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1 2.6.10

We show that every continuous function that can be uniformly approximated by polyno-
mials is holomorphic. Suppose pn converges uniformly to f . Then for any triangle T we

have

∫
T
f(z)dz =

∫
T

lim
n→∞

pn(z)dz = lim
n→∞

∫
T
pn(z)dz = 0 by the uniform convergence.

Morera’s theorem shows not that f is holomorphic.

2 Problem 2.7.4

First we prove that there is at least one bounded component of Kc. K is bounded since
it is compact, which means that it is contained in a disk of sufficiently large radius. This
means that the complement of this disc lies in one connected component of Kc and thus
there is at most one unbounded component of Kc and since it is disconnected we get
that there is at least one bounded one.
Let z0 be an arbitrary point in one of the bounded components S of Kc. Let f = 1

z−z0 .
Obviously f is holomorphic in a neighborhood of K. Suppose f can be approximated
uniformly with polynomials. This means that there is a polynomial p such that |f(z)−
p(z)| < 1 for all z ∈ K ⇒ |(z − z0)p(z) − 1| < 1. Consider g(z) = (z − z0)p(z) − 1,
then g is holomorphic in the entire complex plane and |g(z)| < 1 for each z ∈ K. Since
∂S ⊂ ∂Kc ⊂ ∂K ⊂ K we have that |g(z)| < 1 for each z ∈ ∂S, since S is a connected
domain from the maximum modulus principle we have that |g(z)| < 1 for each z ∈ S
which is a contradiction since z0 ∈ S and g(z0) = 1.

3 Problem 3.8.18

We want to show that

∫
C

f(z)− f(ξ)

z − ξ
dξ = 0. The holomorphicity of f implies that

f(z)−f(ξ)
z−ξ is bounded when ξ is close to z since it is closed to f ′(z). Suppose |f(z)−f(ξ)z−ξ | <

A. Now the circle C(z, ε) is holomorphic to C in C−z and therefore |
∫
C

f(z)− f(ξ)

z − ξ
dξ| =

|
∫
C(z,ε

f(z)− f(ξ)

z − ξ
dξ| ≤

∫
C
|f(z)− f(ξ)

z − ξ
|dξ ≤ 2πε and this can be made arbitrary small.

1



4 Problem 3.8.21

(b) Let γ : [0, 1] → Ω be a curve. We show it is homotopic to the constant curve
γ′ : [0, 1] → Ω given by γ′(x) = z0. The function H : [0, 1] × [0 : 1] → Ω defined by
H(x, t) = tγ(x) + (1 − t)z0 is clearly continuous and gives a homotopy between γ and
γ′. We need the star-shapedness of Ω to be sure that all values of H will be inside it.
Now we shot that every two curves with common endpoints are homotopic with a ho-
motopy that fixes the endpoints. Let γ, γ′ : [0, 1] → Ω are two curves with common
endpoints. We have two homotopies (not fixiing endpoints) H and H ′ from γ and γ′ to
the contant curve z0 respectively. Let the domain of H ′ be the square in R2 with cor-
ners (0, 0), (1, 0), (1, 1), (0, 1) such that H ′(t, 1) = z0. Let the domain of H be the square
(0, 1), (1, 1), (1, 2), (0, 2) such that H(t, 1) = z0. Since H and H ′ agree on the intersection
we can glue the two domains together and think of a function G defined on the union (the
rectangle (0, 0), (1, 0), (1, 2), 0, 2)). We extend G to the triangle (0, 1), (0, 0), (−1, 1) such
that it is a constant on each line segment of the form x+ y = c for all c ∈ [0, 1]. Do the
same on the rectangle (1, 1), (2, 1), (1, 0) this time G is a constant on the lines x− y = c
for c ∈ [0, 1]. In the same way we extend G on the upper triangles (0, 1), (0, 2), (−1, 1)
and (1, 2), (1, 1), (2, 1). The domain of G is a hexagon and the value of G on the two left
sides is γ(0) = γ′(0), the value on the two right sides is γ(1) = γ′(1), the value on the
bottom side is γ′ and the value on the top is γ. We deform this hexagon to be the unit
square to get the desired endpoint fixing homotopy.
(c) Any set that is homeomorphic to a disk is simply connected. That is any set with
no ”holes” in it - for example the interior of an simple polygon (event if it is not convex
or star-shaped).

5 Problem 3.8.22

Consider g(r) =

∫
|z|=r

f(z)dz. Cauchy theorem implies that g(r) = 0 for all r < 1. Now

since f |∂D = 1/z we have lim
r→1

∫
|z|=r

f(z)dz =

∫
|z|=1

1

z
dz =

2

πi
6= 0. Contradiction.

6 Problem 5.6.3

Let t = Im(τ). Then we have by the triangle inequality |Θ(z|τ)| ≤
∞∑

n=∞
e−πn

2t+2n|z|.

For large enough n, i.e. n ≥ 4|z|
t we have n2

2 ≥ 2n|z| and adding −n2t we get −n2t +
2n|z| ≤ −n2t/2. Using that to estimate the sum for big |n| we get that |Θ(z|t)| ≤∑
n≤−4|z|/t

e−πn
2t+2πn|z| +

∑
|n|>4|z|/t

e−πn
2t+2πn|z| ≤

∑
n≤−4|z|/t

e−πn
2t+2πn|z| +

∑
|n|>4|z|/t

e−n
2t/2.

Every summand in the first sum is bounded by eAn
2

for some A and since n is bounded
by 4|z|/t the first sume is bounded by 8|z|/teA(4|z|/t)2 ≤ eB|z|

2
for some B. The second

sum is convergent since the sum since t > 0 and therefore the function Θ has order 2.
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7 Problem 5.6.5

First we show that − |t|
α

2 + 2π|z||t| ≤ c|z|
α
α−1 for some constant c. This is equivalent to

2π|z||t| ≤ c|z|
α
α−1 + |t|

α

2 . If |z| ≤ |t|
α−1

4π then 2π|z||t| ≤ |t|
α

2 and we are done. If |z| > |t|α−1

4π

then for some c = 2π

(4π)
1

α−1
we have 2π|z||t| ≤ c|z|

α
α−1 and again we are done.

Usint this inequality we get |Fα(z)| ≤
∫ ∞
−∞

e−|t|
α
e2π|z|.|t|dt =

∫ ∞
−∞

e
−|t|α

2 e
−|t|α

2
+2π|z||t| ≤

e|z|
cα/(α−1)

∫ ∞
−∞

e
−|t|α

2 = de|z|
cα/(α−1)

8 Problem 5.7.1

Fix N and let D(0, R) contains the first N zeroes of f. Let SN =

N∑
k=1

(1 − |zk|) =

N∑
k=1

∫ 1

|zk|
1dr. Let ηk be the characteristic function of the interval [|zk|, 1]. We have

SN =
N∑
k=1

∫ 1

0
η(r)dr =

∫ 1

0
(
N∑
k=1

ηk(r))dr ≤
∫ 1

0
n(r)dr, where n(r) is the number of

zeroes of f at the disk D(0, r). For r ≤ 1 we have n(r) ≤ n(r)
r . This means that

SN ≤
∫ 1

0
n(r)

dr

r
. If f(0) = 0 then we have f(z) = zmg(z) for some integer m and some

holomorphic g with g(0) 6= 0. The other zeroes of f are precisely the zeroes of g. Thus
we have reduced the problem to f(0) 6= 0. By the Corollary of the Jensen’s equality

we get SN ≤
∫ 1

0
n(r)

dr

r
=

1

2π

∫ 2π

0
log |f(Reiπ)|dφ− log |f(0)| < M since f is bounded.

The partial sums of the series are boundend and therefore the series converges.

9 Additional problem

Let g(z) = z+1
z−1 . Fix z0 ∈ Ω and define f(z) = c +

∫ z

z0

f ′(ξ)

f(ξ)
dξ where integration is

over any curve connecting z0 to z and lying inside in Ω and c is a constant for which
ec = g(z0). To show that this is well-defined we need to show that the integral does not

depend on the choice of the curve. To show that we need to show that
∑
γ

g′

g
= 0 for any

closed curve γ ⊂ Ω. By the geometry of Ω it is clear that the point −1 is in the interior
of γ if and only if the point 1 is also in the interior of γ. If neither of those points is
in the interior then the integral over γ is by the Cauchy theorem. If not calculating the
residues we see that resg′/g(−1) + resg′/g(1) = 0 and therefore the integral is zero by
the residue formula. Now defining f that way we have f ′ = g′/g and by Cauchy integral
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formula we get that eg = f or g = log f .

To define f =
√

1− z2 we notice that
√

1− z2 = (1− z)
√

1+z
1−z = (1− z)

√
g(z). Now we

define
√
g = e1/2 log g which we can do since the log g is well-defined in Ω.

Locally the antiderivative of f(z) = 1√
1−z2 is arcsin z = −i ln(iz +

√
1− z2). Let γ be a

cicle that goes exactly one time around the points 1 and -1, i.e. Ind1(γ) = 1. Pick any
two points a, b ∈ γ. We can define two different branches of arcsin on neighborhoods
of the two arcs connecting a and b. Call the two branches arcsin1 and arcsin2. Then∫
γ
f(z)dz = arcsin1(a) − arcsin1(b) + arcsin2(b) − arcsin2(a). If we define the branches

to agree on b then since the difference of the values of log on different branches is 2πi
we have arcsin1(a) − arcsin2(a) = −i2πi = 2π. Thus if the curve goes around 1 and -1
once the integral is 2π. Now by Cauchy theorem on homotopic curves it follows that∫
γ
f(z)dz = 2πInd1(γ) as we can homotope a closed curve of winding number n to n

closed curves of winding number 1.
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