
MATH215A, HW2

Solutions

10/18/11

Problem 1. 3.1

sinπz = eiπz−e−iπz
2i . sinπz = 0 ⇔ eiπz = e−iπz ⇔ e2iπz = 1 ⇔ z ∈ Z.

Zero of order 1 is equivalent to order 1 of the pole of 1/ sinπz. The second we
get by seeing that limz→0

z
sinπz = 1/π (if the order was not 1 then that limit

would not converge). The residue is 1/π (the function is clearly periodic so
the residues at the even integers are all 1/π and by the fact that it’s odd we
get that the residues at odd integers are −1/π).

Problem 2. 3.14

Look at f(1/z). If it has an essential singularity at 0, then pick any
z0 6= 0. Now we know that the range of f is dense as z → 0. We also know
that the image of f in some small ball around z0 contains a ball around
f(z0). But this means that the image of f around this ball intersects the
image of f in any arbitrarily small ball around 0 (because of the denseness).
Thus, f cannot be injective. So the singularity at 0 is not essential, so
f(1/z) is some polynomial of 1/z, so f is some polynomial of z. If its degree
is more than 1 it is not injective (fundamental theorem of algebra), so the
degree of f is 1.

Problem 3. 3.15

a) Let g(z) = f(1/z). Then we have that sup|z|=R |g(z)| ≤ A/Rk +B ⇒
sup|z|=R |zkg(z)| ≤ A+ B ∗ Rk, so zkf(1/z) is bounded around 0, so it has
a non-essential singularity at 0, so f has a non-essential singularity at ∞,
so it is a polynomial. The fact that the degree is ≤ k follows directly, since
it is trivial that for large enough z ∈ R P (z) > 0 for any polynomial with
positive first coefficient.

b) We can do a FLT to make the circle into the line Re(z) = 1/2 (h(z) =
1/(z+ 1)). Then the inner circle becomes the right half-plane. Then we can
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rotate this s.t. we get the upper half-plane with removed the (0, 1) interval.
But we have a theorem (Schwarz reflection principle) that says that we can
extend f on the lower half-plane as well. But then we have a set on which
f is constantly 0, so f is constantly 0.

c) Look at p(z) = (z − w1)...(z − wk). We have |p(0)| = 1. But the
maximum principle we have that there is a point on the circle for which
|p(z)| ≥ 1, which is what we wanted. Since |p(z)| is continuous on the circle
and p(w1) = 0 we have by the intermediate value theorem that there is a z
for which |p(z)| = 1.

d) Look at ef(z). This is also entire and |ef(z)| = |eRe(f(z))|, so it is
bounded. So it is constant. So f(z) is constant.

Problem 4. 3.16

a) f has a unique zero at z = 0, so it is bounded from below on the
circle. g is analytic so it is bounded from above on the circle (compact set).
Thus, there is an ε > 0 s.t. |f | > ε|g| on the circle, so the number of zeros
of f and f + εg in the disk is the same.

b) Suppose it is not. Then there exists a x ∈ (0, ε) s.t. there exists a
sequence x1, ... converging to x s.t. the sequence zx1 , ... doesn’t converge
to zx. But the disk is a compact set, so this sequence has a convergent
subseqence converging to, say, z0. WLOG let lim zxi = z0. But then, if
|(f + xg)(z0)| = k > 0. In particular, there is some ball around z0 s.t.
|f + xg| > k/2 in this ball. So then if we pick a close enough xi to x (with
i big enough s.t. zxi is in this ball), using the fact that g is bounded from
above, we will get that |(f +xig)(zxi)| > 0, which is a contradiction. So the
function is continuous.

Problem 5. 3.17

a) Suppose it does not contain a root. Then 1/f(z) is holomorphic. But
then by the maximum principle (since again |1/f(z)| = 1 on the circle),
we have that |f(z)| = 1 in the entire disk. But an analytic non-constant
function cannot have constant absolute value (since it is an open map), so
we have a contradiction. So we have a root of f(z) = 0. But now Rouche’s
theorem tells us that f(z) = w has a root for every w in the unit disk (since
on the circle |f | = 1 > |w|).

b) The exact same argument works - again we look at 1/f(z) and since
we already have a point for which |f(z)| < 1 ⇒ |1/f(z)| > 1, this cannot
be analytic in the unit disk. Thus, f has a zero, after which we can again
apply Rouche’s Theorem.
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Problem 6. 3.2

1/(x4 + 1) = 1
2i(1/(x

2− i)− 1/(x2 + i)) = 1
2i(

1
2a(1/(x− a)− 1/(x+ a))−

1
2b(1/(x−b)−1/(x+b))), where a = eiπ/4, b = e3iπ/4. Now, integrating along
the contour consisting of a big upper semicircle of radius R and [−R,R] and
using the fact that the integral along the semicircle converges to 0 (trivial -
length grows linearly, the integrand grows like R−4) we get that the integral
equals 2πi

2i ( 1
2a + 1

2b) = π/2(eiπ/4 + e−iπ/4) = π
√

2/2 (we only care about the

poles in the upper half-plane). The poles are eiπ/4, e3iπ/4,e
−3iπ/4

, e−iπ/4.

Problem 7. 3.3

cosx = eix+e−ix

2 . changing x → −x we see that we can just integrate
eix/(x2 + a2) and we’ll get the same answer. Again, we use the same semi-
circle and part of the real line. The only pole is x = ia, it has order 1 and
the residue at it is limx→ia

eix

x2+a2
(x − ia) = e−a

2ia , which multiplied by 2πi
gives the answer.

Problem 8. 3.4

x/(x2+a2) = x/2ia(1/(x−ia)−1/(x+ia)) = 1/2ia(ia/(x−ia)+ia/(x+
ia)) = (1/(x − ia) + 1/(x + ia))/2. So we care about sin(x)(1/(x − ia) +
1/(x+ ia))/2. Its residue at x = ia is sin(ia)/2 = (e−a − ea)/4i. ?

Problem 9. 3.6

Integrate along the same contour. The only pole is at z = i and is of
order n + 1. So we look at 1/n!( d

dn
1

(x+i)n+1 )(i) = 1/n!(n + 1)...(2n)/22n =

(2n)!/(22n(n!)2)/2i, which multiplied by 2πi gives the answer.

Problem 10. 3.9

The left and right parts are equal because of symmetry (sinx = −sin(x+
π)). The upper part should equal log(2), but I don’t know why.


