
MATH 215A: MIDTERM EXAMINATION SOLUTIONS

November 1, 2011

1. Let f and g be holomorphic functions in a region (that is, connected and open)
Ω, and suppose that |f(z)| + |g(z)| is constant for all z ∈ Ω. Prove that f and g
are both constants.

Solution. Suppose |f(z)|+ |g(z)| = A for all z ∈ Ω. Let w be a point in Ω and let
D be the disk of radius r centered at w and contained entirely in Ω. By the Cauchy
formula we have for any r0 ≤ r

(1) f(w) =
1

2πi

∫
|z−w|=r0

f(z)
z − w

dz =
1
2π

∫ 2π

0

f(w + r0e
iθ)dθ.

If the strict triangle inequality

|f(w)| < 1
2π

∫ 2π

0

|f(w + r0e
iθ)|dθ

holds, then by adding to it the corresponding triangle inequality for g

|g(w)| ≤ 1
2π

∫ 2π

0

|g(w + r0e
iθ)|dθ,

we would obtain

A = |f(w)|+ |g(w)| < 1
2π

∫ 2π

0

(|f(w + reiθ)|+ |g(w + reiθ)|)dθ < A,

which is a contradiction. Therefore we may assume that the equality

|f(w)| =
∣∣∣ 1
2π

∫ 2π

0

f(w + r0e
iθ)dθ

∣∣∣ =
1
2π

∫ 2π

0

|f(w + r0e
iθ)|dθ

holds for all 0 < r0 ≤ r. But this is only possible if f(w + r0e
iθ) always points in

the same direction; that is f(w + r0e
iθ) ∈ R≥0e

iφ for some φ and all θ ∈ [0, 2π) and
all 0 ≤ r0 ≤ r. The image of the open disk |z − w| < r is then contained in a line,
contradicting the open mapping theorem unless f is constant.

Solution 2 (suggested by work of Li Liu). In the problem we may freely multiply
f and g by unimodular constants eiθ1 and eiθ2 . In this way, we may choose a
point w ∈ Ω and assume that both f(w) and g(w) are real and positive. But then
f(w) + g(w) = |f(w)| + |g(w)| = A, and |f(z) + g(z)| ≤ |f(z)| + |g(z)| = A for
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all z ∈ Ω. That is |f + g| attains a maximum at the point w ∈ Ω which is only
possible if f + g = A is constant. Moreover we have for all points z ∈ Ω that
|f(z) + g(z)| = |f(z)| + |g(z)| which is only possible if the points f(z), g(z) and
f(z) + g(z) = A are all real and positive, and gives that f and g are constants.

2. Let Ω be the region obtained by deleting from the complex plane the real line
segments [0, 1], [2, 3] and [4, 5].

(a). Given a holomorphic function f on Ω and a cycle γ in Ω, what can you say
about ∫

γ

f(z)dz?

(b). Construct a holomorphic function f on Ω such that for any cycle γ in Ω
one has ∫

γ

f(z)dz = n1e + n2π + n3i,

for some integers n1, n2, and n3.

Solution. (a) Put I1 = [0, 1], I2 = [2, 3] and I3 = [4, 5]. We can pick cycles γ1, γ2,
γ3 such that the γ1 winds around points in I1 once but not around any points in I2

or I3; γ2 winds around points in I2 once but not points around I1 or I3 and lastly
γ3 winds around points in I3 once but not points around I1 or I2. Any cycle γ is
homologous in Ω to a cycle n1γ1 +n2γ2 +n3γ3 for some integers n1, n2 and n3. By
Cauchy’s theorem we have∫

γ

f(z)dz = n1

∫
γ1

fdz + n2

∫
γ2

fdz + n3

∫
γ3

fdz.

(b) Let γ1, γ2 and γ3 be as above, and put

f(z) =
1

2πi

( e

z − 1/2
+

π

z − 5/2
+

i

z − 9/2

)
.

This is holomorphic on Ω, and we have∫
γ1

fdz = e,

∫
γ2

fdz = π,

∫
γ3

fdz = i.

3.
(a) Let f be an entire function with f(

√
n) = 0 for all n ∈ N, and suppose that

f is not identically zero. Prove that f must have order at least 2, and that there
exists such a function of order 2.

(b) If f is an entire function of order ρ then prove that f ′ is also an entire
function of order ρ, and conversely.

Solution. (a) If f has order ρ then in the disc |z| < R it can have at most CRρ+ε

zeros. But f has at least cR2 zeros here, and therefore ρ ≥ 2. An example of such
a function of order 2 is sin(πz2).
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(b). By the Cauchy formula

f ′(w) =
1

2πi

∫
|z−w|=1

f(z)
(z − w)2

dz,

and so if f has order ρ (so that |f(z)| ≤ C1 exp(|z|ρ+ε)) we conclude that

|f ′(w)| ≤ C1 exp((|w|+ 1)ρ+ε),

and so f ′(w) has order at most the order of f .
Conversely, if the order of f ′ is ρ, then using f(z) =

∫ z

0
f ′(w)dw+f(0), (integrate

along the straight line joining 0 and z, say) we deduce that f has order at most ρ.
Thus the order of f ′ is bounded by the order of f and conversely, and so the two

orders are equal.

4. By considering the lines of integration {x ∈ R}, and {x+πi, x ∈ R}, or otherwise,
prove that (i) ∫ ∞

−∞

du

eu + e−u
=

π

2
,

and (ii) ∫ ∞

−∞

u2du

eu + e−u
=

π3

8
.

Solution. (i) By the residue theorem we have∫ ∞

−∞

du

eu + e−u
=

∫ ∞+iπ

−∞+iπ

du

eu + e−u
+ 2πi Res

u=iπ/2

1
eu + e−u

.

Note that eu +e−u = ie(u−iπ/2)− ie−u+iπ/2 = 2i(u− iπ/2)+ . . . , and so the residue
above is 1/(2i). Moreover, writing u = x + iπ,∫ ∞+iπ

−∞+iπ

du

eu + e−u
=

∫ ∞

−∞

dx

−ex − e−x
,

and so we have ∫ ∞

−∞

du

eu + e−u
= −

∫ ∞

−∞

dx

ex + e−x
+ π,

from which (i) follows.
(ii) As above we find that∫ ∞

−∞

u2du

eu + e−u
du =

∫ ∞+iπ

−∞+iπ

u2

eu + e−u
du + 2πi Res

u=iπ/2

u2

eu + e−u
.

The residue above is (iπ/2)2/(2i), and writing u = x + iπ we have∫ ∞+iπ

−∞+iπ

u2

eu + e−u
du =

∫ ∞

−∞

(x + iπ)2

−ex − e−x
dx

= −
∫ ∞

−∞

x2

ex + e−x
dx− 2iπ

∫ ∞

−∞

x

ex + e−x
dx + π2

∫ ∞

−∞

dx

ex + e−x
.
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The middle integral is zero by symmetry, and the last term is π3/2 by part (i).
Thus we conclude that∫ ∞

−∞

u2

eu + e−u
du = −

∫ ∞

−∞

x2

ex + e−x
dx +

π3

2
− π3

4
,

and so (ii) follows.

5. Let n ≥ 2 and set Pn(z) = zn+3z+1. Show that Pn(z) has exactly one zero inside
the unit disc, and its remaining n− 1 zeros lie in the annulus 1 < |z| < 41/(n−1).

Solution. Note that on |z| = 1 we have 3 = |3z| > |zn + 1|, and so by Rouche’s
theorem, Pn(z) and 3z have the same number of zeros inside the unit disc, namely
one.

On |z| = 41/(n−1) note that |zn| = 4|z| > |3z + 1|, and so by Rouche Pn(z) and
zn have the same number of zeros in |z| < 41/(n−1). This completes the proof.


