MATH215A, HW?2

Solutions
10/18/11
Problem 1. 5.1
sinmz = % sinmz = 0 & e = ¢71M% & 272 = | & 2 € 7.

Zero of order 1 is equivalent to order 1 of the pole of 1/ sin wz. The second we
get by seeing that lim, o ->— = 1/ (if the order was not 1 then that limit
would not converge). The residue is 1/7 (the function is clearly periodic so
the residues at the even integers are all 1/7 and by the fact that it’s odd we
get that the residues at odd integers are —1/7).

Problem 2. 3.14

Look at f(1/z). If it has an essential singularity at 0, then pick any
zop # 0. Now we know that the range of f is dense as z — 0. We also know
that the image of f in some small ball around zy contains a ball around
f(20). But this means that the image of f around this ball intersects the
image of f in any arbitrarily small ball around 0 (because of the denseness).
Thus, f cannot be injective. So the singularity at 0 is not essential, so
f(1/z) is some polynomial of 1/z, so f is some polynomial of z. If its degree
is more than 1 it is not injective (fundamental theorem of algebra), so the
degree of f is 1.

Problem 3. 3.15

a) Let g(2) = f(1/2). Then we have that supy,|_g [g(2)| < A/R*+ B =
SUD|.|=R |zFg(2)| < A+ B * R¥, so 2Ff(1/z) is bounded around 0, so it has
a non-essential singularity at 0, so f has a non-essential singularity at oo,
so it is a polynomial. The fact that the degree is < k follows directly, since
it is trivial that for large enough z € R P(z) > 0 for any polynomial with
positive first coefficient.

b) We can do a FLT to make the circle into the line Re(z) = 1/2 (h(z) =
1/(#+1)). Then the inner circle becomes the right half-plane. Then we can



rotate this s.t. we get the upper half-plane with removed the (0, 1) interval.
But we have a theorem (Schwarz reflection principle) that says that we can
extend f on the lower half-plane as well. But then we have a set on which
f is constantly 0, so f is constantly 0.

c) Look at p(z) = (z — wy)...(z — wg). We have [p(0)] = 1. But the
maximum principle we have that there is a point on the circle for which
Ip(2)| > 1, which is what we wanted. Since |p(z)| is continuous on the circle
and p(w;) = 0 we have by the intermediate value theorem that there is a z
for which |p(z)| = 1.

d) Look at ef(*). This is also entire and |e/(?)] = |efel/(2)| 5o it is
bounded. So it is constant. So f(z) is constant.

Problem 4. 3.16

a) f has a unique zero at z = 0, so it is bounded from below on the
circle. g is analytic so it is bounded from above on the circle (compact set).
Thus, there is an € > 0 s.t. |f| > €|g| on the circle, so the number of zeros
of f and f + €g in the disk is the same.

b) Suppose it is not. Then there exists a € (0,¢€) s.t. there exists a
sequence z,... converging to x s.t. the sequence z,,... doesn’t converge
to z;. But the disk is a compact set, so this sequence has a convergent
subseqgence converging to, say, zop. WLOG let limz,, = zp. But then, if
|(f + zg)(20)] = k > 0. In particular, there is some ball around zg s.t.
|f + xg| > k/2 in this ball. So then if we pick a close enough z; to x (with
i big enough s.t. z, is in this ball), using the fact that g is bounded from
above, we will get that |(f + z;g)(2z,)| > 0, which is a contradiction. So the
function is continuous.

Problem 5. 3.17

a) Suppose it does not contain a root. Then 1/f(2) is holomorphic. But
then by the maximum principle (since again |1/f(z)| = 1 on the circle),
we have that |f(z)| = 1 in the entire disk. But an analytic non-constant
function cannot have constant absolute value (since it is an open map), so
we have a contradiction. So we have a root of f(z) = 0. But now Rouche’s
theorem tells us that f(z) = w has a root for every w in the unit disk (since
on the circle |f| =1 > |w|).

b) The exact same argument works - again we look at 1/f(z) and since
we already have a point for which |f(2)| < 1 = |1/f(2)| > 1, this cannot
be analytic in the unit disk. Thus, f has a zero, after which we can again
apply Rouche’s Theorem.



Problem 6. 5.2

/(2" +1) = 5;(1/(2® = 1) = 1/(2° +1)) = 5,(5,(1/(x —a) = 1/(z+a)) —
2 (1/(x—b)—1/(x+b))), where a = €™/, b = €3™/%. Now, integrating along
the contour consisting of a big upper semicircle of radius R and [—R, R] and
using the fact that the integral along the semicircle converges to 0 (trivial -
length grows linearly, the integrand grows like R™*) we get that the integral
equals ZZ (L + L) = 7/2(ei™/* + e7"/4) = 714/2/2 (we only care about the
poles in the upper half-plane). The poles are eim/4 gdim/4 873”7/4, eim/4,

Problem 7. 3.3

cosy = €ite changing * — —x we see that we can just integrate
e /(2% + a?) and we’ll get the same answer. Again, we use the same semi-
circle and part of the real line. The only pole is # = ia, it has order 1 and
the residue at it is limg,_ s, (x —ia) = %, which multiplied by 27
gives the answer.

e/l(t
x2+a?

Problem 8. 3./

z/(2%+a?) = x/2ia(1/(x—ia)—1/(x+ia)) = 1/2ia(ia/(x—ia)+ia/(x+
ia)) = (1/(x —ia) + 1/(x 4+ ia))/2. So we care about sin(z)(1/(z — ia) +
1/(x + ia))/2. Its residue at = = ia is sin(ia)/2 = (e~ — %) /4i. ?

Problem 9. 3.6

Integrate along the same contour. The only pole is at z = ¢ and is of
order n + 1. So we look at 1/n! (an)(z) = 1/nl(n +1)...(2n) /2% =
(2n)!/(22"(n!)?) /24, which multiplied by 2mi gives the answer.

Problem 10. 5.9

The left and right parts are equal because of symmetry (sinx = —sin(x+
7)). The upper part should equal log(2), but I don’t know why.



