ψj − ψk| ≥ C−L, contradicting the bound just established.

Next we construct the auxiliary function in the n = 2 (Gelfond-Schneider)

case. We assume that α2 = αβ1

1 . Let h be large and let L = h2−1/8. We are
looking for p(k1, k2) to define

φ(z) =

L∑
k1,k2=0

p(k1, k2)αk1z1 αk2z2 .

We will take the p(k1, k2) ∈ Z, not all zero, and such that |p(k1, k2)| ≤ exp(h3),
and |φj(0)| � exp(−h16) for j ≤ h16. So in this setting we are essentially trying
to get h16 equations out of h4−1/4 variables. How this is accomplished is really
the magic of this proof. We have h4−1/4 variables. First we solve h3 equations,
then magically solve all the other equations approximately by “lifting”.

The first step is the choose |p(k1, k2)| ≤ exp(h3) such that φj(l) = 0 for all
0 ≤ j ≤ h2, and 1 ≤ l ≤ h. So that’s about h3 equations. Now we use the
arithmetic data of the αi.

φj(l) =

L∑
k1,k2=0

p(k1, k2)(k1 logα1 + k2 logα2)jαk1l1 αk2l2

= (logα1)j
L∑

k1,k2=0

p(k1, k2)(k1 + β1k2)jαk1l1 αk2l2
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Now this last bit (k1+β1k2)jαk1l1 αk2l2 can be further reduced. Because α1, α2, β1

are algebraic numbers, they satisfy polynomial relations. Thus large powers
of any of these algebraic numbers can be reduced to linear combinations of
smaller powers of them. In fact a linear combination of powers of α1, α2, β1

smaller than the degree of each. So (k1 + β1k2)jαk1l1 αk2l2 can be expressed as a
linear combination of βb11 , α

a1
1 , αa22 , where 0 < b1, a1, a2 ≤ d− 1, where d is the

maximum degree of α1, α2, β1. (N.B. this will be explained more clearly in the
next lecture). We then get

(k1 + β1k2)jαk1l1 αk2l2 =
∑

a1,a2,b1

αa11 αa22 βb11 u(j, k1, k2, a1, a2, b1)

for some coefficients u(j, k1, k2, a1, a2, b1) we get by applying the above described
process. We can then set φj(l) = 0 by solving d3 linear equations∑

p(k1, k2)u(j, k1, k2, a1, a2, b1) = 0.

This should make you happy because there are h4−1/4 choices for variables and
d3 (a constant) equations. Recall h can be chosen arbitrarily large.

Next we need to make φ(z) vanish at even more points. To do so, we will
use the the following lemma.

Lemma 2 (Thue-Siegel). Suppose uij, 1 ≤ i ≤M , 1 ≤ j ≤ N are integers with
|uij | ≤ U . Want to solve

N∑
j=1

uijxj = 0,

x1, . . . , xN ∈ Z, N > M . Then there is a nontrivial solution with |xj | ≤
(NU)

M
N−M .

Proof. Essentially, the Thue-Siegel lemma is a glorified version of the pigeon-
hole principle. Say 0 ≤ xj ≤ X. Then we have (X+1)N possibilities for the xj .

Consider the M -tuple {
∑N
j=1 uijxj}i=1,...,M . So there are (NUX)M possible

choices for this M -tuple in ZM . Then if (X + 1)N > (NUX)M there exists
by the PHP a nontrivial solution to the system of equations. So there exists a

solution with |xj | ≤ (NU)
M

N−M .

4 Baker’s Theorem, Part II

Recall that our goal was to prove Baker’s inhomogenous theorem. In that the-
orem we are given α1, . . . , αn algebraic numbers, and logα1, . . . , logαn linearly
independent over Q. And we want to show β0 + β1 logα1 + · · ·+ βn logαn 6= 0
unless all β0, . . . , βn = 0.

We also have the homogeneous version: β1 logα1 + · · ·+ βn logαn 6= 0, and
even easier, the Gelfond-Schneider result: β1 logα1 + β2 logα2 6= 0. All of these
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results follow from building some auxilliary function: assume there’s a relation

αn = eβ0α
β1

1 · · ·α
βn−1

n−1 . This assumption is in place throughout the rest of the

proof. Let h be a large integer, and L := h2−1/4n. Then there is a function

φ(z) =

L∑
k0,...,kn

p(k0, . . . , kn)zk00 αk1z1 · · ·αknzn

with the following properties:

1. p(k0, . . . , kn) ∈ Z

2. |p(k0, . . . , kn)| ≤ exp(h3)

3. φj(0)� exp(−h8n) for all j ≤ h8n

To sumarize what we did last time: we considered the homogeneous
version of this funciton

L∑
k1,...,kn

p(k1, . . . , kn)αk1z1 · · ·αknzn

and saw that computing a Vandermonde determinant led us to a contradiction.
The idea is that Vandermonde forces two of the k1 logα1 + · · · + kn logαn to
be close together. But, as they’re algebraic numbers, they can’t be too close
together, so in fact, they must actually be the same, and hence we get extra rela-
tions for free. Now focus on the Gelfond-Schneider case for simplicity. Suppose
α2 = αβ1

1 . The auxilliary funciton becomes

φ(z) =

L∑
k0,k1

p(k1, k2)αk1z1 αk2z2 .

Aside: There’s even a simpler version of this proof with α1 = 2, and α2 = 3
which will be presented in a subsequent lecture.

First step to find φ: Choose p(k1, k2) such that φj(l) = 0 for all j ≤ h2 and
all 1 ≤ l ≤ h ∈ Z. For this, we’ll need the

Lemma 3 (Thue-Siegel). Suppose we have M homogeneous linear equations in
N variables, with N > M ,

N∑
j=1

xjuij ;

j = 1, . . . ,M , |uij | ≤ U . Then there exists a nontrivial integer solution with

|xj | ≤ (2NU)
M

N−M .

Here ends the summary of Monday’s lecture.

We compute
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φj(l) =

L∑
k1,k2=0

p(k1, k2)(k1 logα1 + k2 logα2)jαk1l1 αk2l2

= (logα1)j
L∑

k1,k2=0

p(k1, k2)(k1 + k2β1)jαk1l1 αk2l2

where α1, α2, β1 are algebraic of degree at most d. We can express βjαk1l1 αk2l2

as a linear combination of terms of the form βb11 α
a1
1 αa22 . We might as well clear

demoninators to make φ(z) a combination of algebraic integers. So assume
without loss of generality that the αiare algebraic integers. So suppose αd1 =
A0 + A1α1 + · · · + Ad−1α

d−1
1 be the defining relation for α1. Let ht(α1) =

max1≤i≤d−1 |Ai|. Also, if we multiply again by α1, we get further relations like
αd+1

1 = A0α1 + A1 + · · · + Ad−1α
d
1, to which we can apply the relation for αd1

again. Thus we find that the coefficients of αd+1
1 are ≤ 2(ht(α1))2. In this way

I can control the size of the coefficients of any αj1.
Now for j ≤ h2 and l ≤ h, we want

Bh
2+2LH

L∑
k1,k2=0

p(k1, k2)(k1 + k2β1)jαk1l1 αk2l2 = 0

where we have chosen B so that all denominators are cleared. We expand

Bh
2+2LH(k1 + k2β1)jαk1l1 αk2l2 � (100L)h

2

CLh� exph3,

where the first term comes from the binomial coefficients, and the second from
the heights. The B factor can easily be absorbed into the other factors. Now
we want to apply the Thue-Siegel lemma. In terms of the statement of that
lemma we take N = (L + 1)2, and the uij to be (k1 + k2β1)jαk1l1 αk2l2 . The
xj will be the p(k1, k2). So U = exp(h3), and there are M = d3h3 equations.
Recall L = h2−1/8, so that N = h4−1/4. So by Thue-Siegel, we get a nontrivial

solution for the p(k1, k2) which is ≤ (2h4−1/4 exp(h3))
d3h3

h4−1/4−d3h3 ≤ exp(h3).
So, we’ve constructed a

φ(z) =
∑

p(k1, k2)αk1z1 αk2z2

with φj(l) = 0 for j ≤ h2, |p(k1, k2)| � exp(h3) and l ≤ h. This is still pretty
far off from the auxiliary function we promised at the beginning of the proof.
Baker’s idea is that we can get even more vanishing out of this function. We can
push the function to get φj(l) = 0 for j ≤ h2/2 and l ≤ h1+1/8n. i.e. Reduce
the order of vanishing but increase the number of distinct zeros. We have that
the complex function

φj(z)

((z − 1)(z − 2) · · · (z − h))h2/2

14



is holomorphic in the entire complex plane. Let R > 2h be some number to be
chosen later, and let R > r > h ∈ N. Then we apply the maximum modulus
principle:

φj(r)

((r − 1)(r − 2) · · · (r − h))h2/2
≤ max
|z|=R

|φj(z)|
|(z − 1) · · · (z − h)|h2/2

So we get the bound

|φj(r)| ≤ rh
3/2

(
R

2

)−h3/2

exp(h3 + Ch2 logL+ cRL)

where the first factor comes from the denominator of the LHS, the second from
the denominator of the RHS, and the third from three factors in each term of∑
p(k1, k2)(k1 logα1 + k2 logα2)αk1z1 αk2z2 . We now take R as to minimize this

bound, and find that R = h3

2CL ≈ h1+1/8. So taking r ≤ h1+1/16 is reasonable.
Hence we obtain

|φj(r)| � exp(−ch3 log h+ Ch3)

with |R/r| ≥ h1/16. So we get that φj(r) is very small, but why is it actually
zero? Consider now

B2Lr+jφj(r) = (logα1)jB2Lr+j
∑
k1+k2

p(k1, k2)(k1 + β1k2)jαk1r1 αk2r2 .

Omitting the first factor on the RHS, we have an algebraic integer (choosing B
large enough to cancel the denominators of α1, α2, β1). We can also say that
this algebraic integer lies in a field of degree at most d3. Furthermore, all of its
conjugates are ≤ exp(h3+cRL+Ch2 logL) ≤ exp(2h3), by the same calculation
as above. An algebraic integer has norm ≥ 1 if it is not zero. So if it is not zero,
|φj(r)| ≥ exp(−c′h3), using the fact that p(k1, k2) ∈ Z. But this contradicts
the bound we got from the maximum modulus principle! Thus these additional
φj(r) must actually be zero.

So what happens if we take j ≤ h2/4, l ≤ h1+2/16 and φj(l) = 0 and try to
do the same thing? We consider the function

φj(z)

((z − 1)(z − 2) · · · (z − bh1+1/16c))h2/4
,

which is holomorphic in the entire complex plane with h1+1/16 < r and R >
2h1+1/8. So by the same arguments as above,

|φj(r)| ≤ r
h2

4 h
1+1/16

(
R

2

)h2

4 h
1+1/16

exp(h3 + Ch2 logL+ cRL)

as before. The choice for R that optimizes this is then R = h2h1+1/16

CL =

h1+1/8+1/16, and we can take r ≤ h1+1/16+1/16.
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So observe that we get a constant increase in the admissible range of r by
1
16 every time we decrease the range of j by a factor of two. So, repeating this

process, we can take, say j ≤ h2

2256 and get φj(r) = 0 for r ≤ h16. We now want
to show that φj(0) is very small. So consider

φj(z)

((z − 1)(z − 2) · · · (z − h16))h2/2256 ,

which is entire. We want an estimate for |φ(z)| on the circle |z| = 1. So consider
a large circle of radius R > 2h16, then by the same maximum modulus trick as
above, we get that for z on |z| = 1

|φ(z)| ≤ (h16)
h2

2256
h16

(
R

2

)− h2

2256
h16

exp(Ch3 + cRL).

To minimize this, we take R = h18

2256CL ≈ h16+1/8. So we get that |φ(z)| �
exp(−h18). Now, by the Cauchy integral formula,

φj(0) =
j!

2πi

∫
|z|=1

φ(z)

zj+1
dz � j! exp(−h18).

If j ≤ h16 then φj(0) � exp(−h16). This finishes the construction of our
auxiliary function.

Thus, the Vandermonde calculation and Lemma 1 from Lecture 3 are valid,
and produce a contradiction, which proves the theorem.

Next time we will generalize this to the inhomogeneous case, and the case
of n variables instead of just n = 2. After that, we will show a simple proof for
α1 = 2 and α2 = 3.

5 Baker’s Theorem, Part III

Today we tackle the general case of Baker’s theorem. Let α1, . . . , αn be al-
gebraic numbers with logα1, . . . , logαn linearly independent over Q. Assume
β0, . . . , βn ∈ Q are not all zero, and by dividing through we can also assume
without loss of generality that βn = −1. So we have and will use the relation

αn = eβ0αβ1

1 · · ·α
βn−1

n−1 . The main additional difficulty is the construction of the
auxiliary function. We are looking for a function

φ(z) =

L∑
k0,...,kn=0

p(k0, . . . , kn)zk0αk1z1 αk2z2 · · ·αknzn

with p(k0, . . . , kn) ∈ Z, |p(k0, . . . , kn)| � exp(h3), and φj(0) � exp(−h8n) for
j ≤ h8n. We will deduce Baker’s inhomogeneous theorem from the existence
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of such a function, but first, let’s concentrate on the construction of such a
function.

We want to do the same trick from last time where we pull out a (logα1)j

and find an algebraic number. But we can’t do that here because there are many
different logαi factors. So we need to introduce a function of several variables,
which will allow us to do essentially the same thing. Let L = h2−1/4n. Here is
how to define the function:

Φ(z0, . . . , zn−1) =

L∑
k0,...,kn=0

p(k0, . . . , kn)zk00 eknβ0z0α
(k1+knβ1)z1
1 α

(k2+knβ2)z2
2 · · ·α(kn−1+knβn−1)zn−1

n−1 .

Now, when we take partial derivatives in the various variables, we still get
the algebraic property which we desire. Let φ(z) := Φ(z, . . . , z). Let

Φm0,...,mn−1
(z0, . . . , zn−1) :=

∂m0

∂zm0
0

∂m1

∂zm1
1

· · · ∂
mn−1

∂z
mn−1

n−1

Φ(z0, . . . , zn−1).

Let

φj(z) :=
∑

m0+···+mn−1=j

(
j

m0, . . . ,mn−1

)
Φm0,...,mn−1

(z, . . . , z).

So we’ll make this Φ by demanding that for all choices of m0 + · · ·+mn−1 ≤
h2, and for all l ≤ h we have Φm0,...,mn−1

(l, . . . , l) = 0. On first inspection,
this seems feasible, as we have h2n+1d2n equations to satisfy and Ln+1 total
variables.

Φm0,...,mn−1
(l, . . . , l) =

L∑
k0,...,kn=0

p(k0, . . . , kn)
∂m0

∂zm0
0

(zk00 eknβ0z0)|z0=l(k1+knβ1)m1

× α
(k1+knβ1)l
1 · · · (kn−1+knβn−1)mn−1α

(kn−1+knβn−1)l
n−1 (logα1)m1(logα2)m2 · · · (logαn−1)mn−1 .

So each summand in the above is (up to the p’s and the logα’s )

αk1l1 αk2l2 · · ·αknln q(k0, . . . , kn, β0, . . . , βn−1),

where we reduce using the relation αn = eβ0αβ1

1 · · ·α
βn−1

n−1 , and the q(· · · ) is some
polynomial. Now we can reduce this even further using the polynomial relations
which define each algebraic number involved. Thus we can express it in terms

of a polynomial combination of terms of the form αa11 , αa22 , . . . , αann βb00 · · ·β
bn−1

n−1

with 0 ≤ aj , bj ≤ d − 1. Finally, we also want to cancel denominators. The

m0, . . . ,mn ≤ h2, so the coefficients required will be of size Bh
2+nLh(CL)h

times an expression in terms of the heights of the αi, βi, which can be absorbed
into the B term. This whole thing is � exp(h3).
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Now we are in a position to apply the Thue-Siegel lemma. We have d2nh2n+1

equations, Ln+1 free variables and the size of the coefficients is� exp(h3). Thus
by the Thue-Siegel lemma, we have a nontrivial solution for the p(k0, . . . , kn)
with

|p(k0, . . . , kn)| ≤ (Ln+1 exp(h3))
d2nh2n+1

Ln+1−d2nh2n+1

� exp(h3)

So we have quite a bit of vanishing, but we need even more!

Extrapolation Step: If m0 + · · · + mn−1 ≤ h2

2 and r ≤ h1+1/8n then
Φm0,...,mn−1

(r, . . . , r) = 0. Take

f(z) := Φm0,...,mn−1
(z, . . . , z),

with j ≤ h2/2. And also

fj(z) =
∑

j0+···+jn−1=j

(
j

j0, . . . , jn−1

)
Φm0+j0,...,mn−1+jn−1(z, . . . , z)

so fj(z) = 0 for j ≤ h2/2 and z = l ≤ h. Now consider

f(z)

((z − 1) · · · (z − h))
h2

2

,

which is an entire function. Choose R > 2h, and r > h. We apply the max-
imum modulus principle just like last week’s lecture. So we get that |f(r)| ≤
rh

3/2
(
R
2

)−h3/2
max|z|=R |f(z)| = rh

3/2
(
R
2

)−h3/2
exp(2h3 + CLR). If we opti-

mize, we find that it’s best to take R ≈ h3

CL ≈ h1+1/4n, so if r ≤ h1+1/8n, we
conclude that

|fj(r)| ≤ exp(−ch3 log h).

(N.B. The use of the maximum modulus theorem above is not essential to
the proof. It is but a crutch. We’ll do this proof yet again in yet another
way which avoids the use of the maximum modulus principle. Probably next
lecture.)

As we already discussed, f(r) suitably multiplied is an algebraic integer,
all of whose conjugates are exp(h3), and degree d2n. But then, as in previous
lectures, by computing norms we find that f(r) = 0. Thus we’ve proven the
extrapolation step.

By iterating the extrapolation step, we can, for any s ∈ N, take m0 + · · ·+
mn−1 ≤ h2

2s , and r ≤ h1+s/8n. In particular, taking s = (8n)2,we get a Φ such

that for any m0 + · · ·+mn−1 ≤ h2

2(8n)2
, and r ≤ h1+8n

Φm0,...,mn−1
(r, . . . , r) = 0.

Putting φ(z) = Φ(z, . . . , z), we get φj(r) = 0 for j ≤ h2

2(8n)2
and r ≤ h1+8n.

18



Now we finish the construction of the auxiliary function using the Cauchy
integral formula in similar fashion to the previous lecture. Consider

φ(z)

((z − 1) · · · (z − h1+8n))
h2

2(8n)2

.

So if |z| ≤ 1 and some R > 2h1+8n then

|φ(z)| ≤ ((h1+8n)!)h
2

(
R

2

)−h3+8n

(··· )

exp(Ch3 + cLR).

Then optimizing, we set R = h3+8n

CL . So then

φj(0) =
j!

2πi

∫
|z|=1

φ(z)

zj+1
dz � j! exp(−c′h3+8n log h),

for j ≤ h8n, φj(0)� exp(−h3+8n).
Thus we’ve finished the construction of the auxiliary function. We still need

to deduce Baker’s theorem, but nothing much changes there from the previous
instances of the proof, so we’ll do it quickly next time.

So what are some of the key points of the proof?

1. The norm of an algebraic integer is 0 or≥ 1. If |α| is tiny and its conjugates
|σ(α)| are not huge, then the algebraic integer must be 0.

2. Solving linear equations (Thue-Siegel)

3. Extrapolation argument

Jeff Lagarias’ comment: Where do we use the fact that Φ is a multivariable
function? It is in the extrapolation step that we crucially use that the partial
derivatives go in many directions instead of just along the diagonal. The multi-
variate nature of Φ seems to be essential, even though we don’t use any complex
analysis of several variables or anything like that.

6 Baker Concluded; Powers of 2 and 3

Last time we wrote down the auxiliary function for the inhomogeneous Baker’s
theorem:

Φ(z0, . . . , zn−1) =

L∑
k0,...,kn=0

p(k0, . . . , kn)zkn0 eknβ0z0α
(k1+knβ1)z1
1 · · ·α(kn−1+knβn−1)zn−1

n−1

and also that

φ(z) = Φ(z, z, . . . , z) =
∑

k0,...,kn=0

p(k0, . . . , kn)zk0αk1z1 · · ·αknzn
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with φj(0) � exp(−h8n) for all j ≤ h8n. We now actually deduce Baker’s
theorem. We first go back to the homogeneous case.

φ(z) =
∑

k0,...,kn=0

p(k0, . . . , kn)αk1z1 · · ·αknzn ;

φj(0) =
∑

p(k0, . . . , kn)

(
n∑
i=1

ki logαi

)j
.

Let ψ1, . . . , ψ(L+1)n be the values of
∑
ki logαi. Then we have

(L+1)n∑
r=1

p(r)ψjr � exp(−h8n)

for r ≤ h8n. One of these coefficients is nonzero. Say p(r̃). Choose a polynomial
W with W (ψr̃) = 1 and W (ψr) = 0 for r 6= r̃. Write the coefficients of W :

W (z) =

(L+1)n−1∑
j=0

wjz
j .

Then

p(r̃) =

(L+1)n∑
r=1

p(r)W (ψr)

=

(L+1)n−1∑
j=0

wj

(L+1)n∑
r=1

p(r)ψjr

=

(L+1)n−1∑
j=0

wjφj(0)

We know all the φj(0) are tiny. If the wj are not too big, then we’ll be done,
because p(r̃) ≥ 1. What would be a good definition for W? We can take

W (z) =
∏
r 6=r̃

(z − ψr)
(ψr̃ − ψr)

.

Recall that |ψr − ψs| � exp(−CL) to estimate the coefficients wj .

Now we go back to the Inhomogeneous case. Assume that ψ1, . . . ψ(L+1)n

are distinct values of
∑
ki logαi. Then

φ(z) =

L∑
k0=0

(L+1)n∑
r=1

p(k0, r)z
k0eψrz.
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We know that we can rig up φj(0) as an (L+ 1)n+1 × (L+ 1)n+1 determinant

which is nonsingular and all entries small. Pick out a k̃0, r̃ with p(k̃0, r̃) 6= 0.
Find W a polynomial such that Wj(ψr) = 0 if r 6= r̃ and j ≤ L. And

Wj(ψr̃) =

{
0 if j 6= k̃0

1 if j = k̃0

The subscript j means derivative, as it is used with φ. LetW (z) =
∑(L+1)n

j=1 wjz
j .

Computing the derivatives by hand we have Wk0(ψr) =
∑
j wjj(j − 1) · · · (j −

k0 + 1)ψj−k0r . As in the previous calculation, we have

p(k̃0, r̃) =
∑
k,r

p(k, r)Wk0(ψr)

=

(L+1)n−1∑
j=0

wj
∑
k0,r

p(k0, r)j(j − 1) · · · (j − k0 + 1)ψj−k0r .

But

j(j − 1) · · · (j − k0 + 1)ψj−k0r =
dj

dzj
(zk0eψrz)|z=0.

So we have
p(k̃0, r̃) =

∑
j

wjφj(0).

Now, we are done by the same principle as before. Let’s write down exactly
what W is.

W (z) =
∏
r 6=r̃

(
z − ψr
ψr̃ − ψr

)L+1
(z − ψr̃)k0

k0!
(1+a1(z−ψr̃)+a2(z−ψr̃)2+· · ·+aL+1−k0(z−ψr̃)L+1−k0),

then solve for the a1, a2, . . .. That the ψr are well-spaced implies that the wj
are not too huge. In fact of size about(

cmax |ψr|
minr 6=s |ψr − ψs|

)Ln+1

.

But this is like size exp(h2n), which loses to exp(−h8n). So we’re done.

Plan: We’ll go through this proof again and try to prove a quantitative lower
bound. Many wonderful theorems follow from effective estimates which we get
out of Baker’s theorem, as we shall see. Most other theorems in transcendence
theory are ineffective.

Here’s the problem: Let S = {p1, . . . , ps}. The the S-integers are pα1
1 , . . . , pαss .

Then put these in order: n1 < n2 < . . .. The question is, how close can ni and
ni+1 get? Up to X there are about ∼ C(logX)s numbers. To answer this
question, there is the following
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Theorem 11 (Tijdeman). There exists a constant C = C(S) such that

ni+1 − ni �
ni

(log ni)C(S)
,

where the suppressed constants are effective.

Corollary 6.

|2m − 3n| � 2m

mC
.

Effectively.

We’ll prove this corollary, but not Tijdeman’s theorem. In fact, we won’t
even prove the full strength of the corollary. We hope to show

|2m − 3n| ≥ 2m

exp((logm)C)

for some 0 < C < 1. We do it by taking Gelfond-Schneider for α1 = 2, α2 = 3.
We knew log 2

log 3 was irrational, now we know it’s transcendental. Suppose that
log 2
log 3 = U

V +δ. Goal: bound δ. This is the same as 2V = 3U +δV ; so |2V −3U | �
V δ3U . Assume δ is very small. (We’ll eventually get better than δ ≥ 3−U/V ).

Plan: Examine proof of Gelfond-Schneider.

φ(z) =

L∑
k1,k2=0

p(k1, k2)2k1z3k2z.

We want to construct something of this type with various properties. (Eventu-
ally, we’ll take L to be a tiny power of logU or log V , so L is small compared
to the rational approximation).

φj(z) =

L∑
k1,k2=0

p(k1, k2)(k1 log 2 + k2 log 3)j2k1z3k2z

= (log 3)j
L∑

k1,k2=0

p(k1, k2)

(
k1

(
U

V
+ δ

)
+ k2

)
2k1z3k2z

Let

φ̃(z, j) = (log 3)j
L∑

k1,k2=0

p(k1, k2)

(
k1U

V
+ k2

)j
2k1z3k2z.

φ̃(z, j) is (log 3)j

V j times an integer for z ∈ N. Suppose |p(k1, k2)| ≤ P . Then

φj(z) = φ̃(z, j) +O(δ(2L)j+36L|z|P ),

where in the error term, the 2j comes from (log 3)j , the Lj+1 comes from the
binomial coefficients, and the extra L2 comes from the L2 terms. We want to
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solve φ̃(z, j) = 0 for 1 ≤ z = r ≤ R0, and j ≤ J0. We’ll take R0 the be a bit
less than h2, say L1−2α, and J0 to be about L1+α. The number of equations is
then R0J0 and the number of free variables is L2. The coefficients of the R0J0

equations are ≤ (L(U + V ))j6LR0 . Thus we can use the Thue-Siegel lemma.
We get a nontrivial solution with

P ≤
(
3L2(L(U + V ))J6LR0

) J0R0
L2−J0R0 .

7 Effective Baker for log 2 and log 3

We continue the proof from last time about powers of 2 and 3. Let’s review
briefly what happened last time. We let

log 2

log 3
=
U

V
+ δ,

with δ very small. This is equivalent to

2V = 3U+δV = 3U +O(δV 3U ).

Tijdeman’s theorem (which is a consequence of effective estimates in Baker’s
theorem, and which we won’t prove) would give |δ| ≥ V −c for some constant c.
We will prove

Theorem 12.
δ � exp(−cκ(log V )κ)

for any κ > 2.

Tijdeman’s theorem would give the above as a corollary with κ = 1. So then
we got started:

φ(z) =

L∑
k1,k2=0

p(k1, k2)2k1z3k2z

We’ll let L be a power of log V , and that power will be > 1. Next compute the
derivatives

φj(z) =

L∑
k1,k2

p(k1, k2)(k1 log 2 + k2 log 3)j2k1z3k2z.

Assume that |p(k1, k2)| ≤ P . We’ll establish a bound for P later. We have
k1 log 2 + k2 log 3 = (log 3)(k1(UV + δ) + k2). Let

φ(z, j) = (log 3)j
∑
k1,k2

p(k1, k2)(
k1U

V
+ k2)j2k1z3k2z

so that
φj(z) = φ(z, j) +O(δP6L|z|(2L)j+2).
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Here ends the summary of the previous lecture.

The algebraic input to this demonstration is via this φ(z, j). Indeed, if z ∈ N,

then φ(z, j) = (integer)
(

log 3
V

)j
. Now, the construction of such a function is in

terms of integers, so we start as usual by Thue-Siegel. To make φ(z, j) = 0 for
all j ≤ J0, z = r ≤ R0, we must have J0R0 ≤ L2. Later, we’ll take J0 = L1+α,
and R0 = L1−2α. We’ll take α very small, eventually like κ− 2.

Now we figure out the quantities we’ll need for Thue-Siegel. We have k1U
V +

k2 ≈ 2LV , so that the size of the coefficients is(
k1U

V
+ k2

)J0
6LR0 .

The number of variables involved is L2, so Thue-Siegel implies that there is a
nontrivial solution for the p(k1, k2) of size

≤
(
(2LV )J06LR0

) (1.001)J0R0
L2 = exp(3

J2
0R0

L2
log V + 2

J0R
2
0

L
)

so that we take P := exp(3L log V + 2
J0R

2
0

L ) = exp(3L log V + 2L2−3α).
Now we move on to the extrapolation step. j ≤ J0, r ≤ R0, so that we have

(forgetting the +2’s etc...)

φj(z) = O(δP6LR0(2L)J0).

Now we extrapolate to bound φj(r) with j ≤ J1, r ≤ R1 = R0L
α/2 =

L1−2α+α/2. Recall that the extrapolation step was the key point in the proof
of Baker’s theorem! Before, we used the maximum modulus principle, but we
can’t use that here because we don’t have that something actually equals zero,
but is only very small. But we can get around this. Define as before

φj(z)

((z − 1) · · · (z −R0))J0/2
,

with r > R, R > 2r > 2R0. We’ll also perform the same integration

1

2πi

∫
|z|=R

φj(z)

((z − 1) · · · (z −R0))J0/2
dz

(z − r)

but we no longer know that the integrand is entire. If it were so, this would
have been the Cauchy integral formula. We estimate this integral in two different
ways, and compare the results.

First: Bound the integral trivially along the circle. Each factor in the de-
nominator is at least (R/2)−R0J0/2, and the numerator will be max|z|=R |φj(z)|,
so that the whole integral is

�
(
R

2

)−R0J0
2

P (2L)
J0
2 6LR.
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Choose R � R0J0/L = Lα/2R1.
Second:

φj(r)

((r − 1) · · · (r −R0))J0/2
+

∑
1≤k≤R0

Resk=z

(
φj(z)

((z − 1) · · · (z −R0))J0/2(z − r)

)
This residue calculation might look horrible to you, but it’s really not as bad
as it seems, and we have to do it. The worst case will be when z = R0/2, and
using the estimate R0! ≈ 10J0/2(R0/2)!, I claim that what you get is at most

� (10J0)
J0
2

(R0!)
J0
2

δP exp(2LR0 + J0 logL)

� δP exp(2LR0 + 2J0 log J0 −
R0J0

2
log

R0

2
).

So we have that

|φj(r)| � (R1)
R0J0

2 ((R/2)−
R0J0

2 P (2L)
J0
2 6LR + δP )

At this point, we don’t know anything about this δP term. Further simplifying:

� P (2L)
J0
2 6LR exp(−R0J0

3
logα/2 L) + δP exp(

R0J0

2
logR1).

Now, at this point, if the second term is large, then δ must be large, but then
we’d be done. But on the other hand, the first term is smaller than anything.

What is the analogue of the norm step? φ(z, j) is small, but by integrality
properties, it will turn out to actually be zero. Then we will need to extrapolate.

If z ∈ N, then φ(z, j) = (integer)
(

log 3
V

)j
. So if our bound for this is ≤ V −j ,

then in fact φ(z, j) = 0. It suffices to show the following

1. δ � exp(−J0 log V − R0J0 logL). If this is false, then we’d be done,
because we already have a lower bound for δ.

2. From the “smaller than anything” term above, it suffices to show that
αR0 logL� log V .

So if these are satisfied, we use that we know

φj(r) = O(δP6Lr(2L)j)

for r ≤ R1, j ≤ J1 to go to j ≤ J1/2 = J2 and r ≤ R2 = R1L
α/2. So we can

run through the same argument and get the same thing at the last step. This is
possible if δ ≤ exp(−J0 log V − R1J1 logR2) and αR0 logL > log V . Do this k
times, assuming it’s possible to do so. If it’s not possible, it’s for a good reason,
because δ is too big, and we stop. So at the end we have

φj(r) = O(δP6LRk(2L)Jk)
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for j ≤ Jk = J0
2k

and r ≤ Rk = R0L
kα/2. Deduce φj(0) is small for many values

of j.
The next step is to estimate φ(w) for |w| = 1/2. Then

φj(0) =
j!

2πi

∫
|w|=1/2

φ(w)

wj+1
dw.

Consider now

1

2πi

∫
|z|=R

φ(z)

((z − 1) · · · (z −Rk))Jk
dw

(z − w)

then bound it in two different ways, as before.
What you get if you do this:

φ(w)� P6LR
(

2Rk
R

)RkJk
+ δ exp(2L log V +RkJk logR).

Now we choose R. A non-optimal but sufficient choice is R = RkL
α/2. Thus we

get

� P exp(−αRkJk
5

logL) + δ exp(2L log V +RkJk logRk+1)).

And as a consequence

φj(0)� jj
(
P exp(−RkJk

5
logL) + δ exp(2L log V +RkJk logRk+1)

)
.

Great. Now, what was it that we wanted? Recall

φj(0) =

L∑
k1,k2=0

p(k1, k2)(k1 log 2 + k2 log 3)j .

Let ψ1, . . . , ψ(L+1)2 be the distinct values of (k1 log 2 + k2 log 3).

φj(0) =

(L+1)2∑
r=1

p(r)ψjr

so if this is small, there is some ψr−ψs is very small. So we want some estimate
for all j ≤ (L+ 1)2 + 1. We write down the Lagrange interpolation formula in
the homogenous case. First of all there is some r̃ so that p(r̃) 6= 0, so that we
take

W (z) :=
∏
r 6=r̃

(z − ψr)
(ψr̃ − ψr)

=

(L+1)2−1∑
j=0

wjz
j .

Then

p(r̃) =
∑

p(r)W (ψr) =

(L+1)2−1∑
j=0

wjφj(0),
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so we want to show that the wj are not too big to finish. We want to show the
denominators are well-spaced to bound the coefficients. We use the stupid but
sufficient bound |a log 2 + b log 3| ≥ 1/2a to get the denominator in

wj �
(2L)L

2

2L2 � exp(3L2 logL).

We want that for j ≤ (L+ 1)2, φj(0)� exp(−4L2 logL). So if

φj(0)� P exp(−αRkJk
5

logL)+δ exp(2L log V+RkJk logRk+1))� exp(−10L2 logL),

say, then we get a contradiction. Assume that δ � exp(−106L2+α logL) to
get this contradiction. The we can take RkJk = L2+α, and L1−2α > log V or
equivalently L > (log V )1+3α to get the bound and the contradiction. The false
assumption was that δ � exp(cL2+α logL), so then δ � exp(−c(log V )2+α),
and we’re done.

So, we’ve now done about the first 20 pages in Baker’s book. It’s very
dense. Next time we’ll do some applications of this effective result. e.g. the
class number one problem.

8 Applications: Class Number One

So proving the theorem about separation of powers of 2 and 3 wasn’t that easy
after all, but we did it. We’ve proved

|2V − 3U | �κ
2V

exp((log V )κ)
,

for any κ > 2. Now, you can believe that we can do this in general for
many bases. The corresponding bound for linear forms in logarithms is as
follows: Let βi ∈ Q, and logα1, . . . , logαn be linearly independent over Q. Let
α1, . . . , αn, β1, . . . , βn all have degree ≤ d. Let ht(β0), . . . ,ht(βn) ≤ B, and
ht(α0), . . . ,ht(αn) ≤ A. Then

|β0 + β1 logα1 + · · ·+ βn logαn| � exp(−C(logB)κ),

where κ > n + 1, and C = C(κ, n, d,A). In the homogeneous case, we get
better, κ > n. This is the main result from Baker’s landmark 1968 paper in
Mathematika.

But this isn’t the best possible result. A better result was proven by Feld-
man, in which we are allowed to take κ = 1, obtaining a bound like � B−C ,
with C = C1(logA)k1 . We can take, k1 = n, say. Even from here, various
refinements and improvements are possible. The state of the art is contained in
a paper by Baker and Wristholz which appears in Crelle’s Journal sometime in
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the 90s. Morally, Feldman’s result is some sort of effective power savings over
Lioville’s theorem. From the same viewpoint, Baker’s theorem would have given

1

qd
exp((log q)1/k).

This is not as good as Roth’s theorem, but goes beyond Lioville, and unlike
most results in this field, is effective, which can be used to great consequence.

So there are lot of applications of these results. The first one we’ll do is the
class number one problem. Class number one is a very old problem, going all
the way back to Gauss. It asks one to compute all immaginary quadratic fields
with class number one: −1,−3, . . . ,−163. There are 9 of them in all. The first
result in the direction of this problem was due to Heilbronn.

Theorem 13 (Heilbronn). h(−d)→∞ as d→∞

The proof is famous for splitting into two cases, first assuming that GRH is
true, which is the easier case, and secondly, assuming GRH is false. It uses a
purported exceptional zero L(ρ, χ) = 0 and controls everything else in terms of
this zero. But of course Heilbronn’s result is completely ineffective because we
can’t find such a zero.

Next we have

Theorem 14 (Landau-Siegel). h(−d) ≥ C(ε)d1/2−ε

But C(ε) above is completely ineffective. None of these results rule out the
10th possible imaginary quadratic field with class number one.

Heegner in 1952 solved class number one, but his work was ignored for
some time. But then Stark solved class number one in 1968 using techniques
from diophantine equations. Later Stark filled in the unproven statements in
Heegner’s proof and showed that it, in fact, was correct. At the same time,
Baker also proved class number one, using a method of Gelfond and Linnik
from 1949. Gelfond and Linnik actually got extremely close to to proving class
number one but got unlucky. With one additional trick, their proof would work
to prove class number one using Gelfond and Schneider’s 1934 transcendence
result. They thought they needed linear independence of three logarithms, but
actually only two would have been sufficient.

Jeff Lagarias’ comment: Actually, to prove class number one, you need the
work of both Baker and Stark. Stark proved that there was no 10th field between
-163 and a very very large but finite number, and Baker proved that there was
no imaginary quadratic field with class number one and discriminant very very
large.

In 1971 Baker and Stark proved that there were no class number two fields
with discriminant larger than 101000, or some number like that. We won’t prove
this. Baker’s work does not seem to prove the class number problem effectively
in general, but this is known due to work of Goldfeld, and Gross-Zagier.

We now begin the proof of the class number one problem, i.e. that there is
an effective upper bound to the discriminant of a field with class number one.
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Claim 4. Suppose Q(
√
−d) = 1. Then if p ≤ d+1

4 , and χ =
(−d
·
)

is primitive,

then χ(p) = −1, which is the same as saying that x2 +x+ d+1
4 takes only prime

values in 0 ≤ x ≤ d+1
4 .

Proof. Suppose not Then (p) = pp. Then we have

N(p) = p = N

(
x+ y

√
−d

2

)
=
x2 + dy2

4
,

so if not zero, p ≥ d+1
4 . But we assumed otherwise. Contradiction.

Proof (Class Number One). Let K = Q(
√
−d).

ζK(s) = ζ(s)L(s, χ−d) =
∏
p

(
1− 1

ps

)−1(
1− χ−d(p)

ps

)−1

= ζ(2s)
∏

p> d+1
4

1 + 1
ps(

1− χ−d(p)
ps

) .
But we really don’t want to work with a pole, so instead, let’s take ψ mod q to
be a real quadratic character, e.g. the one associated to the real quadratic field
Q(
√

21). Then we have

L(s, ψ)L(s, ψχ−d)

=
∏
p

(
1− ψ(p)

ps

)−1(
1− ψ(p)χ−d(p)

ps

)−1

= ζ(2s)
∏
p|q

(
1− 1

p2s

)
+
∑

n> d+1
4

a(n)

ns

for some choice of a(n) obeying a bound like a(n) ≤ d(n). Now, compute using
the left hand side. Take the completed L-function:

Λ(s) =
( q
π

)s/2
Γ(s/2)L(s, ψ)

(
dq

π

)s/2
Γ

(
s+ 1

2

)
L(s, ψχ−d).

The nice feature of having one odd and one even character is the form of the
gamma factors which appear here. We can use the duplication formula! So this

= (2
√
π)

(
q2d

4π2

)s/2
Γ(s)L(s, ψ)L(s, ψχ−d) = Λ(1− s).

The idea is to get a nice formula for Λ(1) with extreme precision. Let c > 1.
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Then

1

2πi

∫
(c)

Λ(s)

(
1

s− 1
+

1

s

)
ds

= Λ(1) + Λ(0) +
1

2πi

∫
(1−c)

Λ(s)

(
1

s− 1
+

1

s

)
ds

= 2Λ(1) +
1

2πi

∫
(1−c)

Λ(1− s)
(

1

s− 1
+

1

s

)
ds

= 2Λ(1)− 1

2πi

∫
(c)

Λ(w)

(
1

1− w
+

1

−w

)
(−dw)

Which gives

Λ(1) =
1

2πi

∫
(c)

Λ(s)
2s− 1

s(s− 1)
ds

=
2
√
π

2πi

∫
(c)

(
q
√
d

2π

)s
Γ(s)

ζ(2s)
∏
p|q

(
1− 1

p2s

)
+
∑

n> d+1
4

a(n)

ns

 2s− 1

s(s− 1)
ds.

Now, I claim that the term in the above coming from the dirichlet series
makes an extremely small contribution. Pulling out this term

∑
n> d+1

4

a(n)
1

2πi

∫
(c)

Γ(s)
2s− 1

s(s− 1)

(
q
√
d

2πn

)s
ds,

we shift the contour to get an estimate on it’s size. One of the factors looks like√
d
c

and Γ(s) looks like
(
c
e

)c
by Stirling’s formula, so we choose c to balance

these. The minimum of Γ(c)ξc is at about ξ = c, so that the above is �
exp(−C 2πn

q
√
d
), where the C only comes from adjusting for the 2s − 1/s(s − 1)

factor. Because our range of summation is over n > (d+ 1)/4, this whole term
is actually exp(−a

√
d/q) for some a > 0. So it’s not even a good estimate in

the d aspect, it’s an extremely good estimate!
Now, the main term is

2
√
π

2πi

∫
(c)

(
q
√
d

2π

)s
Γ(s)ζ(2s)

∏
p|q

(
1− 1

p2s

)(
2s− 1

s(s− 1)

)
ds.

Move the contour to the left, to −c. How far? Enough to balance the size of the

two terms
(
q
√
d

2π

)s
and Γ(s)ζ(2s). Again, we pick up an extremely small error

term, the main term coming from the residues. So, the main term above is

Residues +O(exp

(
−a
√
d

q

)
).
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So what are these residues? There is no pole at 2s = 1 because it is canceled
by a zero. There is a pole at s = 1, whose residue we must account for. There
is also a possible double pole at s = 0 coming from Γ(s)/s. But there are zeros
at s = 0 coming from ∏

p|q

(
1− 1

p2s

)
,

and if q has at least two distinct prime factors, then we have a double zero, and
hence no pole at zero!

So taking the residue at s = 1, we have found that

Λ(1) = 2
√
π
q
√
d

2π
ζ(2)

∏
p|q

(
1− 1

p2

)
+O(exp

(
−a
√
d

q

)
)

= 2
√
π
q
√
d

2π
L(1, ψ)L(1, ψχ−d),

by which we obtain

L(1, ψ)L(1, ψχ−d) = ζ(2)
∏
p|q

(
1− 1

p2

)
+O(exp

(
−a
√
d

q

)
).

Now we’re really close to finished.

L(1, ψ) =
log εqh(q)
√
q

; L(1, ψχ−d) =
h(−dq)π√

qd

so that

h(q)h(−qd) log εq

q
√
d

=
π

6

∏
p|q

(
1− 1

p2

)
+O(exp

(
−a
√
d

q

)
)

and

6h(q)h(−qd)q log εq = π
√
d
∏
p|q

(p2 − 1) +O(exp

(
−a
√
d

q

)
).

π = −i log(−1),

so this is a contradiction to Baker’s theorem, which gives a bound of exp(−(log d)3).
So d is in fact bounded.

This proof is very special to the case of class number one. Let’s look at
what happens for class number two. h(−d) = 2. Genus theory says that the
number of times which 2 divides h(−d) depends only on the number of prime
factors of d. Let d = p1q1, with p1 ≡ 1 (mod 4), and q1 ≡ 3 (mod 4). Let χ be
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a character mod d given by the Legendre symbol. We still have that all small
primes p < d+1

4 are inert, except for p1 and q1 which are ramified. Then

L(s, ψ)L(s, ψχ) = ζ(2s)
∏
p|q

(
1− 1

p2s

)1−
ψ(p1)

(
p1
q1

)
ps1

−11−
ψ(q1)

(
q1
p1

)
qs1

−1

.

Now, before, we had
(
q
√
d

2π

)−s
, but now we have both p1 and q1, with p1q1 ≈ d,

with one of these small and one large with respect to
√
d. If p1 and q1 are far

apart, we can make the same argument. The hard case is p1 ≈ q1 ≈
√
d. Then

we have error of exp(−
√
d/p), and this destroys our whole argument. So instead

we now take
L(s, ψχp1)L(s, ψχp2) + L(s, ψ)L(s, ψχ)

and things will cancel out in a nice way to make things work. But we’ll talk
about this next time.

9 Applications: Class Number Two, a Putnam
Problem, the Unit Equation

Another way to think about the proof of class number one which generalizes
more easily to higher class number problems is via Eisenstein series. Consider
the series

E∗(z, s) = ζ(2s)E(z, s) =
∑

(c,d)6=(0,0)

ys

|cz + d|2s
,

where
E(z, s) =

∑
γ∈Γ∞\SL2(Z)

(Imγz)s.

Let Q−D denote the set of positive definite integral binary quadratic forms
of discriminant −D. Let Q−D/Γ denote the set of equivalence classes of such
quadratic forms under the usual change of basis action. We define h(−D) =
|Q−D/Γ|. To each such equivalence class there is associated a unique point

z = −b+
√
−D

2a ∈ Γ\H called the Heegner point of discriminant −D. We denote
the set of Heegner points of discriminant −D as Λ−D. Then if [a, b, c] is a
quadratic form corresponding to the Heegner point z0, then

E∗(z0, s) =

(√
D

2

)s ∑
(x,y) 6=(0,0)

1

(ax2 + bxy + cy2)s
=

(√
D

2

)s ∞∑
n=1

r[a,b,c](n)

ns
,

where rQ(n) is the representation number of n by the quadratic form Q ∈ Q−D.
Observe that
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∑
Q∈Q−D

rQ(n)

|Aut(Q)|
=
∑
k|n

(
−D
k

)
,

whence

∑
z∈Λ−D

E∗(z, s)

|Aut(Qz)|
=

(√
D

2

)s ∞∑
n=1

∑
k|n

(
−D
k

)
n−s =

(√
D

2

)s
ζ(s)L(s, χ−D) =

(√
D

2

)s
ζQ(−D)(s).

Again, we don’t want to work with the pole here, but that’s okay, just as
in last week’s lecture, we can twist by a character to remove it. This costs
us a twist in the Eisenstein series by the same character, which will raise the
level. But it does so by a bounded and controllable amount, so such a twist is
pretty benign. We will again like to get an exponentially good approximation
to L(1, ψ)L(1, ψχ−D), and derive a contradiction with Baker’s theorem. To get
the approximation, we look at the Fourier expansion of the Eisenstein series.
E∗(z, s) has a Fourier expansion of the form

E∗(z, s) = (const) +
∑
n6=0

(· · · )e(nx)Ws(yn)

Where Ws(·) is some sort of exponentially decreasing Bessel function which
depends on s. If y is sufficiently large, the exponential decay of Ws kicks in
and the series drops off exponentially fast in n. If we assume that h(−D) = 1,
then we only have one Eisenstein series to deal with, and we know that the one
Heegner point comes from the quadratic form x2 + x+ d+1

4 , hence a = 1 so we

know that the imaginary part of the Heegner point is
√
D/2, which is sufficiently

large to take advantage of the exponential decay of Ws. So truncating the
Fourier expansion, we get an exponentially good approximation to the central
value, which leads to a contradiction with Baker’s theorem, as last time, which
implies that D must be bounded.

Now, what happens to this method when we try to do class number two?
We instead get two Heegner points. If both of these points are high in the
cusp, the above method works. However, this need not be so. The best general

bound on a we have is a ≤
√
d√
3
, which just says that the Heegner point lies in

the fundamental domain. So that’s not really that helpful. However, to solve
class number two, we can use genus characters. Most hopeful in this direction
is a problem of Euler, “Numeri Idonei”. i.e. Find all d for which there is only
one class per genus. To approach this problem one is led to consider∑

d1d2=d

L(s, ψχd1)L(s, ψχd2),

which actually puts another kink in our method because we get many logarithms
and their heights start to grow very fast. The situation is manageable for class
number 2, but not for class number 4. There’s no hope at all for class number
3 because we don’t even have any genus theory at our disposal.
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It’s also important to mention the results of Goldfeld, Gross-Zagier, who
prove an effective class number bound like h(−d) � log |d|, which is the best
effective bound know, but still very very far from the truth.

But a few final remarks on genus theory: The number of genera is something
like 2ω(d), where ω(d) is the number of prime factors of d. It would also be
possible to attack one class per genus with Goldfeld/ Gross-Zagier. A lower
bound of any power of d, e.g. h(−d)� d.0000000001 would be sufficient to solve
one class per genus, but we don’t even have this!

Okay. So we’re now done with the class number problem. Let’s move on to
other applications of effective Baker.

Application 2: Here’s a very Putnam-esqe application: 1, 3, 8, 120 have the
property that if you multiply any two and add 1, then you get a square.

Question 1. Are there any n > 120 for which 1, 3, 8, n have the same property?

These sorts of sets are called “Diophantine tuples”. The answer is “NO”, as
solved by Baker and Davenport in a 1968 paper. We’ll prove this result, and
see that it’s not actually as isolated a result as it at first seems. We want to
solve the system of equations

n+ 1 = �

3n+ 1 = �

8n+ 1 = �

Which is just the same as solving

n = x2 − 1

3x2 − 2 = y2

8x2 − 7 = z2

So we are really trying to solve effectively the hyperelliptic equation

t2 = (3x2 − 2)(8x2 − 7),

and by solve effectively I claim that there are only finitely many solutions to such
an equation, and we can write down an explicit bound for how large they may
be. Siegel showed that ineffectively that there are only finitely many solutions in
integers, but Baker’s theorem will solve the problem effectively. We can re-write
our equations as

y2 − 3x2 = −2; z2 − 8x2 = −7,

and these are simultaneous pell-type equations. (2 +
√

3) is a unit in Q(
√

3), so
for each n ∈ Z there exists yn and xn for which

y +
√

3x = (yn +
√

3xn)(2 +
√

3)n.

So, we get a lot of solutions

y2
n − 3x2

n = −2.
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We can assume also that

1 < yn +
√

3xn < 2 +
√

3

i.e.
2

2 +
√

3
<
√

3xn − yn < 2

so we want to solve

1 +
2

2 +
√

3
≤ 2
√

3xn ≤ 4 +
√

3,

which implies xn = 1, forcing yn = 1. So we’re found there’s a finite list (i.e. 1)
of solutions. now we do the same thing to the next equation. For each m ∈ Z
we have a solution to

(z +
√

8x) = (zm +
√

8xm)(3 +
√

8)m.

The same process gives two choices:

(±1 +
√

8)(3 +
√

8)m.

Now solve for x:

2
√

3x = (1 +
√

3)(2 +
√

3)n − (1−
√

3)(2−
√

3)n

and one of

2
√

8x =

{
(1 +

√
8)(3 +

√
8)m − (1−

√
8)(3−

√
8)m

(−1 +
√

8)(3 +
√

8)m − (−1−
√

8)(3−
√

8)m

But these two options are actually identically the same thing! So we get that√
8(1 +

√
3)(2 +

√
3)n is exponentially close to

√
3(±1 +

√
8)(3 +

√
8)m. This is

a linear form in logarithms! There exists m,n so that

m log(3 +
√

8)− n log(2 +
√

3) + β

is exponentially small, contradicting inhomogeneous Baker. Actually computing
the coefficients, one finds that m ≤ 10487,then you have to check all the cases
up to that point. But Baker and Davenport check a lot of these all at once with
great efficiency, using continued fractions cleverly.

Now, let’s generalize this result in the following simple way. Let E be the
elliptic curve defined by y2 = (x− a)(x− b)(x− c), a, b, c ∈ Z. Then we try to
solve the system

x− a = A�

x− b = B�

x− c = C�.
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So we do the same trick as before, and we find that there are finitely many
solutions and that they are effectively computable. The general case is where
the elliptic curve doesn’t have full 2-torsion over Q, but we’ll not do that here.

Application 3: The unit equation in a number field. Let K be a number
field of degree n = r + 2s, r real embeddings and 2s complex embeddings. The
unit group is then of rank t = r + s− 1.

Question 2 (unit equation). Find all solutions to u + v = 1, where u, v are
units in K.

Theorem 15. There are finitely many solutions to the unit equation, and they
can be effectively determined.

Proof. Assume η1, . . . , ηt are the fundamental units in K. Then any unit is
of the form u = ζηa11 · · · η

at
t , where ζ is a root of unity, and the aj ∈ Z. We

define the regulator R = det(log |ηji |) 6= 0. Let θ ∈ K. Since there are r + 2s
embeddings of K, we have

θ(1), θ(2), . . . , θ(r)

real embeddings, and
θ(r+1), θ(r+2), . . . , θ(r+s)

complex embeddings, and the

θ(r+s+1), θ(r+s+2), . . . , θ(r+2s)

complex conjugates thereof. So if we know the first r + s − 1 of these we can
determine all of them because we know the norm of θ. The regulator is a t× t
determinant, so the definition of regulator makes sense.

Let v = ζ ′ηb11 · · · η
bt
t . Let’s forget about the roots of unity for a minute here,

they’re not really the point of the proof here. So we know

ηa11 · · · η
at
t + ηb11 · · · η

bt
t = 1.

We have a similar equation for each embedding. We know for each 1 ≤ j ≤ t

η
(j)a1
1 · · · η(j)at

t + η
(j)b1
1 · · · η(j)bt

t = 1.

We want to bound ||ai||l2 or ||ai||l2 , so we want two big real numbers adding to
zero, so look at the regulator.

log |η(1)
1 | · · · log |η(1)

t |
log |η(2)

1 | · · · log |η(2)
t |

...
...

log |η(t)
1 | · · · log |η(t)

t |




a1

...

...
at

 = (log |η(1)a1
1 | · · · |η(1)at

t |, . . . , log |η(t)a1
1 · · · η(t)at

t |).

So we have that

|| log |η(i)a1
1 | · · · |η(i)at

t |||l2 � R||ai||l2 .
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We want to be able to say that there exists a j so that η
(j)a1
1 · η(j)at

t is big in
absolute value. And by the above, we get this. Why do we need u, v large?
Because log u = log(1− v) ≈ log v makes sense if v is large, then we can derive
a contradiction using effective Baker’s theorem.

Application 4: the Thue equation. LetK be a number field, and α1, . . . , αd ∈
OK be distinct, d ≥ 3. Fix µ ∈ OK . Solve (x − α1y) · · · (x − αdy) = µ, with
x, y ∈ OK . For example, x3 − 2y3 = 73.

Theorem 16. The Thue equation (above) has finitely many solutions, and can
be effectively solved.

We can reduce powers in the Thue equation (mod p) and get an equation
of the form αξp + βνp = 1, with finitely many choices for α, β. This looks just
like the unit equation. So the Thue and unit equations are closely related.

10 The Thue Equation, Hyperelliptic Equations

Last time we discussed the unit equation. Let K be a number field of degree
n. The equation u+ v = 1 with units u and v has finitely many solutions, and
they can be effectively determined. We can ask more generally for solutions
to αu + βv = γ with α, β, γ ∈ OK . By the same method, there are finitely
many and they can be effectively determined. Zimmeit showed that there is a
universal constant for regulators, something like R ≥ 0.056... universally!

The next application is the Thue equation. Again, let K be a number field
of degree n = r+ 2s, and t = r+ s− 1 which is the rank of the unit group. Let
α1, . . . , αd be distinct algebraic integers, d ≥ 3. We want to find solutions to

(x− α1y) · · · (x− αdy) = µ

with 0 6= µ ∈ OK . We want to show that this has only finitely many solutions
for x, y ∈ OK which can be effectively determined (i.e. there is a bound for
these solutions). e.g. the equation x3 − 2y3 = k.

Corollary 7. If α is algebraic of degree n, then there is some function g(q)→∞
as q →∞ such that |α− a

q | ≥
g(q)
qn , where g(q) is explicitly effectively computable.

Baker: g(q) = exp((log q)δ) for some δ. Feldman: g(q) = qδ. So the proof of
the corollary is to apply the Thue theorem to |(αq−a)(α2q−a) · · · (αnq−a)| → ∞
as q → ∞. So the Thue theorem shows that the left hand side is at least as
large as something →∞/qn.

Now we try to prove Thue’s theorem. A crucial fact in the proof is that
N(x − αiy)|N(µ). There are many ways of defining height of an algebraic
number. Here’s a new one we will use:

|α| = max |α(j)|,

where the α(j) are the Galois conjugates of α. We have
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Theorem 17 (Northcott). There are only finitely many algebraic integers α of
bounded degree and bounded |α|.

Proof. Write down the polynomial (x − α(1)) · · · (x − α(n)), and observe that
it has Q coefficients which are bounded. There are only finitely many monic
polynomials in integers with bounded coefficients and bounded degree, which
therefore have a finite number of solutions.

We now proceed to the proof of the Thue equation. Suppose we have a
solution (x− αjy) = βjuj , with uj ∈ O×K and |βj | bounded. As in last lecture,
let us denote the Galois conjugates of an algebraic number θ ∈ K as

θ(1), θ(2), . . . , θ(r)

real embeddings, and
θ(r+1), θ(r+2), . . . , θ(r+s)

complex embeddings, and the

θ(r+s+1), θ(r+s+2), . . . , θ(r+2s)

complex conjugates thereof. We can then rig the uj such that (x − αjy)(k) is
bounded for k = 1, . . . , r + s − 1. But we also have N(x − αjy)|N(µ) so that
(x− αjy)(k+s) is bounded also, and hence all the conjugates. Then we have

x− α1y = β1u1

x− α2y = β2u2

. . .

x− αdy = βdud

with β1, . . . , βd fixed of bounded height. We want to show that the uj are
determined. We can take linear combinations of the above, and get, for example
with the first three

α2y − α1y = β1u1 − β2u2

α3y − α1y = β1u1 − β3u3

and solving for y between these two get

(α3 − α1)(β1u1 − β2u2) = (α2 − α1)(β1u1 − β3u3).

This is a unit equation in the variables u2/u1, u3/u1, which we already know
has finitely many solutions, effectively determined. But choosing 1, 2, 3 was
arbitrary here, so we actually know that each of ui/u1 have effectively finitely
many solutions. But we have

µ = β1 · · ·βdud1
(
u2

u1

)
· · ·
(
ud
u1

)
,
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so u1 is determined also! So applying Northcott’s theorem, that solves the Thue
equation.

Application 5: Integer solutions to elliptic and hyperelliptic curves. Let
K be a number field and α1, . . . , αd be d ≥ 3 distinct algebraic integers. The
problem is to effectively solve

y2 = (x− α1) · · · (x− αd)

effectively. (N.B. This gives an excellent result on the size of the integer solutions
to such an equation, but no information as to the number of solutions. That
is an entirely different problem to be attacked by entirely different means. But
this goes to show how many questions one can ask.) Our approach is similar
to descent, we try to write each of these as something fixed times a square.
Actually, we will work with ideals. As ideals, we have

(y2) = (x− α1) · · · (x− αd),

and
(x− αj) = ajb

2
j ,

and the only things that could lie in aj come from coprimality conditions. So
aj divides

∏
k 6=j(αj −αk), so there can only be finitely many choices for aj . Let

a−1
j and b−1

j be integral ideals inverse to aj and bj in the ideal class group with
bounded norm. So we have

a−1
j b−2

j (x− αj) = (aja
−1
j )(bjb

−1
j )2

The ideals on the right hand side are principal, and all of the aj , a
−1
j , bj , b

−1
j

have bounded norm. Then as elements, we have

x− αj =
Aj
Bj
γ2
j εj ,

where Aj , Bj have bounded height in the sense of Thue, γj is an algebraic
integer, and εj is a unit. The Bj comes from a−1

j b−2
j , the Aj comes from

aja
−1
j ), and the γ2 comes from (bjb

−1
j )2. But we still have to get rid of the

unit. We have
εj = ζηa11 · · · η

at
t ,

say. Take the squarefree part of this by absorbing the squares into γ2
j . The

conclusion is then that

x− αj =
Cj
Dj

β2
j ,

with |Cj |, |Dj | bounded. Now, let’s look at the first few of these equations we
get and try to sort out what happens. We have

x− α1 =
C1

D1
β2

1
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x− α2 =
C2

D2
β2

2

x− α3 =
C3

D3
β2

3

so that

α2 − α1 =
C1

D1
β2

1 −
C2

D2
β2

2

α3 − α1 =
C1

D1
β2

1 −
C3

D3
β2

3

α3 − α2 =
C2

D2
β2

2 −
C3

D3
β2

3 .

Now we’re back in the situation of Baker-Davenport: simultaneous pell-type
equations. So we use the same method to prove that the system has only
finitely many solutions. First, clear denominators:

D1D2D3(α2 − α1) = D3D2C1β
2
1 −D3D1C2β

2
2

D1D2D3(α3 − α1) = D3D2C1β
2
1 −D1D2C3β

2
3

D1D2D3(α3 − α2) = D3D1C2β
2
2 −D1D2C3β

2
3 .

Now, factor. The right hand sides equal

(
√
C1D2D3β1+

√
C2D1D3β2)(

√
C1D2D3β1−

√
C2D1D3β2) := (G12v12)(F12u12)

(
√
C1D2D3β1+

√
C3D2D3β3)(

√
C1D2D3β1−

√
C3D2D3β3) := (G13v13)(F13u13)

(
√
C2D1D3β2+

√
C3D2D3β3)(

√
C2D1D3β2−

√
C3D2D3β3) := (G23v23)(F23u23).

Let’s now work in an extension of K which includes these square roots. Observe
that the sum of these three equations is zero (left hand side). Now, multiply
the three equations together. The right hand side is a product of 6 factor, each
of which has effectively bounded norm. So, we may write each as a unit times
a number which is effectively determined (hence the meaning of the above). i.e.
The |F12|, |F13|, |F23|, |G12|, |G13|, |G23| are bounded. Adding them, we get zero,
so

F12u12 − F13u13 + F23u23 = 0,

also
G12v12 −G13v13 = F23u23,

etc. So given u23, u13 and u12 are also determined. So this fixes what v23 is,
and hence each of the vij . Therefore, we find that effectively finding integer
solutions to hyperelliptic equations reduces to the Thue equation, and therefore
we are finished.

So what have we got? If we are given an equation y2 = x3 + ax + b with
|a|, |b| ≤ H, we have that the integer solutions have max(|x|, |y|) ≤ exp((106H)106

),
in general. In specific cases we can do much better, for example, the famous
Mordell equation y2 = x3 + k we have max(|x|, |y|) ≤ exp(ck1+ε). There is also
a famous problem
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Conjecture 2 (Hall). For all coprime integers x, y, we have

|y2 − x3| � x1/2−ε.

Baker’s theorem implies a lower bound of � (log x)1−ε, effectively. Also,
the ABC conjecture implies Hall’s conjecture. We’ll talk more about this next
class.

There is also a p-adic version of all of Baker’s theorem. We want to say that
a linear form in logarithms can’t be too small in the p-adic metric. To treat
this case, we need to take a large space. Start with Qp, then take the algebraic
closure Qp, which is no longer complete, so complete it again to get Ωp. There is
a theory of analytic functions on this object, developed by Mahler, Schnirelman,
Sprindzuk, Brumer, Coates, Vanderpoorten, and Kun-Rui Yu. There’s a nice
book on applications of Baker’s theorem and the p-adic Baker theorem by Shorey
and Tijdeman called “Exponential Diophantine Equations”. We won’t go into
any detail, so you should look there if you’re interested.

To get a p-adic version of Baker’s theorem, we’ll have to get some analogue
of the Cauchy integral formula or the maximum principle. Suppose

f(z) =

∞∑
k=0

ak(z − a)k

is an analytic function converging for some |z − a|p < ρ ∈ R. If (n, p) = 1, then
we factor

xn − 1 =

n∏
i=1

(x− ζi)

in Ωp. Then we have some sort of circle, so we can write down an analogue for
the Cauchy integral formula. Consider the limit

lim
n→∞

(n,p)=1

1

n

n∑
j=1

f(a+ rζj)

with 0 6= r ∈ Ωp. We call this limit∫
a,r

f(z) dz,

and you should think of this as similar to

1

2πi

∫
|z−a|=r

f(z)
dz

z − a
.

This integral has nice properties. For example, if f(z) is analytic, then the
integral evaluates to f(a). There is also a maximum modulus principle, but it’s
now obvious by the ultrametric triangle inequality:∣∣∣∣∫

a,r

f(z) dz

∣∣∣∣
p

≤ max
|z|p=|r|p

|f(a+ z)|p.
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Now, the rest of the proof of Baker’s theorem goes through line for line. The
statement at the end becomes

Theorem 18 (p-adic Baker’s theorem). Let K a degree d number field, and let
α1, . . . , αn ∈ K be nonzero, with |α1| ≤ A1, . . . , |αn| ≤ An. Let p be a prime
above p, and b1, . . . , bn ∈ Z with |bj | ≤ B. Then

ordp(αb11 · · ·αbnn − 1) ≤ (Cnd)Cn
pd

log p
(logA1) · · · (logAn)(logB)2

For comparison, Baker’s theorem would say

|αb11 · · ·αbnn − 1| � exp(−C(logA1) · · · (logAn)(logB)),

without the square on the last factor.

11 Effective p-adic Baker and Applications

Last time we stated a version of Baker in the p-adic case, but gave no proofs
whatsoever. Here’s the statement again:

Theorem 19 (Baker’s theorem for p-adic valuations). Let K be a number field
of degree d over Q. Let p be a prime of K over p. Let α1, . . . , αn ∈ OK of
heights ≤ A1, . . . , An respectively. Let b1, . . . , bn ∈ Z, all ≤ B. Then

ordp(αb11 · · ·αbnn − 1) ≤ (Cnd)cn
p

log p
(logA1) · · · (logAn)(logB)2.

This theorem is due to the combined work of many people: Yu, Vander-
poorten, etc. It is slightly weaker than the corresponding result at the archime-
dian place due to the (logB)2 appearing above instead of logB .

This result is very useful, as it allows us to solve the S-unit equation, u+v = 1
where u and v are S-units. S is a fixed finite set of primes. In the archimedian
case, we would interpret S as the set of all infinite places. We get that the S-
unit equation has only finitely many solutions, and that they can be effectively
determined. What a nice theorem!

For example suppose we have the following problem: Find all solutions
(x, y, z) ∈ N3, with x+ y = z satisfying the statement

p|xyz =⇒ p ∈ S.

We can do this with our result on the S-unit equation, and get an effective
upper bound on the size of the solutions.

A Here’s a different problem: Count the number of solutions to the above
equation. A result of Evertse says that the number of solutions is� exp(a|S|+
b), but his result is ineffective. Thus, we can tell that there are finitely many
solutions, but we don’t know how many. We’ve stated Evertse’s result over Q,
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but it works with different constants for any other number field. Evertse only
depends on the rank of the group.

Now, we do another application. First, we take the Thue equation:

(x− α1y) · · · (x− αdy) = µ,

where d ≥ 3 and we solve in algebraic integers. Now, we will replace µ and get
the Thue-Mahler equation. Take µ to be comprised of primes in a fixed finite
set S. That is, we take µ to be varying instead of fixed, as it is in the Thue
equation. Said differently: the left hand side is allowed to be any S-integer. This
is related to the S-unit equation x + y = z. If we let x = aA4, and y = bB4,
then aA4 + bB4 = z. So if we factor the the left, we have 4|S| from factoring
a, b, and if we forget A and B are composed of primes in S at the end we get an
equation which looks like Thue-Mahler. Overkill: aA4 + bB4 = cC4 is a curve
of genus ≥ 2 so Falting’s theorem implies there are only finitely many solutions.

Conjecture 3 (Erdös, Stewart, Tijdeman).

x+ y = z, p|xyz =⇒ p ∈ S

has at most exp(|S|2/3+o(1)) solutions as |S| → ∞.

Example 1 (Konyagan and Soundararajan). There exists S with ≥ exp(|S|2−
√

2−ε)
solutions.

This is in a similar vein to an old result of Erdös, Stewart and Tijdeman
which says that there exists a special set of primes S with ≥ exp(|S|1/2) solu-
tions. Furthermore, Jeff Lagarias and Sound have a result that is S is the set
of the first |S| primes, then there are ≥ exp(|S|1/8) solutions.

Here’s another application. We have

Conjecture 4 (ABC conjecture). Given a, b, c ∈ N with a+b = c and (a, b) = 1,
then

max(|a|, |b|, |c|) ≤ cε

∏
p|abc

p

1+ε

.

This conjecture is already quite deep because it would imply Fermat’s last
theorem, and all sorts of other things. We can get some sort of result along
these lines, however, by bounding the right hand side of the above from below
using the effective p-adic Baker. There is a a result

Theorem 20 (Stewart-Tijdeman). Given the same assumptions as the ABC
conjecture we have,

max(|a|, |b|, |c|)� exp


∏
p|abc

p

15
 .
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The bound is pretty bad, but at least we have something. There is a result
of Yu and Stewart which gets the constant down from 15 to 1/3, but it’s proof
is considerably more involved.

Proof. Suppose a, b, c is composed of the primes p1 ≤ . . . ≤ pr. Let a =
pa11 · · · parr , b = pb11 · · · pbrr , and c = pc11 · · · pcrr . We want a lower bound for
R :=

∏r
j=1 pj . By writing a + b = c as b

c = 1 − a
c , and similarly for a

c , we can
use p-adic Baker to get

B := max(a1, . . . , ar, b1, . . . , br, c1, . . . , cr) ≤ (Cr)Cr
pr

log pr
(log p1) · · · (log pr)(logB)2.

But R ≥ the product of the first r primes, which is ≈ exp(r log r) by the
prime number theorem. So (Cr)Cr is bounded by a power of R, say by RA. We
also have pr

log pr
≤ R, and

(log p1) · · · (log pr) ≤ p1 · · · pr ≤ R.

So, B ≤ Rc for some constant c. So abc ≤ RRc ≤ exp(Rc+1).

A few miscellaneous remarks: First, we show that there are sets of primes S
so that the S-unit equation has as many as exp(

√
|S|) solutions.

Let’s construct an example to show this. Let S(y) be the set of y-smooth
numbers. Recall that a number n is y-smooth if p|n =⇒ p ≤ y. Let

ψ(x, y) =
∑
n≤x
n∈S(y)

1

Consider y-smooth numbers a, b ≤ X. There are ψ(X, y) of these (ignoring
coprimality conditions). The sums a + b run up to 2X. So there exists a

“popular” c with at least ψ(X,y)2

2X representations as a + b = c. Let S = {p ≤
y} ∪ {p|c} ∼ y

log y + log x
log log x , i.e. the primes dividing each of a, b, c. Then if we

take y = (log x)α, we have ψ(x, y) = x1− 1
α+o(1) so long as α > 1. Take α ≥ 2+ε.

Then the popular c has ≥ xε = exp(y1/2−ε) representations.
The next miscellaneous remark is that we need the ε in the ABC conjecture,

otherwise it is false.
Now, consider the y-smooth numbers up to x, ψ(x, y) of them. The idea

here is that there are two which are very close, within x/ψ(x, y) of each other
(but we’ll do something slightly more refined. We choose a and c to be y-
smooth, and close together, so that b = c− a is smallest. To avoid coprimality
conditions, let’s look at the interval [(1 + δ)j , (1 + δ)j+1] in lieu of the interval
[1, x] to make sure the gcd works out. The number of such intervals is log x/δ.
If ψ(x, y) > log x

δ , we can find (a, c) = 1 with a, c ∈ [(1 + δ)j , (1 + δ)j+1]. Now,
b = c− a, so max(a, b, c) = c and

R :=
∏
p|abc

p ≤

∏
p≤y

p

 b ≤ δcey.
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The ey comes from the product. We want R small. We pick δ so that there are
at least two points in one interval, so maybe up to a constant, R . c log xey

ψ(x,y) . So

we use calculus to minimize this. To do this, we first have to find a lower bound
for ψ(x, y). So, we consider all y-smooth numbers, that is, consider all possible
choices of kp ∈ N for each p ≤ y, and such that

∏
p≤y p ≤ x. We want to count

the number of possible choices for {kp} subject to these conditions. So, we have∑
p≤y

kp log p ≤ log x

so ∑
p≤y

kp ≤
log x

log y
.

Thus we’ve reduced the problem of counting y-smooth numbers to the problem
to counting lattice points in a high dimensional tetrahedron. More precisely,

ψ(x, y) ≥ #{(kp)p≤y|kp ∈ N,
∑
p≤y

kp ≤
log x

log y
}.

We can count the lattice points by appealing to simple estimates about the
volume of a high-dimensional tetrahedron. So we get the lower bound

ψ(x, y) ≥

(
log x
log y

)
π(y)

π(y)!
=

(
e log x

y

) y
log y

.

Because ey is ≈ yy/ log y

R ≤ c log xey

ψ(x, y)
≤ c log x

(
y2

e log x

)y/ log y

,

choosing y =
√

log x, this is

R ≤ c(log x) exp

(
−2
√

log x

log log x

)
,

where c is the max of a, b, c. This bound gives a counterexample to the ABC
conjecture if we remove the ε.

Baker and Granville: quantitative version of ABC
Mason: ABC for polynomials
Cartan: ABC for holomorphic functions
We’ll discuss two more results before going on to diophantine approximation,

the second half of the course.

1. Six exponentials theorem

2. The Schneider-Lang theorem
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A putnam problem: If 1α, 2α, 3α, . . . ∈ N, prove that α ∈ N.

A corollary of the six exponentials theorem is that if α 6∈ Q then one of
2α, 3α, and 5α is transcendental.

Conjecture 5. In fact, one of 2α and 3α is transcendental.

Theorem 21 (old, first published accounts due to Ramachandra and Lang).
Let α1, α2 ∈ C, linearly independent over Q. And β1, β2, β3 ∈ C, also linearly
independent over Q. Then one of exp(αiβj) is transcendental.

Conjecture 6. Instead consider only β1, β2 ∈ C, linearly independent over Q.
Then one of the four exp(αiβj) are transcendental.

proof (corollary of 6 exponentials theorem). Let β1 = log 2, β2 = log 3, and
β3 = log 5. Let α1 = 1, α2 = α.

Corollary 8. If β is transcendental, there are at most 2 algebraic numbers,
multiplicatively independent, for which αβ1 and αβ2 are algebraic.

The corollary complements the Gelfond-Schneider theorem.

12 Six Exponentials Theorem

Six exponentials theorem: If α1, α2 are linearly independent over Q, and β1, β2, β3

are linearly independent over Q, then one of the six exp(αiβj) is transcendental.
A corollary is that one of 2α, 3α, 5α is transcendental for α 6∈ Q. e.g. one of
2π, 2π

2

, 2π
3

is transcendental.

Proof. We construct an auxiliary function

φ(z) =

K∑
k1,k2=0

p(k1, k2)ek1α1zek2α2z.

We want to pick the p(k1, k2) to be not all zero, lie in OF , and |p(k1, k2)| small.
So we want l1β1 +l2β2 +l3β3, for 1 ≤ l1, l2, l3 ≤ L to have φ(l1β1 +l2β2 +l3β3) =
0. We’ll see that this is easier to do that it was to prove Baker’s theorem, as we
have L3 equations, and K2 free variables, so we’ll eventually take K2 ≥ 2L3.
We use the Thue-Siegel lemma again. Actually we need a slight modification of
the Thue-Siegel lemma for a number field.

Lemma 4 (Thue-Siegel for a number field). Let F be a number field, and
consider M variables. Suppose we have a homogeneous linear equation

N∑
j=1

aijxj = 0,
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with N > M and αij ∈ OF . Assume that |aij | ≤ A. Then there exists a
nontrivial solution with

|xj | ≤ (CNA)
M

N−M ,

where the constants only depend on F and nothing else.

Proof. The proof is the same as in the rational case. Let w1, . . . , wd be an
integral basis for OF . Write aij and xj in terms of w1, . . . , wd. Then we have
Md equations and Nd variables, and the size of the wi are fixed in terms of F ,
so we can bound them by CA. Now, apply the Thue-Siegel lemma.

Now recall we were in the middle of constructing

φ(z) =

K∑
k1,k2=0

p(k1, k2)ek1α1zek2α2z.

Evaluating φ we will get powers of eαiβj going up to KL. To produce a con-
tradiction, assume all eαiβj are algebraic. Clear denominators by multiplying
through by, say, D6KL. So D6KLφ(z) vanishes at the L3 points l1β1+l2β2+l3β3.
The size of the coefficients is CKL, so by the Thue-Siegel lemma for number
fields, we can find p(k1, k2) with

|p(k1, k2)| ≤ (CKL)
L3

K2−L3 .

Let K2 = 2L3, then |p(k1, k2)| ≤ CKL. Fact: φ is not identically zero, because
α1, α2 are linearly independent over Q. Fact: φ does not vanish on all linear
combinations l1β1 + l2β2 + l3β3 with l1, l2, l3 ∈ N. Why? φ(z) is holomorphic,
and these points are dense in C. Alternately, because φ(z) is order 1, and can
only have about R zeros in a circle of radius R, but it has at least R3 zeros.
So there is a number s ≥ L such that φ vanishes at all l1β1 + l2β2 + l3β3

with lj < s but doesn’t vanish for some chosen W = s1β1 + s2β2 + s3β3, with
max(s1, s2, s3) = s.

Now look at
φ(z)∏

l1,l2,l3<s
(z − l1β1 − l2β2 − l3β3)

;

let z = s1β1 + s2β2 + s3β3, and use maximum modulus principle on some circle
|z| = R. Then we have

|φ(s1β1 + s2β2 + s3β3)| ≤ (Cs)s
3

max
|z|=R

φ(z)∏
l1,l2,l3<s

(z − l1β1 − l2β2 − l3β3)

≤ (Cs)s
3

(R/2)s3
max
|z|=R

|φ(z)| ≤ (Cs)s
3

(R/2)s3
CKL exp(CRK).

Choose R = s3/K. Then the above is

≤ CKL
(

10CK

s2

)s3
≤ exp(−cs3 log s),
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where we’ve used s > L, K = 21/2L3/2. So if all of it’s conjugates are not
too big, the usual norm argument will show that it is actually zero. So let’s
do it! After multiplying by D6KL, D6KLφ(s1β1 + s2β2 + s3β3) is an algebraic
integer, and by our estimate on |p(k1, k2)|, we have that all it’s conjugates are
≤ CKL exp(CKs)D6sK . So φ is zero, but not zero. Contradiction.

What about 4 exponentials? Then we’d have K2 free variables, and L2

equations. So we’d have to take K = 2L in the end, and s > L which would

give
(

(··· )K
s

)s2
, and barely fail to give the 4 exponentials conjecture.

Another example from this circle of idea is the

Theorem 22 (Schneider-Lang). Let K be a number field, and f1, . . . , fN mero-
morphic functions of order < ρ. Let fi = gi/hi, where g, h are holomorphic
functions, and their orders are < ρ. Consider the ring k[f1, . . . , fN ], and assume
it satisfies two properties,

1. This ring has transcendence degree ≥ 2.

2. d
dz preserves this ring. (N.B. surjectivity not required.)

Then there are only finitely many w1, . . . , wm where the fj are simultaneously
algebraic. We have m ≤ 20ρ[K : Q].

Before the proof, we do some applications of the Schneider-Lang theorem.

Example 1: Take f1 = z, and f2 = ez. Then there are only finitely many
α ∈ K with eα ∈ K. But if α has eα algebraic, then nα is also algebraic for any
n ∈ N. So eα 6∈ Q if α 6== 0, α ∈ Q. So we recover a special case of Lindemann’s
theorem.

Example 2: Let f1 = ez, f2 = eβz, β ∈ Q, β 6∈ Q, β ∈ K. The we get that

there are only finitely many α ∈ K for which αβ ∈ K But if there is one, there
are infinitely many: α, α2, α3, . . . , except if α = 0, 1, i.e. we have recovered
Gelfond-Schneider. (Unless α is a root of unity, but we can finesse this...)

Example 3: Let Λ be a lattice, say Λ = ω1Z+ω2Z, ω2/ω1 6∈ R. We have the
doubly periodic function

℘(z) =
1

z2
+
∑

06=λ∈Λ

[
1

(z + λ)2
− 1

λ2

]
.

It is meromorphic, and has poles of order 2 at the points of Λ. Then

℘′(z) =
−2

z3
−
∑

0 6=λ∈Λ

2

(z + λ)3

is also meromorphic of order two. We have the relation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,
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where g2 = 60G4 = 60
∑
λ 6==0

1
λ4 , and g3 = 140G6 = 140

∑
λ6==0

1
λ6 . Suppose

we have a lattice with g2 and g3 algebraic, in some K. Then K[℘(z), ℘′(z), z]
satisfies the conditions of the Schneider-Lang theorem. So there are only finitely
many α ∈ K with ℘(α), ℘′(α) both in K. But using elliptic curve addition, we
can add α’s

Suppose we have periods ω1, ω2. Then consider ℘(ω1/2) and ℘′(ω1/2), and
suppose that they are algebraic. (We would pick ω1, but ℘ is not well defined
there, so ω1/2 is the next best thing.) Siegel proved that at least one of the two
periods are transcendental. Schneider proved both are. If ω1/2, ℘(ω1/2) and
℘′(ω1/2) are all algebraic, then nω1/2 is also, contradicting Schneider-Lang. As
a consequence, we know that if α is algebraic, then ℘(α) is transcendental.

Example 4: The modular j-function.

j(τ) := 1728
g3

2

g3
2 − 27g2

3

,

where τ = ω2/ω1, and thus the lattice is generated by 1 and τ . Consequence: if
τ is algebraic and τ is not a quadratic irrationality, then j(τ) is transcendental.
Note: If τ is a quadratic irrationality, then j(τ) generates the Hilbert class field
of Q(τ), so it has a very significant algebraic meaning!

Example 5: With much more work (due to Chudnovsky), one can show that
the periods don’t have any relation with π for E a CM elliptic curve. This
in turn implies that Γ(1/4),Γ(1/3),Γ(1/6) are transcendental by picking clever
CM elliptic curves.

13 Schneider-Lang Theorem

Recall the Schneider-Lang theorem: Let f1, . . . , fN be meromorphic functions
of order < ρ, K a number field such that

1. K[f1, . . . fN ] has transcendence degree ≥ 2.

2. K[f1, . . . fN ] is mapped into itself by d
dz .

If ω1, . . . , ωm are complex numbers not being the pole of any fj and fj(ωj) ∈ K
for all j, k. Then m ≤ 20ρ[K : Q].

One corollary was the Gelfond-Schneider theorem after taking f1 = ez and
f2 = eβz, β 6∈ Q, β ∈ Q. There was some confusion in this last time. If n logα,
α algebraic then we get the Gelfond-Schneider theorem so long as α 6= 0 and
logα 6= 0.

Other examples: To every lattice Λ = ω1Z⊕ω2Z, with ω2/ω1 6∈ R we look at
doubly periodic functions on Λ. We have for the Weierstauss function (defined
last time)

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where

g2 := 60G4 := 60
∑
λ6=0

1

λ4
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and

g3 := 140G6 := 140
∑
λ6=0

1

λ6
.

Then if g2, g3 are algebraic, every period ω1, ω2 is transcendental (this is
the result of Siegel / Schneider mentioned last time). Contrapositively, if α is
algebraic, then ℘(α) is transcendental. This construction and a little more (if
the elliptic curve is CM) shows that the periods are also independent of π.

Proof (of example 4). Take any lattice where ω1/ω2 = τ . That is, take any
lattice homothetic to this Λ. Suppose j(τ) is algebraic, and pick ω1 and ω2 on
this lattice with g2 and g3 algebraic. So now we’re in the previous situation. So
for this lattice, we have

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ).

Let’s work in a number field K which contains τ . Consider the values

℘(z), ℘′(z), ℘(τz), ℘′(τz),

and plug in z = (n+ 1
2 )ω1. Then (℘(z), ℘′(z)) are 2-torsion points, which means

that they’re algebraic. Now, τz = (n + 1
2 )ω2 similarly gives algebraic values

for ℘(τz) and ℘′(τz). So by the Schneider-Lang theorem ℘(z) and ℘(τz) are
algebraically dependent. Now we can play around and match up the poles,
so this forces τ`ω2 ∈ Λ for some integer ` (exercise). Now we’re done, since
`ω2

2

ω1
= aω1 + bω2, so τ = ω2/ω1 is imaginary quadratic.

Proof (of Schneider-Lang). Out of f1, . . . , fN there are 2 functions which are
algebraically independent, say f and g. Use these to construct an auxiliary
function

φ(z) =

K∑
k1,k2=1

p(k1, k2)f(z)k1g(z)k2 .

The algebraic independence shows that this φ is no identically zero unless all
p(k1, k2) are zero. We will pick p(k1, k2) to be algebraic integers in K with
smallish size. Say z = ω1, . . . , ωm are points where fj(ωk) ∈ K. We want
that φ(`)(ωj) = 0 for all 0 ≤ ` ≤ L. By the second condition, for any j, f ′j is
expressible as a polynomial in the other meromorphic functions, say, f ′j(z) =

Pj(f1, . . . , fN ). There are Lm equations to be satisfied, and K2 free variables.
What happens to the size of these quantities when we differentiate a bunch
of times? Pick B large which kills all denominators of f(ωj), g(ωj), f

′
j(ωk), . . .

etc. We want B2K+Lφ(`)(ωj) = 0. The size of the coefficients is ≤ BK(CK)L.
So choose K2 = 2Lm. The Thue-Siegel lemma apples, and we find p(k1, k2)
with |p(k1, k2)| ≤ exp(L logL). Now use some version of the maximum modulus
principle to get a contradiction in the usual way (how many times have done
this now?).
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Pick s to be the smallest number such that φ(s+1)(ω) 6= 0 for some ω =
ω1, . . . , ωn, but all smaller derivatives are zero. By construction, s ≥ L. Look
at

φ(z)Θ(z)2k

((z − ω1) · · · (z − ωn))s+j

where Θ(z) is a holomorphic function of order < ρ such that f(z)Θ(z) and
g(z)Θ(z) are holomorphic. Then above fraction is an entire function of order
< ρ. Apply the maximum modulus principle using a circle of big radius R to
be chosen later. Evaluate at z = w. Then∣∣∣∣∣ φ(s+1)(ω)Θ(ω)2k∏

ωj 6=ω(ω − ωj)s+1(s+ 1)!

∣∣∣∣∣ ≤ max
|z|=R

φ(z)Θ(z)2k

((z − ω1) · · · (z − ωn))s+1
≤ exp(CKRρ+L logL−sm logR/2),

where in the last inequality, the three terms come from Θ, φ and the denomi-
nator, respectively.

Recall we have K2 = 2Lm and s ≥ L, so the optimal value of R is

CρKRρ−1 = sm
R . So R =

(
sm
K

)1/ρ
. So the bound is

≤ exp(L logL− sm

ρ
log

sm

10K
).

Conclusion:
|φ(s+1)(ω)| ≤ exp(2s log s− sm

ρ
log

sm

10K
).

By multiplying φ(s+1)(ω) by a suitable Bs+2K , we get an algebraically integer
which is ≤ exp(L logL + Cs), and we derive a contradiction by a norm calcu-
lation. The norm calculation implies |φ(s+1)(ω)| ≥ exp(−L logL− dCs), where
d = [K : Q]. So if m = 20ρ[K : Q], we get the desired contradiction. Something
like 4 probably still works in the place of 20.

Next up: Diophantine approximation.

14 Introduction to Diophantine Approximation

Today we start Diophantine approximation, and the subject will take up the
remainder of the course.

We have an algebraic number α of degree d. Assume it is real. Then we
have

Theorem 23 (Dirichlet). There are infinitely many p/q ∈ Q with |α − p/q| ≤
1/q2.

And

Theorem 24 (Lioville). For any α ∈ Q ∩ R, but α 6∈ Q, |α− p/q| ≥ C(α)q−d,
and the constants involved are effectively computable.
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Baker’s theory gives us an improvement over Lioville, giving q−d−d(α) for
some d(α) > 0 effectively. This is a significant advance for effectively solving
Thue equations, etc. However, the main theorem of the entire subject is

Theorem 25 (Roth, 1950s). For any α ∈ Q ∩ R, but α 6∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α, δ)

q2+δ

for any δ > 0.

Roth’s theorem is great, but completely ineffective. From next week on-
wards, we’ll work on the proof of Roth’s theorem. But today, we’ll do Thue’s
result from around 1910 which got the entire subject started, and achieves a
bound of q−(n/2+δ), ineffectively. We also have

Conjecture 7 (Lang). For any α ∈ Q ∩ R, but α 6∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α, κ)

q2(log q)κ

if κ is sufficiently large.

Braver still is that we can take κ > 1. κ = 1 would of course not work, recall
a popular question on the qualifying exam in measure theory.

Anyway, as we were saying, we have a result of Thue from 1909, which

says that |α − p/q| ≥ C(α,η)
qn/2+1+η for any η > 0, ineffectively. This result was

later improved by Siegel to get q2
√
n+ε, and then further refined by Gelfond and

Dyson to get q
√

2n+ε, and finally finished by Roth. Recall how the Lioville bound
was proven: We found a polynomial f over Z of which α is a root. It might seem
natural to just pick the minimal polynomial for α, but to illustrate a point, let’s
think about f possibly being larger than just the minimal polynomial. If p/q is
an approximation to α, we showed both that

• f(p/q) is small, by mean value theorem.

• f(p/q) is big. It is rational, so |f(p/q)| ≥ 1/qn.

Now, if α vanishes to order h in the minimal polynomial, |f(p/q)| � |α−p/q|h,
so that |α−p/q| � 1

qn/h
. But deg f ≥ hd, so you don’t gain anything by picking

a polynomial larger than the minimal polynomial. Thue’s idea is that although
we cannot exploit going to a higher degree polynomial directly, if we go to a
polynomial in two variables, such a change becomes significant.

So, Thue’s idea: Let F (x, y) = P (x) − yQ(x), where P,Q are polynomials
of degree ≤ k with integer coefficients. We want to construct F (x, α) to vanish
at x = α to order h. We pick p1/q1, and p2/q2 to be two good rational approx-
imations to α. We will be able to rig things so that F (p1q1 ,

p2
q2

) is very small.

Also, we’ll use a trivial lower bound for F (p1q1 ,
p2
q2

). If it’s not zero, then we’ll be
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ok. We’ll get around this nonzero problem by taking Ft(
p1
q1
, p2q2 ) small, where t

is some small derivative in x. That is, let

Ft(
p1

q1
,
p2

q2
) :=

1

t!

dt

dxt
F (x, y) ∈ Z[x].

Assume α is an algebraic integer.
The first step is to construct P,Q with coefficients of small size. We have

2k free variables, and want Fj(α, α) = 0 for all 0 ≤ j ≤ h − 1. Let the height
of α be B. now, αj can be written as a linear combination of 1, α, α2, . . . , αd−1

by repeatedly reducing. The coefficients in this linear combination will be of
size Bj . So we have hd equations like Fj(α, α) = 0 in 2k variables. The size

of the coefficients is ≤ Bk k
j

j! , where the first factor is from the α’s and the

second is from differentiating. So this is just ≤ Bkek. So pick k = hd
2 (1 + δ)

for some small δ > 0. By Thue-Siegel, there exists P,Q, polynomials with these
properties and the coefficients of P and Q are ≤ (Ck(Be)k)2k2k − hd ≤ ck for
some c = c(α, δ).

The second step is to obtain an upper bound for |F (p1q1 ,
p2
q2

)|. We have

F (
p1

q1
,
p2

q2
) = F (

p1

q1
, α) + (α− p2

q2
)Q(

p1

q1
) ≤ |F (

p1

q1
, α)|+ Ck|α− p2

q2
|.

Now, for the t-th derivative, we have the same thing:

Ft(
p1

q1
,
p2

q2
) = Ft(

p1

q1
, α) + (α− p2

q2
)Qt(

p1

q1
)

≤ |Ft(
p1

q1
, α)|+ Ck|α− p2

q2
|;

Ft(
p1

q1
, α) =

∑
j

(
t+ j

j

)
Ft+j(α, α)(

p1

p2
− α)j ;

|Ft(
p1

q1
, α)| ≤

∑
k−t≥j≥h−t

(
t+ j

j

)
Ck|α− p1

q1
|j

≤ Ck|α− p1

q1
|h−t;

|Ft(
p1

q1
,
p2

q2
)| ≤ Ck(|α− p1

q1
|h−t + |α− p2

q2
|).

Third step: We want for some smallish t, a lower bound for |Ft(p1q1 ,
p2
q2

)|.
We’ll go ahead and show how to finish the proof under the (possibly false!)
assumption that F (p1q1 ,

p2
q2

) 6= 0, and then later reduce the general argument to

this case. If we knew that F (p1q1 ,
p2
q2

) 6= 0, then it would be a rational number

with denominator qk1q2, i.e. ≥ 1
qk1 q2

. Assume that

|α− p1

q1
| ≤ 1

q
n/2+1+η
1

53



where η → 0 but is large compared to δ. Assume the same for p2/q2 satisfies
the same inequality. If we could say that q2 is bounded in terms of q1, then
we’d be done. So using the bounds established above,

1

qk1q2
≤ Ck

(
1

q
(n/2+1+η)h
1

+
1

q
n/2+1+η
2

)
or say

1

qk1q2
≤ 2Ck

q
(n/2+1+η)h
1

which gives

q2 ≥ 2−1C−kq
h(1+η−δn/2)
1 .

So either this or the other inequality

1

qk1q2
≤ 2Ck

q
n/2+1+η
2

gives

q
n/2+η
2 ≤ 2Ckqk1 =⇒ q2 ≤ C2k/nq

h(1+δ)
1+2η/n

1 .

Now, if h = log q2
log q1

is sufficiently large both of our bounds on q2 are contradicted!

If p1
q1

exists with q1 large enough, then there are only finitely many choices for
p2
q2

. This is where things become ineffective. We can’t compute the p2
q2

because

of course such p1
q1

doesn’t exist! There is a paper of Bombieri where he gives

classes of examples where one can make things effective (see Acta Mathematica
1981).

Now, we have to back track to showing a lower bound for |Ft(p1q1 ,
p2
q2

)| to finish

the proof in general. So we want to find some small t so that Ft(
p1
q1
, p2q2 ) 6= 0.

Suppose not. Then for all t ≤ T we have equations like{
P (p1q1 )− p2

q2
Q(p1q1 ) = 0

P ′(p1q1 )− p2
q2
Q′(p1q1 ) = 0,

etc. for higher derivatives. So given these first two equations, we can eliminate
p2
q2

and get

P (
p1

q1
)Q′(

p1

q1
)− P ′(p1

q1
)Q(

p1

q1
) = 0.

Similarly, by picking any pair of equations corresponding to higher derivatives,
we obtain

P (j)(
p1

q1
)Q(`)(

p1

q1
)− P (`)(

p1

q1
)Q(j)(

p1

q1
) = 0

for all 0 ≤ j, ` ≤ T . Consider the Wronskian of P,Q:

W (x) := det

(
P (x) Q(x)
P ′(x) Q′(x)

)
= P (x)Q′(x)− P ′(x)Q(x).
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So this vanishes at p1
q1

but also to high order, i.e. many of it’s derivatives vanish

as well. W ∈ Z[x] of degree ≤ 2k − 1, and all of its derivatives up to T − 1
vanish at p1

q1
. So W (x) is divisible by (x− p1

q1
)T .

W (x) is not identically zero:(
P (x)

Q(x)

)′
= 0 =⇒ Q(x) = cP (x), c ∈ Q.

So then F (x, y) = P (x)(1− cy). And P (x) vanishes to order h at x = α. So by
Gauss’ lemma, (q1x−p1)Tdivides W (x) as polynomials with integer coefficients.
But the coefficients of W (x) ≤ Ck, so qT1 ≤ Ck =⇒ T ≤ k logC

log q1
, so some small

t ≤ T satisfies Ft(
p1
q1
, p2q2 ) 6= 0.

15 Roth’s Theorem I

Last time we talked about Thue’s theorem. It says that there are only finitely
many solutions to

|α− p

q
| ≤ 1

qd/2+1+δ
,

where α is an algebraic number of degree d. There were three broad steps to
the proof

1. Find F (x, y) = P (x)−yQ(x) with small coefficients and vanishing to high
order at (α, α). (Say, h is huge). We did this using Thue-Siegel.

2. Ft(
p1
q1
, p2q2 ) is small for good rational approximations p1

q1
, p2
q2

to α. (Proof

using Taylor). Think of q2 much larger than q1, and q1 already quite large.

3. Ft(
p1
q1
, p2q2 ) 6= 0 for small choice of t. This gives a lower bound for F (p1q1 ,

p2
q2

)

These three things contradict each other, and prove the theorem, provided
choices of parameters are made appropriately. The ineffectively of Thue’s result
is because we assumed that we didn’t have a first good approximation q1.

Now we proceed to Roth’s theorem: There are only finitely many solutions
to

|α− p

q
| ≤ 1

q2+δ
.

There are roughly the same three steps to the proof.

• Find p(x1, x2, . . . , xm) of small degree and small coefficients vanishing to
high order at (α, α, . . . , α). Here m will depend on δ and d. The proof is
again by Thue-Siegel.

• For nearby rational points (p1q1 , . . . ,
pm
qm

), P (· · · ) is very small.

• In fact there is a lower bound for P (p1q1 , . . . ,
pm
qm

).
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So it’s pretty complicated. For the moment, let’s state some general propositions
which will help us later. Without loss of generality, assume that α is an algebraic
integer. P (x1, . . . , xm) is a polynomial with integer coefficients, and the degree
in xj ≤ rj .

Definition 1. The index of P at (α1, . . . , αm; r1, . . . , rm) is the smallest value
of

m∑
j=1

ij
rj

with Pi1,...,im(α1, . . . , αm) 6= 0.

Recall, we’ve defined

Pi1,...,im(x1, . . . , xm) =
1

i1!i2! · · · im!

di1+···+im

dxi11 · · · dx
im
m

P (x1, . . . , xm).

Proposition 2 (Construction of an auxiliary polynomial). Assume ε > 0 is
small, and m ≥ 16

ε2 log d. There is a P (x1, . . . , xm) with deg xj ≤ rj and integer
coefficients which are bounded by Br1+···+rm , B = B(α), and index of P with
respect to (α, α, · · · , α, r1, . . . , rm) is at least m

2 (1− ε).

Proposition 3 (Index of P at nearby points). Take P as in the previous propo-
sition. Let δ < 1, δ > 36ε. Assume we have good rational approximations, with

|α− pj
qj
| ≤ 1

q2+δ
j

for all j, 1 ≤ j ≤ m. (In the back of our heads, we’re thinking that qj →∞ fast.)
Assume that qδj ≥ D = D(α) is sufficiently large, and r1 log q1 ≤ rj log qj ≤
)(1 + ε)r1 log q1. Then the index of P at p1

q1
, . . . , pmqm , r1, . . . , rm is at least εm.

This is like the second step in Thue’s theorem. The proof is basically a
Taylor series argument. The next proposition is really the key step to Roth’s
theorem, and also the hardest of the three propositions.

Proposition 4 (Roth’s Lemma). Let ω = ω(m, ε) be 24
2m

(
ε

12

)2m−1

, ω(1, ε) = ε,
then decreases pretty rapidly. Assume the rj are rapidly decreasing, i.e. rjω ≥
rj+1, and g

rj
j ≥ qr11 , for all j = 1, . . . ,m, and all qωj ≥ 23m, (qj large). Then

if P is a polynomial in x1, . . . , xm with deg xj ≤ rj, and integer coefficients
≤ qωr11 , then the index of P at (p1q1 , . . . ,

pm
qm
, r1, . . . , rm) is < ε.

Now, we can quickly prove Roth’s theorem from these three propositions.

Proof (of Roth’s theorem assuming the previous three propositions): Pick approx-
imations

pj
qj

to α, where qj →∞ rapidly, then we know how to pick the rj . Pick

rj sufficiently large, rj =
(
r1 log q1

log qj

)
+ 1, assuming we have infinitely many good

approximations to choose from. Plugging this into the propositions, we get a
contradiction between propositions 3 and 4 after letting ε go to infinity.
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So we’ve proven Roth after proving these three propositions. Let’s go ahead
and get started.

Proof (construction of aux. poly.): The number of free variables (from coeffi-

cients of the polynomials) is
∏m
j=1(rj + 1). If i1, . . . , im is such that

∑ ij
rj
≤

m
2 (1− ε), we want Pi1,...,im(α, α, . . . , α) = 0. We take

P (x1, . . . , xm) =
∑
kj≤rj

p(k1, . . . , km)xk11 · · ·xkmm

We re-write the powers of α which appear above in terms of their defining
equations. So if ht(α) = C, the the coefficients involved in writing αj are
≤ Cj ≤ Cr1+···rm . So each condition (choice of i’s) gives d linear equations with
coefficients ≤ (2C)r1+···+rm . So the number of equations is d times the number
of solutions to the index bound above. So long as the number of equations is
≤ 1

2 (r1 + 1) · · · (rm + 1), then Thue-Siegel would imply the proposition. So the
question is does

#{0 ≤ ij ≤ rj :
∑ ij

rj
≤ m

2
(1− ε)} ≤ 1

2d
(r1 + 1) · · · (rm + 1)?

Here’s one heuristic idea, a probabilistic interpretation. Think of xj =
ij
rj

as

random variables uniform on (0, 1). Then Prob(x1 + · · · + xm ≤ m
2 (1 − ε)) ≤

e−c1(ε
√
m)2 . So we would expect x1 + · · · + xm to be Gaussian with mean m

2 ,
and variance

m

12
= E((xi −

1

2
)(xj −

1

2
)) =

{
0 if i 6= j∫ 1

0
(x− 1/2)2 dx if i = j.

So to make things work, we want to be away by m
2 −

√
m
12

(
ε
2

√
12m

)
standard

deviations.
But here’s an actual rigorous proof, using “Rankin’s Trick”. Let λ > 0. We

57



have that the number of solutions is

≤
∑

0≤ij≤rj

e
λ
∑ ij

rj
+λ(m/2)(1−ε)

= e
λεm

2

m∏
j=1

eλ/2 ∑
0≤ij≤rj

e
−
λij
rj


= e

λεm
2

m∏
j=1

 sinh
(
λ(rj+1)

2rj

)
sinh

(
λ

2rj

)


≤ e
λεm

2

m∏
j=1

(rj + 1) exp

1

6

m∑
j=1

λ2(rj + 1)2

1 + r2
j


≤

 m∏
j=1

(rj + 1)

 exp

(
λ2m

6
− λmε

2

)

Now we optimize in λ, and find that we should take λ = 3ε/2. So the above
is

m∏
j=1

(rj + 1) exp

(
−3

8
mε2

)
.

Recall that m = 16
ε2 log d, so the above reduces to

≤ 1

2d

m∏
j=1

(rj + 1),

as was to be shown.

Similar:

ψ(x, y) = #{n ≤ x : p|n⇒ p ≤ y} ≤
∑

p|n⇒p≤y

(x
n

)λ
= xλζ(λ; y) = xλ

∏
p≤y

(
1− 1

pλ

)−1

.

This bound is only a log away from the right answer.

16 Roth’s Theorem II

Recall last time we proved

Proposition 5 (Construction of an auxiliary polynomial). There exists a poly-
nomial P (x1, . . . , xm), m ≥ 16

ε2 log d which has degree in xj ≤ rj, integral coeffi-
cients of size ≤ Br1+···+rm , (B = B(α)) and index of P at (α, α, . . . , α; r1, . . . , rm)
is ≥ m

2 (1− ε).
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Now we move on to

Proposition 6 (Index of P at nearby points). Let P be as in the previous
proposition. Let 0 < δ < 1, 0 < ε < δ

36 , and

|α− pj
qj
| < 1

q2+δ
j

for all j = 1, . . . ,m. Also, qδj ≥ D = D(α), and r1, . . . , rm such that r1 log q ≤
rj log q≤(1 + ε)r1 log q1. Then the index of P at (p1q1 , . . . ,

pm
qm
, r1, . . . , rm) is at

least εm.

Proof. 0 ≤ j1, . . . , jm with
∑ j`

r`
≤ εm, j` ≤ r`.

Q(x1, . . . , xm) = Pj1,...,jm(x1, . . . , xm) =
1

j1! · · · jm!

dj1

dxj11
· · · d

jm

dxjmm
P (x1, . . . , xm).

Want Q(p1q1 , . . . ,
pm
qm

) = 0. Index of Q at (α, α, . . . , α, r1, . . . , rm) is at least

≥ m
2 (1− ε)− εm = m

2 (1− 3ε). Take a Taylor expansion of Q around (α, . . . , α):

Q(
p1

q2
, . . . ,

pm
qm

) =
∑

i1,...,im≥0

Qi1,...,im(α, α, . . . , α)

(
p1

q1
− α

)i1 (p2

q2
− α

)i2
· · ·
(
pm
qm
− α

)im
.

This is actually a finite sum because we took the Taylor expansion of a poly-
nomial. If we get an upper bound for this sum, we will be able to conclude
that Q(p1q1 , . . . ,

pm
qm

) = 0, as desired. This is because Q(p1q1 , . . . ,
pm
qm

) is a rational

number with denominator qr11 · · · qrmm . We use the hypothesis of the theorem

to bound the factors
(
pj
qj
− α

)ij
, and so we just need an upper bound for the

derivatives of Q. The coefficients of Q are ≤ 2r1+···+rm . The coefficients of P
are ≤ (2B)r1+···+rm (because of the derivatives, e.g. from xk`` we get

(
k`
j`

)
), so

coefficients of Qi1,...,im are ≤ (4B)r1+···+rm . Thus we find

|Qi1,...,im(α, . . . , α)| ≤ (8B)r1+···+rm max(1, |α|)r1+···+rm = Cr1+···+rm ,

where C = C(α). Thus

Q(
p1

q1
, . . . ,

pm
qm

) ≤ Cr1+···+rm
∑

i1,...,im

(
1

qi11 q
i2
2 · · · q

im
m

)2+δ

.

In fact, the sum here is only over those i` such that
∑ i`

r`
≥ m

2 (1− 3ε), because
many of the derivatives vanish.

We have that q
rj
j ≥ q

r1
1 , so

(qi11 · · · qimm ) ≥ (qr11 )
i1
r1 (qr11 )

i2
r2 · · · (qr11 )

im
rm ≥ (qr11 )

m
2 (1−3ε).

59



We also know qr11 ≥ q
rj/(1+ε)
j , so the above is

≥ (qr11 · · · qrmm )
1
2

(1−3ε)
1+ε ≥ (qr11 · · · qrmm )

(1−5ε)
2 .

So
Q(
p1

q1
, . . . ,

pm
qm

) ≤ Cr1+···+rm2r1+···+rm(qr11 · · · qrmm )−
(2+δ)(1−5ε)

2 ,

now we win if can overcome the constant. But we know qδj ≥ some constant,
which gives us that

Q(
p1

q1
, . . . ,

pm
qm

) ≤ 1

qr11 · · · q
rm
m
,

thus is zero.

Now we move on to proving the final proposition, which is the heart of the
proof of Roth’s theorem.

Proposition 7 (Roth’s Lemma). Let ω = ω(m, ε) = 24
2m

(
ε

12

)2m−1

. Let rj be
a rapidly decreasing sequence in the sense that rjω ≥ rj+1. Let q

rj
j ≥ qr11 ,

qωj ≥ 23m is large. P = P (x1, . . . , xm) is a polynomial for which the de-
gree in xj is ≤ rj, and all coefficients are ≤ qωr11 . Then the index of P at
(p1q1 , · · · ,

pm
qm
, r1, . . . , rm) is ≤ ε.

Proof. Induction on m.
Base case m = 1. ω(1, ε) = ε. P (x) has coefficients ≤ qεr11 . Gauss’ Lemma:

(q1x− p1)t|P (x) over Z[x] implies t ≤ εr1.
Induction step. Assume the lemma for m− 1, and show it for m. Consider

all expressions

P (x1, . . . , xm) =

m∑
j=1

φj(x1, . . . , xm−1)ψj(xm),

where φj and ψj are polynomials over Q. Eg. ψj(xm) = xj−1
m , k = rm + 1,

and we have such a decomposition. Pick such a decomposition with k minimal.
We know at least that k ≤ rm + 1. (φ1, . . . , φk) and (ψ1, . . . , ψk) are linearly
independent over Q or R. E.g.

∑
cjφj = 0; ck 6= 0, φk = − 1

ck
(c1φ1 + · · · +

ck1φk−1).

P =

k−1∑
j=1

φjψj −
1

ck

k−1∑
j=1

(cjφj)ψk =

k−1∑
j=1

φj(ψj −
cj
ck
ψk).

We now need to introduce the Generalized Wronskian. Let f1, . . . , fn be
functions of one variable, t. The the Wronskian is

W (t) := det

∣∣∣∣∣∣∣∣∣
f1 · · · · · · fn
f ′1 · · · · · · f ′n
...

...

f
(n−1)
1 · · · · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣
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If f1, . . . , fn are dependent, then the Wronskian is identically zero, but the
converse is not true. But the Wronskian vanishes identically iff f1, . . . , fn are
linearly dependent on some subinterval. Now we define the generalized Wron-
skian in m variables: f1, . . . , fn in (x1, . . . , xm). Consider

∆i1,...,im :=
di1+···+im

dxi11 · · · dx
im
m

1

i1! · · · im!
,

which is an operator of order i1 + · · · + im. If f1, . . . , fn are nice, and linearly
independent, then there exists differential operators ∆i of order at most i − 1
such that

det

∣∣∣∣∣∣∣∣∣
∆1f1 · · · · · · ∆1fn
∆2f1 · · · · · · ∆2fn

...
...

∆nf1 · · · · · · ∆nfn

∣∣∣∣∣∣∣∣∣ 6≡ 0,

i.e. the ∆i is one of the ∆i1,...,im defined above with i1 + · · ·+ im ≤ i− 1.

Now, P (x1, . . . , xm) =
∑k
j=1 φj(x1, . . . , xm−1)ψj(xm). Let

U(xm) = det

(
1

(i− 1)!

di−1

dxi−1
m

ψj(xm)

)
1≤i,j≤k

be a polynomial which is not identically zero. Also let

V (x1, . . . , xm−1) = det (∆iφj(x1, . . . , xm−1))1≤i,j≤k ,

and W (x1, . . . , xm) be the determinant of the product of these two, i.e.

W (x1, . . . , xm) = det

(
k∑
r=1

(∆iφj(x1, . . . , xm−1))
1

(j − 1)!

dj−1

dxj−1
m

ψr(xm)

)
1≤i,j≤k

= V (x1, . . . , xm−1)U(xm)

= det

(
∆i

1

(j − 1)!

dj−1

dxj−1
m

P (x1, . . . , xm)

)
1≤i,j≤k

.

This is a polynomial in x1, . . . , xm over Z. It is not identically zero because U ,
V weren’t. Let θ be the index of P at (p1q1 , . . . ,

pm
qm
, r1, . . . , rm), and λ be the

index of W at (p1q1 , . . . ,
pm
qm
, r1, . . . , rm). We will use the inductive hypothesis of

Roth’s theorem to prove

Lemma 5.

λ ≤ kε2

6
.

Then one can get a lower bound for λ in terms of θ and this will complete
the proof.

Remark: We have relations with the index function, Ind(P1P2) = Ind(P1) +
Ind(P2), and Ind(P1 + P2) ≥ min(Ind(P1), Ind(P2)).
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17 Roth’s Theorem III

We need to prove Roth’s lemma. We have the following relations among our
parameters:

• ω = ω(m, ε) = 24
2m

(
ε

12

)2m−1

.

• The ri are rapidly decreasing: ωrj ≥ rj+1.

• qrjj ≥ q
r1
1 .

• qωj ≥ 23m.

Let P be a polynomial with integral coefficients in the variables (x1, . . . , xm),
where the degree in xj is ≤ rj , and the coefficients are ≤ qωr11 . Then the index
of P at (p1q1 , . . . ,

pm
qm
, r1, . . . , rm) is at most ε.

Morally speaking, this lemma says that a polynomial with small integer
coefficients cannot vanish to high order.

Proof. By induction. The case m = 1 followed by Gauss’ Lemma.
We were working on the induction step m − 1 → m, with m ≥ 2. Idea: we

peel off the last coefficient:

P (x1, . . . , xm) =

k∑
j=1

φj(x1, . . . , xm−1)ψj(xm)

which is a factorization over Q. E.g. ψj(xm) = xj−1
m , writing it this way we

have k ≤ rm + 1. Of all possible decompositions of this type, we choose one
with k minimal. Then φ1, . . . , φk are linearly independent and ψ1, . . . , ψk are
linearly independent over R (using minimality). Then we let

U(xm) = det

(
1

(i− 1)!

di−1

dxi−1
m

ψj

)
1≤i,j≤k

,

and it is not identically zero. φi are linearly independent over R implies that
there is some generalized Wronskian

V (x1, . . . , xm−1) = det(∆iφj)1≤i,j≤k,

where ∆i are differential operators of order ≤ i − 1. We can choose such a
generalized Wronskian which is not identically zero.

Now we put these two Wronskians together and define:

W (x1, . . . , xm)

= V (x1, . . . , xm−1)U(xm)

= det

(
k∑
r=1

∆iφr
1

(j − 1)!

dj−1

dxj−1
m

ψr

)

= det

(
∆i

1

(j − 1)!

dj−1

dxj−1
m

P

)
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Let θ be the index of P . Our goal is to prove θ ≤ ε. Let λ be the index
of W . If θ is large then λ is large. In other words, we’ll get a bound for λ in

terms of θ. We’ll show the lemma that λ ≤ kε2

6 . This is where the induction
hypothesis will be used. It is easy to see that

Ind(P1P2) = Ind(P1) + Ind(P2)

and
Ind(P1 + P2) ≥ min(Ind(P1), Ind(P2)).

Now, let’s deduce Roth’s lemma from this sublemma. So, we derive the
bound on θ from the bound on λ. The defining determinant for W is a sum of

k! terms. The index of ∆i
dj−1

dxj−1
m

P is ≥ θ− i1
r1
−· · ·− im−1

rm−1
− (j−1)

rm
. Recall definition

of ∆i, derivatives in each variable to orders i1, . . . , im−1, with
∑
i` ≤ i− 1. In

fact,

Ind(∆i
dj−1

dxj−1
m

P ) ≥ θ − i1
r1
− · · · − im−1

rm−1
− (j − 1)

rm

≥ θ − (i1 + · · ·+ im−1)

rm − 1
− (j − 1)

rm

≥ θ − k − 1

rm−1
− (j − 1)

rm

≥ θ − rm
rm−1

− (j − 1)

rm

≥ θ − ω − (j − 1)

rm
.

And ω is at most ε2. The index is always ≥ 0, hence

λ = Ind(w) ≥
k∑
j=1

max(0, θ − ω − (j − 1)

rm
),

which implies that

λ+ ωk ≥
k∑
j=1

max(0, θ − j − 1

rm
).

So at this point, we’ve justified (with some computations) our claim that there

is an upper bound for θ in terms of λ. So, using the lemma, kε2

4 ≥ λ + kω.
When is this better than just using 0?

Case 1 θ ≥ k−1
rm

. Then θk
2 ≤ θk − k(k−1)

2rm
≤ kε2

4 , which implies that θ ≤
ε2

2 < ε.

Case 2 θ ≤ k−1
rm

. Then kε2

4 ≥
∑
j≤θrm+1(θ − j−1

rm
) = θ(bθrmc + 1) −

(bθrm+1c)bθrmc
2rm

≥ θ
2 (bθrmc + 1) ≥ θ2rm

2 . This implies θ ≤ ε
√

k
2rm
≤ ε. Recall

that k ≤ rm + 1.
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There are two more things we need to do to complete the proof: prove the
lemma and prove some results we are using about Wronskians. Let’s prove the
lemma.

Proof (of sublemma): We can assume that we have a factorization of the form
W = U∗V ∗ with U∗ and V ∗ having integer coefficients. Now we bound the
coefficients of W. The coefficients of

∆i
1

(j − 1)!

dj−1

dxj−1
m

P (x1, . . . , xm)

are
≤ qωr11 2r1+···+rm

and the number of monomials in this is

≤ (r1 + 1) · · · (rm + 1) ≤ 2r1+···rm

so the coefficients of W are

≤ k!(terms in product)(4r1+···+rmqωr11 )k ≤ (23mr1qωr11 )k ≤ q2ωr1k
1 .

The the coefficients of U∗ and V ∗ are≤ the coefficients ofW , which are≤ q2ωr1k
1 .

So

Ind(U∗(xm)) ≤ kε2

12
,

so
(qmxm − pm)t|U∗(xm)

in Z[xm]. This in turn implies that

qtm ≤ q
2ωr1k
1 ⇒ t =

2ωr1k log q1

log qm
≤ 2ωkrm ⇒ Index =

t

rm
≤ 2ωk ≤ kε2

12
.

But we can bound the index of V ∗ in the same way, using the induction

hypothesis for m− 1 variables. Take ω(m− 1, ε
2

12 ) = 2ω(m, ε), so our bound for

coefficients of W is ≤ q2ωr1k
1 = qω(m−1, ε

2

12 ). Take ε→ ε2

12 , r1 → kr1, . . . , rm−1 →
krm−1. So the hypotheses of Roth’s Lemma are met with these replacements.
So Roth’s Lemma gives that

Ind(V ∗ at (
p1

q1
, . . . ,

pm−1

qm−1
, kr1, . . . , krm−1)) ≤ ε2

12

hence

Ind(V ∗ at (
p1

q1
, . . . ,

pm−1

qm−1
, r1, . . . , rm−1)) ≤ kε2

12
.

(We could have done the same for U∗, but we worked it out explicitly instead).
So we’ve proven Roth’s Lemma.
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Also, there’s Falting’s product theorem, which is an improvement of Roth’s
lemma. See also the recent article by Bostan and Dumes in AMM Oct 2010.
We should still say something about Wronskains. We want to say something

like “If f1, . . . , fn are in one variable, t, and det
(
di−1

dxi−1 fj

)
1≤i,j≤n

≡ 0 then the

f1, . . . , fn are linearly dependent”. But this isn’t quite possible, as the following
example illustrates:

Example 2 (Peano). Let f1(t) = t2, and f2(t) = t|t|. Then the Wronskian of
these two functions is ≡ 0, but f1 and f2 are linearly independent over R.

But, of course, they are dependent functions on (0,∞) or (−∞, 0). It turns
out that this is as bad as things can ever get. We’ll show that if the Wronskian
is ≡ 0 on an interval, then the functions are linearly dependent on a subinterval
thereof.

Let f1, . . . , fn ∈ K[[t]].

1. fi = ait
di , ai not zero, d1, . . . , dn distinct, Wronskian 6≡ 0.

det

 a1t
d1 · · · ant

dn

a1d1t
d1−1 · · · andnt

dn−1

...

 = (a1 · · · an)td1+···+dn−n(n−1)
2 .

This is basically just a Vandermonde determinant.
1 1 · · · 1
d1 d2 · · · dn

d1(d1 − 1) d2(d2 − 1) · · · dn(dn − 1)
...


So use the result on Vandermondes.

2. fi find binomial of least degree. Assume f1 = a1t
d1 + · · · , f2 = a2t

d2 +
· · · , . . . , with d1 < d2 < · · · < dn. Strict inequality by row operations.

Next class: finish the m variable case: f1(x1, . . . , xm), . . . , fn(x1, . . . , xm). x1 =

t, x2 = td, x3 = td
2

, . . . , xm = td
m−1

. d very large. Apply the result for the one
variable case.

18 Wronskians, p-adic Roth, Applications

Wronskians. Let f1, . . . , fn ∈ K[[t]]. If f1, . . . , fn are linearly independent,

then det
(
di−1

dti−1 fj

)
1≤i,j≤n

6≡ 0. Now, let f1, . . . , fn in x1, . . . , xm, fj polynomi-

als. If fj are linearly independent, then some generalized Wronskian is 6≡ 0.
To show this, we reduce to the one variable case. Let d be large so that

(d − 1) exceeds the degrees of xj for all polynomials. x1 = t, x2 = td, x3 =
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td
2

, . . . , xm = td
m−1

. And xa11 · · ·xamm = ta1+a2d+···+amdm−1

. aj ≤ d − 1 so that
distinct monomials give distinct powers of t. Let

Fj(t) = fj(t, t
d, . . . , td

m−1

).

If fj are linearly independent, then Fj is linearly independent. So then

det

(
di−1

dti−1
Fj

)
1≤i,j≤n

6≡ 0,

d

dt
Fj =

d

dt
fj(t, t

d, . . . , td
m−1

) =
d

dx1
fj(t, . . . , t

dm−1

) + (dtd−1)
d

dx2
(fj(· · · )) + · · ·

so

di−1

dti−1
Fj = linear combination of ∆i1,...,imfj(x1, . . . , xm)|(t,td,...,tdm−1 )

where the coefficients are fixed polynomials in t. Now that we’ve proven the
necessary fact about Wronskians, the proof of Roth’s theorem is complete.

A quick review of the proof of Roth’s theorem would be:

1. There exists P (x1, . . . , xm), of degrees r1, . . . , rm with large index at (x1, . . . , xm, r1, . . . , rm).
The proof was by Thue-Siegel and is very general.

2. If we have a polynomial of this type and if
pj
qj

are very good approxima-

tions to α, then the index at (p1q1 , . . . ,
pm
qm

) is � εm. (Take Taylor expan-

sion, many of the first terms vanish, so it’s a very good approximation.)
Pi1,...,im(p1q1 , . . . ,

pm
qm

) estimate using Taylor approximations. ≥ 1
q
r1
1 ···q

rm
m

if

not zero.

3. P (x1, . . . , xm); coefficients are small, ωrj ≥ rj+1. Index at (p1q1 , . . . ,
pm
qm

) is
≤ ε.

These three things are contradictory. The proof of 3. is quite involved. Re-
capitulation of proof: Pick P (x1, . . . , xm) =

∑k
j=1 φj(x1, . . . , xm)ψj(xm) with

k minimal, φ1, . . . , φk linearly independent, ψ1, . . . , ψk. Construct out of this
some generalized Wronskian which is 6≡ 0. Can still maintain control on the
coefficients of W .

W (x1, . . . , xm) = V (x1, . . . , xm−1)U(xm) = det

(
∆i

1

(j − 1)!

dj−1

dxj−1
m

P (x1, . . . , xm

)
i,j

.

So control of the coefficients of W requires control of the coefficients of U, V .
Induction on Roth’s lemma shows that the index of U, V is small. So the index
of W is small, which implies that the index of P is small. This last implication
involves taking like a square root, ε2 → ε, so this is why we needed ω ≈ ε2

m

.
We take the square root because when you take a derivative, you lose some-
thing on the index. Then add it all up. One way to think about this proof is
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that P (x1, . . . , xm) has some crazy singularity at α, α, . . . , α, but going to the
Wronskian resolves exactly what the singularity looks like.

Now we want a p-adic version of Roth. Facts 1. and 3. don’t refer to the
archemedian place, so they don’t change. However, fact 2. has to change, but
the revision won’t take too much effort. The original proof mostly goes through,
so we’ll get a p-adic Roth’s theorem by the same general proof. We can also
handle several places at once.

• Mahler: p-adic Diophantine approximation.

• Ridout: p-adic version of Roth

• LeVeque: Roth for number fields, i.e. |α − β|, whereβ ∈ K, in terms of
the height of β.

Together, Ridout and LeVeque’s results imply the following theorem of Lang:

Theorem 26 (Lang). Let K be a number field. Let S be a finite set of places
in K. For each v ∈ S, select an algebraic number αv. Then

0 <
∏
v∈S

min(1, |αv − β|v) ≤
1

H(β)2+δ

has only finitely many solutions for any δ > 0.

Where |p|p = 1
p , |x|p =

∏
v|p |x|v, and H(β) :=

∏
v∈K max(1, |β|v) is a new

height function which we’ll talk about in more detail next week. It’s sometimes
called the “Mahler measure for β”. It has very interesting properties. For
example,

H(ζ) = 1⇔ ζis a root of unity.

Also, note that H(pq ) = max(|p|, |q|). Another interesting fact: this height

admits dealing with αj = ∞. What is ∞ − β? If we define ∞ − β := β−1,
everything works correctly.

Corollary 9. Let α be a real algebraic number. Take a decimal expansion:
0.x1x2x3 . . .. For every n, let `(n) be the smallest number such that xn+`(n) 6= 0.

À priori, Roth gives that |α − (··· )
10n | >

1
10(2+ε)n , so `(n) ≤ (1 + ε)n. In fact,

`(n) = o(n).

Proof. Let S = {∞, 2, 5}, α∞ = α, α2 =∞, α5 =∞. So∣∣∣∣α2 −
(· · · )
10n

∣∣∣∣
2

=

∣∣∣∣ 10n

(· · · )

∣∣∣∣
2

= 2−n,

so ∣∣∣∣α− (· · · )
10n

∣∣∣∣ 1

2n
1

5n
≤ 1

10n(2+δ)
.

Which shows that eventually, `(n) ≤ δn for any δ.
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Another use of Roth’s theorem: Application to S-unit equation. u+ v = 1,
K a number field, S a finite set of places including all of the infinite places.
Then u + v = 1 has only finitely many solutions (effectively!) This was a
corollary of Baker’s theorem. Now Roth gives an ineffective way of solving the
S-unit equation, but its proof is instructive, and gives a bound for the number
of solutions (Evertse’s theorem).

Proof (of finitely many solutions): Takem an integer large compared to s = |S|.
If u + v = 1, we get a finite number of equations αxm + βym = 1, with x, y
S-units. If u + v = 1 has infinitely many solutions, then one of these also has
infinitely many solutions, by pigeonhole principle. So for that α, β,(

x

y

)m
+
β

α
=

1

αym
.

So want to say that we can find a solution with y large in some valuation in our
set. Let w ∈ S be such that maxv∈S |y|v = |y|w. So for a fixed w ∈ S, and α, β,
there are infinitely many solutions to

β

α
+

(
x

y

)m
=

1

αym
.

The left hand side is

=
∏
ζm=1

(
x

y
− ζm

m

√
−β
α

)
,

so there exists ζ with ∣∣∣∣∣xy − ζm m

√
−β
α

∣∣∣∣∣
w

≤ fracC|y|mw

So for fixed ζ, ζ ′,∣∣∣∣∣xy − ζm m

√
−β
α

∣∣∣∣∣
w

+

∣∣∣∣∣xy − ζ ′m m

√
−β
α

∣∣∣∣∣
w

≥

∣∣∣∣∣(ζ − ζ ′) m

√
−β
α

∣∣∣∣∣
w

.

This shows that if one factor in the product is very small, then the rest must
be large, so sufficient to take the minimal one. So if |y|w is large, we get a
contradiction to Roth’s theorem.

|y|w ≥

(∏
v∈S

max(1, |y|w)

)1/s

= H(y)1/s

so
c

|y|mw
≤ C

H(y)m/s
.

If m = 2s+ 1, contradiction.
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A good place to look for a proof of the p-adic Roth’s theorem: Hindry and
Silverman: Diophantine Geometry, part D.

A theorem which has become quite fashionable in the past 10 years is the
Schmidt subspace theorem. Here is an application due to Bugeowd, Corvaj and
Zannier: gcd(2n − 1, 3n − 1) ≤ exp(εn) if n large, for any ε > 0.

Here’s another application due to Stewart (recently posted to the arxiv):
Let P (m) be the largest prime dividing m. Then

P (2n − 1)

n
→∞

as n→∞.
Finally, a result of Adamczewski and Bugeowd says that any irrational num-

ber which comes from a finite automaton is transcendental.
Take x1, x2, . . . with values in 0 ≤ xj ≤ b − 1. Look at any word length n.

Is this a subword of x1x2 · · · ? Let ρ(n) be the number of length n words that
appear as subwords. Then the theorem of Adamczewski and Bugeowd says that
if α is a real algebraic number, and we write its base b expansion, then

lim
n→∞

ρ(n)

n
=∞.

This doesn’t prove normalness, but says it is complemented.
A finite automaton is a sort of algorithm which a binary number as it’s input,

and another binary number as output. An example of a finite automation is

X
0
))

1

		

Y1ii

0
~~

Z0 88

1

HH

Here’s how it works. Say we have a string of 0s and 1s which we are to read
in to this machine. We assign an output value to each state, say, X outputs 1, Y
outputs 1, and Z outputs 0. And say the machine starts in state X. Then if we
read in the digits 01101..., say, then the machine moves to states Y,X,Z, Z,X,
and hence outputs 11001...

19 The Subspace Theorem; Mahler Measure

Last time we discussed applications of the subspace theorem, but we didn’t
actually say what it is. Roth’s theorem can be viewed as a special case of the
subspace theorem. In the language of the subspace theorem, Roth’s theorem
would be

Theorem 27 (Roth’s Theorem, subspace version). Let L1(x, y) and L2(x, y)
be two linear forms in two variables, linearly independent over Q, and with
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algebraic coefficients. Then

|L1(x1, x2)L2(x1, x2)| ≤ (max(|x1|, |x2|))−δ

for δ ≥ 0 has only finitely many solutions.

So, if we take L2(x1, x2) = x2, and L1(x1, x2) = x1−αx2, and α ∈ Q\Q, we
recover Roth’s theorem. If L1 is small, then L2 is large.

Theorem 28 (Subspace Theorem (Schmidt)). Let L1, . . . , Ln be linear forms
in x1, . . . , xn with coefficients in Q, linearly independent over Q. Then if

|L1(x1, . . . , xn) · · ·Ln(x1, . . . , xn)| ≤ (max |x1|, . . . , |xn|)−δ

for any δ > 0 then the solutions (x1, . . . , xn) are contained in finitely many
proper subspaces of Qn.

Here is an example to show that subspaces are actually necessary. Consider
the following linear forms:

L1 = x1 +
√

2x2 +
√

3x3

L2 = x1 +
√

2x2 −
√

3x3

L3 = x1 −
√

2x2 −
√

3x3.

For the purposes of this example, we take the subspace of Q3 defined by x3 = 0.
Then, consider the infinitely many solutions to Pell’s equation x2

1−2x2
2 = 1, say

with x1 > 0 and x2 < 0 so that x1 +
√

2x2 is small. Then for any one of these
infinitely many solutions,

|L1L2L3| = |x1 +
√

2x2| ≤
1

x1 −
√

2x2

≤ (max |x1|, |x2|)−δ,

for many choices of δ.
There is also a p-adic version of this due to Schlickewei.
Now we discuss more applications and classical extensions of Roth’s theorem.

Corollary 10. If α1, . . . , αk are algebraic with 1, α1, . . . , αk linearly indepen-
dent, then there are finitely many solutions to q1+δ||qα1|| · · · ||qαk|| ≤ 1 over
Q.

Here || · || is the distance to the nearest integer function. Roth’s theorem is
the case k = 1. Here is a related famous conjecture:

Conjecture 8 (Littlewood). Given any two numbers α, β, real, prove that

lim inf
q→∞

q||qα||||qβ|| = 0

The best result we have so far is due to Lindenstrauss, who proved that the
Hausdorff dimension of the set of counterexamples to this conjecture is 0.
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Proof. We deduce the corollary from the subspace theorem. Let n = k+ 1, and{
Lj(x) = αjxn − xj 1 ≤ j ≤ k
Ln(x) = xn j = n.

So that
L1(x) · · ·Ln(x) = xn||xnα1|| · · · ||xnαk|| ≤ x−δn

A solution (x1, . . . , xn) to the above condition lies in a proper subspace of Qn.
Say that this subspace is defined by the equation

n∑
j=1

cjxj = 0, c1, . . . , cn ∈ Q.

Denote (x1, . . . , xn) = (p1, . . . , pk, q). Then

c1(α1q − p1) + · · ·+ ck(αkq − pk) = (c1α1 + · · ·+ ckαk + cn)q � q.

Thus the q is bounded in terms of the cj , so there are finitely many such solu-
tions.

Corollary 11. Let α ∈ Q. Approximate α, by all algebraic numbers β of degree
≤ d. Then there are finitely many solutions to 0 < |α − β| ≤ Ht(β)−d−1−δ.
(Ht(·) denotes the näıve height.)

Corollary 12. If α1, . . . , αk are linearly independent and algebraic, then

|x1α1 + · · ·+ xkαk| ≤ (max |x1|, . . . , |xk|)−k+1−δ

has finitely many solutions.

The above corollary again recovers Roth’s theorem. The proof uses a pigeon-
hole argument, assuming there are infinitely many solutions with (· · · )−k+1. For
these facts, see the article by Bilu in the Seminaire Bourbaki.

Now we move on to discuss Mahler measure of polynomials. (N.B. The
Mahler measure isn’t a measure at all, but actually another height function
with nice properties). Let f(x1, . . . , xn) be a polynomial. Then we define

M(f) := exp

(∫ 1

0

· · ·
∫ 1

0

log |f(e(θ1), . . . , e(θn))| dθ1 · · · dθn
)
.

For example, if f(x) = adx
d + · · ·+ a0 = ad

∏d
j=1(x− ρj), then

M(f) = |ad|
∏
j

max(1, |ρj |).

For α ∈ Q, we can put M(α) := M(f), where f is the minimal polynomial of
α. We also have that

M(α) = H(α)degα,
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where H(·) is the absolute height defined in a previous lecture by

H(α) =
∏

v∈places

max(1, |α|v),

where the absolute values are normalized so that |x|p =
∏
v|p |x|v.

Two interesting properties are: 1. If σ ∈ Gal(Q/Q), then H(σα) = H(α),
and 2. H(1/α) = H(α). Reference: the book of Bombieri and Gubler.

Let’s think a little more about Mahler measure. How small can the Mahler
measure get? It’s always at least 1, which is immediate from the above. When
is the Mahler measure exactly 1?

Theorem 29 (Kronecker).

M(α) = 1⇔ α is a root of unity

Proof. We can assume without loss of generality that α is an integer and a unit.
Let α = α1, . . . , αd be the conjugates of α, |αj | = 1. For ` ∈ Z,

d∏
j=1

(1− α`j) ∈ Z

(it’s a symmetric function). It is not zero: if it were, α would be a root of unity.
So for all ` 6= 0,

d∏
j=1

|1− α`j | ≥ 1

. Now, express the αj in the form αj = e(θj). By Dirichlet’s theorem, we find
an ` such that ||`θj || ≤ 1/10 for all j, say. Contradiction.

We can quantify the above proof. If α has degree d and α 6= a root of unity.
Then M(α) ≥ 1 + cC−d, for c, C > 0. Let 0 < rj ∈ R, and αj = rje(θj),∏
rj = 1. Then

M(α) =
∏

(1− rje(`θj)),

and there exists ` 6= 0 with |`| ≤ 100d, and ||`θj || ≤ 1/10 for all j, and we can
quantify exactly when Dirichlet’s theorem kicks in to produce this `.

There is a nicer version of this argument due to Blansky and Montgomery
(1971), and they find

M(f) ≥ 1 +
1

52d log(6d)
,

except if f is cyclotomic.
Here’s another interesting problem concerning Mahler Measure: Consider

the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1 = 0.
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It has a unique real root α0 with α0 > 1, and 1/α0 < 1, and the remaining 8
roots are complex and on the unit circle. One computes that M(α0) = α0 =
1.1762898. Then there is the following

Conjecture 9 (Lehmer). α0 is minimal with respect to Mahler measure, i.e. if
M(α) < α0, then α is a root of unity.

Remark: Consider the unit equation u + v = 1, and solve it over Q(α0).
There are finitely many solutions. In fact, there are 2532 solutions.

Smyth proved: If α is algebraic, and if 1/α is not conjugate to α, then
M(α) ≥ 1.32471 . . . = β0, which is the solution to x3 − x − 1 = 0, and that
this is optimal. Motivated by this, we define a Pisot-Vijayaragharan number α
to be a real algebraic number > 1 all of whose conjugates are < 1 in absolute
value. Smyth’s theorem recovers an old result of Siegel, that is, that the smallest
Pisot-Vijayaragharan number is β0.

A Salem number is defined to be a real algebraic number α > 1 with all other
conjugates ≤ 1 in size, and some conjugate on the unit circle. It is conjectured
that Lehmer’s example is the smallest Salem number.

Exercise 2 (Smyth).

logM(1 + x+ y) =
3
√

3

4π
L(2, χ−3)

Conjecture 10 (Deninger).

logM(x+
1

x
+ y +

1

y
+ 1) =

15

4π2
L(E, 2)

where the L-function is normalized so that L(E, s) = L(2− s, E), and E =
x+ 1

x + y+ 1
y + 1 = 0. Refrences: Boyd’s article in Experimental Mathematics,

and Rodriguez-Villegas.

20 Bilu’s and Dobrowolski’s Theorems

Recall last time we defined the Mahler measure of an algebraic number α. If
f(x) = adx

d + · · · + a0 ∈ Z[x] is the minimal polynomial of α, then M(α) =

|ad|
∏d
j=1 max(1, |αj |). There is a beautiful

Theorem 30 (Bilu). If M(α) = exp(o(d)), then the roots α1, . . . , αd are equidis-
tributed around the unit circle.

In fact, the roots actually lie in an annulus surrounding the unit circle, whose
width approaches 0 as d→∞. There is also

Theorem 31 (Erdös-Turan). Let
∑d
j=0 ajx

j with small coefficients in the sense

that
∑d
j=0 |aj | = exp(o(d)). Then the zeros of f(x) become equidistributed as

d→∞.
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Proof (sketch). In reality, all but o(d) zeros satisfy 1 − ε ≤ |αj | ≤ 1 + ε. We’ll
introduce a small cheat: Pretend that the zeros actually lie on the unit circle:
αj = e(θj). This isn’t actually true, but it’s within epsilon of being true, so to
speak, i.e. is fixable.

We have that there is an integer

0 6= disc(f) = a2d−2
d

∏
j 6=k

(αj − αk)

and

0 ≤ log(disc) = (2d−2) logαd+
∑
j 6=k

log |αj−αk| = o(d2)+
∑
j 6=k

log |1−e(θj−θk)|.

Applying the talyor expansion for log, this is

≤ o(d2)−
∑
`≤L

1

`

∑
j 6=k

e((θj − θk)`) +O(d2/L)

= o(d2) +O(d logL) +O(d2/L)−
∑
`≤L

1

`

∣∣∣∣∣∣
d∑
j=1

e(`θj)

∣∣∣∣∣∣
2

For each fixed `, if
d∑
j=1

e(`θj) = o(d)

then the θj are equidistributed. Reference: Bilu: Duke Math Journal, 1997.

A particularly nice case of this circle of ideas: x + y = 1, x, y algebraic,
and of small height has finitely many solutions. A theorem of Zagier states that
apart from sixth roots of unity,

H(x)H(y) ≥

(
1 +
√

5

2

)1/2

.

There is also a theorem of Dobrowolski from 1978:

M(α) ≥ 1 + c

(
log log d

log d

)3

,

where c = 1 − ε. Dobrowolski’s theorem is a work-out of an approach first
suggested by Cam Stewart using transcendence methods, so he deserves credit
as well. We’ll finish the course with a proof of Dobrowolski’s theorem.
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Proof. We can assume without loss of generality that α is not a root of unity,
and that α is a unit. Let f(x) be it’s minimal polynomial, say of degree d. We
will construct an auxiliary polynomial F (x) of degree n− 1:

F (x) =

N∑
j=1

ajx
j−1

with the aj integers. We want to keep the aj small, and choose them so that
F (α), . . . , F (m−1)(α) are all zero for some parameter M . (N , M large), i.e.
f(x)M |F (x). Our plan, as usual is to use Siegel’s lemma to attack this. There
are Md coefficients, so .....it should be OK but there is one caveat: we must pay
attention to the dependency on α. So we must make some changes to Siegel:

Lemma 6 (Siegel’s Lemma Revisited). Let bij ∈ OK , and K be a number field
of degree d = r1 + 2r2. Let{

σ1, . . . , σr1 real embeddings

σr+1, . . . , σr1+r2 , σr1+r2+1, . . . , σr1+2r2 complex embeddings

Then, for j = 1, . . .M , there is a nontrivial solution to

N∑
i=1

bijxi = 0

in xi with

|xi| ≤ Y = (2
√

2N)
dM

N−dM

∏
k,j

maxσk(bij)
1

N−dM

 .

Proof. The proof is the same, we take the box principle and figure out what
happens. Take 0 ≤ yi ≤ Y , so that the number of tuples is = Y N . Now we edit
a little the definition of the Galois embeddings. Let

τi = σi if i ≤ r1

τr1+1, . . . , τr1+r2 Re(σi)

τr1+r2+1, . . . , τr1+2r2 |Im(σi)|.

Look at the numbers

τk

(
N∑
i=1

bijxi

)
∈ [−Y N max |Tk(bij), Y N max |Tk(bij)],

and divide it into Lj boxes for each j. The number of boxes is
∏M
j=1 L

d
j . By box

principle, we find two vectors in the same box, and after taking their difference,
to find a choice of xi for which
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∣∣∣∣∣τk
(

N∑
i=1

bijxi

)∣∣∣∣∣ ≤ 2Y N maxi |τk(bij)|
Lj

so for k ≤ r1, ∣∣∣∣∣σk
(

N∑
i=1

bijxi

)∣∣∣∣∣ ≤ 2Y N maxi |σk(bij)|
Lj

and for r1 ≤ k ≤ r1 + r2,

σk

(∑
bijxi

)
σk+r2

(∑
bijxi

)
= τk

(∑
bijxi

)2

+ τk+r2

(∑
bijxi

)2

≤
(

2Y N

Lj

)2 (
max
i
|τk(bij)|2 + max

i
|τk+r2(bij)|2

)
≤ 2

(
2Y N

Lj

)2

max
i
|σkσk+r2(bij)|

so that

N
(∑

bijxi

)
≤ 2r2

(
2Y N

Lj

)d d∏
k=1

max
i
|σk(bij)|.

Now we choose

Lj ≥
√

2(2Y N)

d∏
k=1

max
i
|σk(bij)|1/d

The constraint is then that

(2
√

2Y N)dM
d∏
k=1

M∏
j=1

max
i
|σk(bij)| ≤ Y N ,

and we use the usual Siegel’s Lemma at this stage. So then the correct choice
of Y is

Y = (2
√

2N)
dM

N−dM

∏
k,j

maxσk(bij)
1

N−dM


as in the statement of the lemma.

Now, back to the construction of the auxiliary polynomial:

F (x) =

N∑
j=1

ajx
j−1

F (r)(α) = r!
∑

aj

(
j − 1

r

)
αj−1−r = 0.
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Let bir = r!
(
i−1
r

)
αi−1−r, so that for r ≤M − 1

max
i
|σkbir| ≤ Nr max(1, |σk(α)|)N

so that ∏
k,r

max
i
|σk(bir)| ≤ N

M(M−1)d
2 M(α)NM

so by the revised Siegel’s lemma, F exists with |aij | ≤ Y ,

Y =
(

2
√

2N1+M−1
2 M(α)N/d

) dM
N−Md

,

with M large, N ≥ 2dM2; |ai| ≤ 5N2M(α)M ≤ 10N2. So we’re happy if
M(α)M ≥ 2.

Now comes the tricky part. Let p a prime, p ∈ [P, 2P ], say. I claim that
F (αp) = 0 in suitable ranges.

Lemma 7. If α is an algebraic number, and not a root of unity, with conjugates
α1, . . . , αd, then

1. αri 6= αsj for any i, j, r, s.

2. ∣∣∣∣∣∣
∏
i,j

(αpi − αj)

∣∣∣∣∣∣ ≥ pd
Proof. The first statement is straightforward Galois Theory. For the second,

fp(x) =

d∏
i=1

(x− αpi ) = f(x) + pg(x)

and ∏
j

fp(αj) =

d∏
j=1

pg(αj).

Now we work towards the claim preceding the lemma. If F (αp) 6= 0, then∏d
j=1 F (αpj ) is divisible by

∏
j f(αpj )

M , so that∣∣∣∣∣∣
d∏
j=1

F (αpj )

∣∣∣∣∣∣ ≥ pdM,

and also the left hand side of this is

≤ (10N3)d
d∏
j=1

(max(1, |αj |))pN = 10N3M(α)pN
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so either these are all zero or the Mahler measure is large. So, either

F (αp) = 0 OR M(α)pN (10N3)d ≥ pdM

so that pM ≥ N6 and

M(α) ≥
(

pM

10N3

) d
pN

≥ exp

(
dM

2N

log p

p

)
So win if this second bound is contradicted. Else, for p ∼ P, F (αp) = 0. Fact:
Except for ≤ log d/ log 2 special primes, deg(αp) = deg(α) = d. F is divisible
by fp(x). (True for one root, so true for all roots). But then this F is over-
divisible, i.e. N ≥ dP

logP , else we’re OK. Now, just have to choose N,M, p to get

the optimal result. Take N = 2dM2, pM ≥ N6 so that M = (const) log d
log log d . We

get a contradiction if p
log p ≥

N
d , that is P ≥ 5M2(logM), or P ∼ (log d)2

log log d . Then
from above, we must have

M(α) ≥ exp

(
1

4M

logP

P

)
= exp(c

(
log log d

log d

)3

).
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