MATH 215A: MIDTERM EXAMINATION SOLUTIONS

NOVEMBER 1, 2011

1. Let f and g be holomorphic functions in a region (that is, connected and open)
Q, and suppose that |f(z)| + |g(z)| is constant for all z € Q. Prove that f and g
are both constants.

Solution. Suppose |f(z)| + |g(z)| = A for all z € Q. Let w be a point in © and let
D be the disk of radius r centered at w and contained entirely in €2. By the Cauchy
formula we have for any ro < r

(1) f(w) = 1 /(z) dz = L f(w + re®)db.
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holds, then by adding to it the corresponding triangle inequality for g
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we would obtain
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which is a contradiction. Therefore we may assume that the equality
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holds for all 0 < ro < r. But this is only possible if f(w + roe?®) always points in
the same direction; that is f(w +1e?’) € R>e’® for some ¢ and all § € [0,27) and
all 0 < rg < r. The image of the open disk |z — w| < r is then contained in a line,
contradicting the open mapping theorem unless f is constant.

Solution 2 (suggested by work of Li Liu). In the problem we may freely multiply
f and ¢ by unimodular constants et and e2. In this way, we may choose a
point w € Q and assume that both f(w) and g(w) are real and positive. But then

f(w) + g(w) = [f(w)] + [g(w)] = A, and [f(2) + g(2)| < [f(2)| + |9(2)] = A for
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all z € Q. That is |f + g| attains a maximum at the point w € Q which is only
possible if f + g = A is constant. Moreover we have for all points z €  that
|f(2) + g(2)] = |f(2)| + |g(2)| which is only possible if the points f(z), g(z) and
f(2) + g(2) = A are all real and positive, and gives that f and g are constants.

2. Let Q be the region obtained by deleting from the complex plane the real line
segments [0, 1], [2,3] and [4,5].
(a). Given a holomorphic function f on 2 and a cycle « in 2, what can you say

about
/ f(2)dz?
~

(b). Construct a holomorphic function f on € such that for any cycle v in Q
one has

/ f(z)dz = nie + nom + ngt,
-

for some integers ny, ng, and ns.

Solution. (a) Put I; = [0,1], I = [2,3] and I3 = [4,5]. We can pick cycles v1, Y2,
~3 such that the y; winds around points in I; once but not around any points in I
or I3; 7o winds around points in I once but not points around I; or I3 and lastly
~v3 winds around points in I3 once but not points around I; or I5. Any cycle v is
homologous in €2 to a cycle nyy; + novy2 + nzys for some integers ny, ny and n3. By
Cauchy’s theorem we have

Lf(z)dz:nl/%fdz+n2L2fdz+n3/y3fdz.

(b) Let 1, 72 and 73 be as above, and put

f(z) = %(2_61/2 + Z_W5/2 + 2—19/2).

This is holomorphic on €2, and we have

fdz =e, fdz =, / fdz =1.
3

71 Y2

(a) Let f be an entire function with f(y/n) = 0 for all n € N, and suppose that
f is not identically zero. Prove that f must have order at least 2, and that there
exists such a function of order 2.

(b) If f is an entire function of order p then prove that f’ is also an entire
function of order p, and conversely.

Solution. (a) If f has order p then in the disc |z| < R it can have at most CRPT€
zeros. But f has at least cR? zeros here, and therefore p > 2. An example of such
a function of order 2 is sin(mz?).
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(b). By the Cauchy formula

ST R (C
f (w) B 2mi /|z—w|:1 (Z - w)Qd ’

and so if f has order p (so that |f(z)] < C;exp(]z]?T€)) we conclude that
[ (w)] < Crexp((Jw] +1)77),

and so f’(w) has order at most the order of f.
Conversely, if the order of f’ is p, then using f(z) = fOZ f'(w)dw+ f(0), (integrate
along the straight line joining 0 and z, say) we deduce that f has order at most p.
Thus the order of f’ is bounded by the order of f and conversely, and so the two
orders are equal.

4. By considering the lines of integration {x € R}, and {z+i,z € R}, or otherwise,

prove that (i)
/OO du
e te w27

/°° u?du B 3
o €te v 8

and (ii)

Solution. (i) By the residue theorem we have

s €Yt e —ootir €Y+ e u=ir/2 €* + e~ ¥

Note that e* +e~% = je(v=97/2) _je=u+im/2 — 9j(y —ix /2) +..., and so the residue
above is 1/(2i). Moreover, writing u = z + i,

oo+t du o'} daj
/—oo—H'ﬂ' et +e v /—oo —ev — 6_x7

/°° du /°° dx
- @@ @@ - - + 7'('7

from which (i) follows.
(ii) As above we find that

0o 2 oo+ 2 2
udu U , u
——du = ——du+2m Res ———.
P e —cotin €Y e u=ir/2 e¥ + e~

and so we have

The residue above is (ir/2)?/(2i), and writing u = x + im we have
oo+ 2 [e'e) . N\

/ I / lztim)”
co+4im e’ +e " —00 —etf —e "

< g2 [ x o [0 dx
:—/ md“‘—m/ md“”/ E——
— 00 —00 —o0
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The middle integral is zero by symmetry, and the last term is 73/2 by part (i).
Thus we conclude that

o) 2 o] 2 3 3
/ %d“:—/ e+ 5 - T
o ¥t e o €T+ e 2 4

and so (ii) follows.

5. Let n > 2 and set P, (z) = 2"+3z+1. Show that P, (z) has exactly one zero inside
the unit disc, and its remaining n — 1 zeros lie in the annulus 1 < |z| < 4%/("=1),

Solution. Note that on |z| = 1 we have 3 = [3z| > |2 + 1|, and so by Rouche’s
theorem, P, (z) and 3z have the same number of zeros inside the unit disc, namely
one.
On |z| = 47~V note that |2"| = 4|z| > |3z + 1], and so by Rouche P,(z) and
2" have the same number of zeros in |z| < 41/("=1) . This completes the proof.



