Math 215 Problem Set 3

Solutions

October 31, 2011

$1 \quad 2.6.10$

We show that every continuous function that can be uniformly approximated by polynomials is holomorphic. Suppose p_n converges uniformly to f. Then for any triangle T we have $\int_T f(z)dz = \int_T \lim_{n \to \infty} p_n(z)dz = \lim_{n \to \infty} \int_T p_n(z)dz = 0$ by the uniform convergence. Morera's theorem shows not that f is holomorphic.

2 Problem 2.7.4

First we prove that there is at least one bounded component of K^c . K is bounded since it is compact, which means that it is contained in a disk of sufficiently large radius. This means that the complement of this disc lies in one connected component of K^c and thus there is at most one unbounded component of K^c and since it is disconnected we get that there is at least one bounded one.

Let z_0 be an arbitrary point in one of the bounded components S of K^c . Let $f = \frac{1}{z-z_0}$. Obviously f is holomorphic in a neighborhood of K. Suppose f can be approximated uniformly with polynomials. This means that there is a polynomial p such that |f(z) - p(z)| < 1 for all $z \in K \Rightarrow |(z - z_0)p(z) - 1| < 1$. Consider $g(z) = (z - z_0)p(z) - 1$, then g is holomorphic in the entire complex plane and |g(z)| < 1 for each $z \in K$. Since $\partial S \subset \partial K^c \subset \partial K \subset K$ we have that |g(z)| < 1 for each $z \in \partial S$, since S is a connected domain from the maximum modulus principle we have that |g(z)| < 1 for each $z \in S$ which is a contradiction since $z_0 \in S$ and $g(z_0) = 1$.

3 Problem 3.8.18

We want to show that $\int_C \frac{f(z) - f(\xi)}{z - \xi} d\xi = 0$. The holomorphicity of f implies that $\frac{f(z) - f(\xi)}{z - \xi}$ is bounded when ξ is close to z since it is closed to f'(z). Suppose $|\frac{f(z) - f(\xi)}{z - \xi}| < A$. Now the circle $C(z, \epsilon)$ is holomorphic to C in $\mathbf{C} - z$ and therefore $|\int_C \frac{f(z) - f(\xi)}{z - \xi} d\xi| = |\int_{C(z,\epsilon)} \frac{f(z) - f(\xi)}{z - \xi} d\xi| \le \int_C |\frac{f(z) - f(\xi)}{z - \xi}| d\xi \le 2\pi\epsilon$ and this can be made arbitrary small.

4 Problem 3.8.21

(b) Let $\gamma : [0,1] \to \Omega$ be a curve. We show it is homotopic to the constant curve $\gamma': [0,1] \to \Omega$ given by $\gamma'(x) = z_0$. The function $H: [0,1] \times [0:1] \to \Omega$ defined by $H(x,t) = t\gamma(x) + (1-t)z_0$ is clearly continuous and gives a homotopy between γ and γ' . We need the star-shapedness of Ω to be sure that all values of H will be inside it. Now we shot that every two curves with common endpoints are homotopic with a homotopy that fixes the endpoints. Let $\gamma, \gamma' : [0,1] \to \Omega$ are two curves with common endpoints. We have two homotopies (not fixing endpoints) H and H' from γ and γ' to the contant curve z_0 respectively. Let the domain of H' be the square in \mathbb{R}^2 with corners (0,0), (1,0), (1,1), (0,1) such that $H'(t,1) = z_0$. Let the domain of H be the square (0,1), (1,1), (1,2), (0,2) such that $H(t,1) = z_0$. Since H and H' agree on the intersection we can glue the two domains together and think of a function G defined on the union (the rectangle (0,0), (1,0), (1,2), (0,2). We extend G to the triangle (0,1), (0,0), (-1,1) such that it is a constant on each line segment of the form x + y = c for all $c \in [0, 1]$. Do the same on the rectangle (1,1), (2,1), (1,0) this time G is a constant on the lines x-y=cfor $c \in [0,1]$. In the same way we extend G on the upper triangles (0,1), (0,2), (-1,1)and (1, 2), (1, 1), (2, 1). The domain of G is a hexagon and the value of G on the two left sides is $\gamma(0) = \gamma'(0)$, the value on the two right sides is $\gamma(1) = \gamma'(1)$, the value on the bottom side is γ' and the value on the top is γ . We deform this hexagon to be the unit square to get the desired endpoint fixing homotopy.

(c) Any set that is homeomorphic to a disk is simply connected. That is any set with no "holes" in it - for example the interior of an simple polygon (event if it is not convex or star-shaped).

5 Problem 3.8.22

Consider $g(r) = \int_{|z|=r} f(z)dz$. Cauchy theorem implies that g(r) = 0 for all r < 1. Now since $f|_{\partial D} = 1/z$ we have $\lim_{r \to 1} \int_{|z|=r} f(z)dz = \int_{|z|=1} \frac{1}{z}dz = \frac{2}{\pi i} \neq 0$. Contradiction.

6 Problem 5.6.3

Let $t = Im(\tau)$. Then we have by the triangle inequality $|\Theta(z|\tau)| \le \sum_{n=\infty}^{\infty} e^{-\pi n^2 t + 2n|z|}$.

For large enough n, i.e. $n \geq \frac{4|z|}{t}$ we have $\frac{n^2}{2} \geq 2n|z|$ and adding $-n^2t$ we get $-n^2t + 2n|z| \leq -n^2t/2$. Using that to estimate the sum for big |n| we get that $|\Theta(z|t)| \leq \sum_{n \leq -4|z|/t} e^{-\pi n^2 t + 2\pi n|z|} + \sum_{|n|>4|z|/t} e^{-\pi n^2 t + 2\pi n|z|} \leq \sum_{n \leq -4|z|/t} e^{-\pi n^2 t + 2\pi n|z|} + \sum_{|n|>4|z|/t} e^{-n^2 t/2}$.

Every summand in the first sum is bounded by e^{An^2} for some A and since n is bounded by 4|z|/t the first sume is bounded by $8|z|/te^{A(4|z|/t)^2} \le e^{B|z|^2}$ for some B. The second sum is convergent since the sum since t > 0 and therefore the function Θ has order 2.

7 Problem 5.6.5

First we show that $-\frac{|t|^{\alpha}}{2} + 2\pi |z||t| \leq c|z|^{\frac{\alpha}{\alpha-1}}$ for some constant c. This is equivalent to $2\pi |z||t| \leq c|z|^{\frac{\alpha}{\alpha-1}} + \frac{|t|^{\alpha}}{2}$. If $|z| \leq \frac{|t|^{\alpha-1}}{4\pi}$ then $2\pi |z||t| \leq \frac{|t|^{\alpha}}{2}$ and we are done. If $|z| > \frac{|t|^{\alpha-1}}{4\pi}$ then for some $c = \frac{2\pi}{(4\pi)^{\frac{1}{\alpha-1}}}$ we have $2\pi |z||t| \leq c|z|^{\frac{\alpha}{\alpha-1}}$ and again we are done.

Usint this inequality we get $|F_{\alpha}(z)| \leq \int_{-\infty}^{\infty} e^{-|t|^{\alpha}} e^{2\pi|z|.|t|} dt = \int_{-\infty}^{\infty} e^{\frac{-|t|^{\alpha}}{2}} e^{\frac{-|t|^{\alpha}}{2} + 2\pi|z||t|} \leq e^{|z|^{c\alpha/(\alpha-1)}} \int_{-\infty}^{\infty} e^{\frac{-|t|^{\alpha}}{2}} = de^{|z|^{c\alpha/(\alpha-1)}}$

8 Problem 5.7.1

Fix N and let D(0,R) contains the first N zeroes of f. Let $S_N = \sum_{k=1}^{N} (1 - |z_k|) =$

 $\sum_{k=1}^{N} \int_{|z_k|}^{1} 1dr.$ Let η_k be the characteristic function of the interval $[|z_k|, 1]$. We have $S_N = \sum_{k=1}^{N} \int_0^1 \eta(r) dr = \int_0^1 (\sum_{k=1}^{N} \eta_k(r)) dr \leq \int_0^1 n(r) dr$, where n(r) is the number of zeroes of f at the disk D(0, r). For $r \leq 1$ we have $n(r) \leq \frac{n(r)}{r}$. This means that $S_N \leq \int_0^1 n(r) \frac{dr}{r}$. If f(0) = 0 then we have $f(z) = z^m g(z)$ for some integer m and some holomorphic g with $g(0) \neq 0$. The other zeroes of f are precisely the zeroes of g. Thus we have reduced the problem to $f(0) \neq 0$. By the Corollary of the Jensen's equality we get $S_N \leq \int_0^1 n(r) \frac{dr}{r} = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\pi})| d\phi - \log |f(0)| < M$ since f is bounded. The partial sums of the series are boundend and therefore the series converges.

9 Additional problem

Let $g(z) = \frac{z+1}{z-1}$. Fix $z_0 \in \Omega$ and define $f(z) = c + \int_{z_0}^z \frac{f'(\xi)}{f(\xi)} d\xi$ where integration is over any curve connecting z_0 to z and lying inside in Ω and c is a constant for which $e^c = g(z_0)$. To show that this is well-defined we need to show that the integral does not depend on the choice of the curve. To show that we need to show that $\sum_{\gamma} \frac{g'}{g} = 0$ for any closed curve $\gamma \subset \Omega$. By the geometry of Ω it is clear that the point -1 is in the interior of γ if and only if the point 1 is also in the interior of γ . If neither of those points is in the interior then the integral over γ is by the Cauchy theorem. If not calculating the residues we see that $res_{g'/g}(-1) + res_{g'/g}(1) = 0$ and therefore the integral is zero by the residue formula. Now defining f that way we have f' = g'/g and by Cauchy integral

formula we get that $e^g = f$ or $g = \log f$. To define $f = \sqrt{1-z^2}$ we notice that $\sqrt{1-z^2} = (1-z)\sqrt{\frac{1+z}{1-z}} = (1-z)\sqrt{g(z)}$. Now we define $\sqrt{g} = e^{1/2 \log g}$ which we can do since the $\log g$ is well-defined in Ω .

Locally the antiderivative of $f(z) = \frac{1}{\sqrt{1-z^2}}$ is $\arcsin z = -i \ln(iz + \sqrt{1-z^2})$. Let γ be a cicle that goes exactly one time around the points 1 and -1, i.e. $Ind_1(\gamma) = 1$. Pick any two points $a, b \in \gamma$. We can define two different branches of arcsin on neighborhoods of the two arcs connecting a and b. Call the two branches \arcsin_1 and \arcsin_2 . Then $\int_{\gamma} f(z)dz = \arcsin_1(a) - \arcsin_1(b) + \arcsin_2(b) - \arcsin_2(a).$ If we define the branches to agree on b then since the difference of the values of log on different branches is $2\pi i$ we have $\arcsin_1(a) - \arcsin_2(a) = -i2\pi i = 2\pi$. Thus if the curve goes around 1 and -1 once the integral is 2π . Now by Cauchy theorem on homotopic curves it follows that $\int_{\Sigma} f(z)dz = 2\pi Ind_1(\gamma)$ as we can homotope a closed curve of winding number n to n closed curves of winding number 1.