Let F be a totally real field. A Hilbert cuspidal eigenform f over F of weights ≥ 2 gives rise to an ℓ-adic representation $\text{Gal}(\overline{F}/F) \to \text{GL}_2(\overline{\mathbb{Q}}_\ell)$ for each prime ℓ. The local behavior of these representations at each prime p of F is captured in a family of Weil-Deligne representations $\rho_{f,p}: W_{F_p} \to \text{GL}_2(\mathbb{C})$, unramified for p not dividing the level of f and satisfying the usual trace and determinant conditions.

Let another family $\{\rho_p\}$ be given which is unramified almost everywhere, and let a vector of weights k be given satisfying a certain compatibility condition with respect to $\{\rho_p\}$. We show that f can almost always be chosen so that $\rho_{f,p}$ matches ρ_p on inertia. (“Almost always” means there are finitely many exceptional cases up to twisting.)