
MATH215A, Homework 1

Solutions

10/11/11

Problem 1. 1.6

(a) Cx is open: Let y ∈ Cx ⊆ Ω. Then ∃ε > 0 s.t. Dε(y) ⊆ Ω, so for
any z ∈ Dε(y) we have z ∈ Cx since we can join x and z by first going
from x to y and then from y to z (say, by following the straight line from
y to z). Cx is connected: Suppose it was not. Then we can split it into
two open sets A and B. Suppose x ∈ A and y ∈ B and look at the curve
f : [0, 1]→ C connecting x and y. Let t0 = inft(f(t) ∈ B) (it exists because
y ∈ B and is > 0 because x /∈ B). If f(t0) ∈ B then openness of B and
continuity of f shows that f(t0 − ε) ∈ B for some ε > 0 which contradicts
minimality of t0. If f(t0) /∈ B, then f(t0) ∈ A and again continuity of f
implies that f(t0+ε) ∈ A for any ε small, which contradicts the definition of
t0 (otherwise stated: path connected componenets are subsets of connected
components).
The equivalence relation:
(i) z ∈ Cz trivially, since z is connected to itself via the empty path (or,
if we don’t like empty paths, via a sufficiently small circle which z lies on,
which we can find by using the openness of Cz).
(ii) Let w ∈ Cz. Then there is a path γ from w to z. But then −γ is a path
from z to w, son z ∈ Cw.
(iii) Let a ∈ Cb, b ∈ Cc. Then a path from a to c we can get by concatenating
the paths from a to b and from b to c, so a ∈ Cc.

(b) Any connected component is open, so it contains a rational point
(since these are dense in R2). Thus, by picking any rational point for a given
component we define an injective map from the set of connected components
to the set of rational numbers, so the set of connected components is at most
countable.

(c) A compact set is bounded. Put it in some large circle, e.g. DR(0).
Then any two points that are outside the circle are in the same connected
component (a path from x to y we can define by e.g. following the lines
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from x to 0 and from y to 0 until they intersect CR(0) and connecting the
two points on the circle by just going around the circle). Any unbounded
component contains at least one point outside DR(0), so any unbounded
component coincides with the component of the points outside DR(0). Thus,
there is only one unbounded component.

Problem 2. 1.7

(a) | w−z
1−w∗z) | ≤ 1 ⇔ (w − z) ∗ (w − z) ≤ (1 − w ∗ z) ∗ (1− w ∗ z) ⇔

(1−w ∗w) ∗ (1− z ∗ z) ≥ 0 (the last is a simple manipulation), which is true
since x ∗ overlinex = |x|2 < 1 for |x| < 1. Equality for |z| = 1 or |w| = 1
follows directly.

(b) F maps the unit disk to itself because of the inequality we have
just proven. It is holomorphic as a quotient of two holomorphic functions
(the denominator is non-zero because |w ∗ z| = |w| ∗ |z| < |z| ≤ 1). By
direct calculation F (0) = w−0

1−w∗0 = w,F (w) = w−w
1−w∗w = 0. |F (z) = 1 for

z = 1 because of the equality case of (a). F (F (z)) = w−F (z)
1−wF (z) = z by direct

calculation. Thus, F is bijective.

Problem 3. 1.9

du
dr = du

dx
dx
dr + du

dy
dy
dr = du

dx cos θ + du
dy sin θ, dv

dr = dv
dx

dx
dr + dv

dy
dy
dr = dv

dx cos θ +
dv
dy sin θ, dudθ = du

dx
dx
dθ + du

dy
dy
dθ = −r ∗ dudx sin θ+ r ∗ dudy cos θ, dvdθ = dv

dx
dx
dθ + dv

dy
dy
dθ =

−r ∗ dvdx sin θ+ r ∗ dvdy cos θ. Now a direct application of the Cauchy-Riemann
equations shows the validity of the statements we are required to prove. For
f(z) = log z we have du

dr = 1
r , dv

dθ = 1, du
dθ = 0 = dv

dr , so the equations are
satisfied, so the function is holomorphic.

Problem 4. 1.10

Let f(x+ i ∗ y) = u+ i ∗ v. Then df
dz = 1/2 ∗ (ux − i ∗ uy + i ∗ vx + vy) =

1/2 ∗ ((ux + vy) + i ∗ (vx − uy)), dfdz = 1/2 ∗ (ux + i ∗ uy + i ∗ vx − vy) =

1/2 ∗ ((ux − vy) + i ∗ (vx + uy)). Applying d
dz to the first gives 1/4 ∗ (uxx +

vyx−vxy+uyy+i∗(vxx−uyx+uyx+vyy)) = 1/4∗(uxx+uyy+i∗(vxx+vyy)).
Applying d

dz to the second gives 1/4 ∗ (uxx − vyx + vxy + uyy + i ∗ (vxx +
uyx − uyx + vyy)) = 1/4 ∗ (uxx + uyy + i ∗ (vxx + vyy)). So we need to show

uxx + uyy + i ∗ (vxx + vyy) = d2f
dx2

+ d2f
dy2

which is true by just expanding the
RHS by definition.

Problem 5. 1.11
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We know that if f is holomorphic, then df
dz = 0, which according to the

previous exercise means that the Laplacian is zero. Alternatively, we can
get the same result by just differentiating the Cauchy-Riemann equations.

Problem 6.

(d) ((3n)!/(n!)3)1/n = (1+o(1))1/n∗(((3n)3n+1/2e−3n)/(n3n+3/2e−3n))1/n =
(1 + o(1)) ∗ 33 ∗n−1/n = (1 + o(1)) ∗ 27, so the radius is 27 (n1/n → 1 we get
by taking log, the rest are just applications of Stirling’s formula).

(e) If a, b < 0 and a, b ∈ Z, then at some point the coefficients vanish,
so the radius of convergence becomes ∞. Otherwise, we can easily see that
for large n we have {x}(1− {x})(n− [|x|]− 1)! < |x(x+ 1)...(x+ n− 1)| <
(n + [|x|])! (the right is obvious because every term on the RHS bounds
its respective term on the LHS; for the left the idea is the same, the only
difference is that now we need to take care of the negative terms and of
the fractional parts). Actually all we need is that there exist A,B,C s.t.
A∗ (n−C)! < |x(x+ 1)...(x+n−1)| < B ∗ (n+C)!. From this immediately
(A ∗ (n − C)!)1/n < |x(x + 1)...(x + n − 1)|1/n < (B ∗ (n + C)!)1/n, so by
the Sandwich theorem we have |x(x+ 1)...(x+n− 1)|1/n = n/e ∗ (1 + o(1)).
Applying this for the coefficients in our series we get that |an|1/n = 1+o(1),
so the radius is 1.

(f) We have |n!∗(n+r)!∗22∗n+r|1/2∗n+r = 2∗(1+o(1))∗n(n+1/2)/(2∗n+r)∗
(n + r)((n+r+1/2)/(2∗n+r) ∗ e−1 → ∞ (because of the two terms which are
Ω(
√
n)), so the radius of convergence is ∞.

Problem 7. 2.2

We have
∞∫
0

sinx
x dx = 1

2∗i

∞∫
0

ei∗x−e−i∗x

x dx = 1
2∗i(

∞∫
0

ei∗x−1
x dx−

∞∫
0

e−i∗x−1
x dx =

1
2∗i

∞∫
−∞

ei∗x−1
x dx. Now integrate along the big and small semicircles C0 and

C1 shown below. For C0: we have that
∫
C0

1
xdx = π ∗ i and |

∫
C0

ei∗x

x dx| ≤
2 ∗ |

∫
C00

ei∗x

x dx| + |
∫
C01

ei∗x

x dx| where C00 and C01 are shown below (C01

contains the part of C0 that has points with imaginary parts more than
a and C00 is one of the other 2 components). We have |

∫
C00

ei∗x

x dx| ≤
supx∈C00

(ei∗x)/R ∗
∫
C00
|dx| ≤ e−a ∗ π and |

∫
C01

ei∗x

x dx| ≤ |
∫
C01

1
xdx| ≤

1
R ∗ C ∗ a for some constant C (the constant C exists because the length of
the curve approaches a as a/R→ 0). Thus, the integral of ei∗x/x over C0 is
bounded by A∗e−a+B ∗a/R for some constants A and B. Pick R large and
a =

√
R and note that the above tends to 0. About the integral over C1:

We have ei∗x − 1 = 1 + O(x) for x → 0 (this is again from sin(x)/x → 1),
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so |
∫
C1

ei∗x−1
x dx| ≤ O(1) ∗ |

∫
C1
dx| → 0 as x→ 0. Thus, we only care about

the integral over C00 which is −π ∗ i. Using Cauchy’s theorem we get that
our integral equals 1

2∗i(−(π ∗ i)) = π/2.

Problem 8. 2.5

Let f = u(x, y) + iv(x, y) where u, v are real functions. Then we have∫
T
f(z)dz =

∫
T

(ux + vy)dx− i
∫
T

(vx−uy)dy. Now by the Cauchy-Riemann

equations and the Green theorem this integral is equal to 0.

Problem 9. 2.7

By Cauchy’s integral formula we have 2 ∗ π ∗ i ∗ f ′(0) =
∫
Cr

f(z)
z2
dz =

−
∫
Cr

f(−z)
z2

dz (the second is just the transformation z → −z). Thus, we

have |2∗f ′(0)| = | 1
2∗π∗i

∫
Cr

f(z)−f(−z)
z2

dz| ≤ 1
2∗π ∗supCr

|f(z)−f(−z)
z2

|∗
∫
Cr
|dz| ≤

1
2∗π ∗ d/r

2 ∗ 2 ∗ π ∗ r = d/r for any r < 1. Therefore |2 ∗ f ′(0)| ≤ d as the
RHS tends to d as r → 1.

Problem 10. 2.8

Let < 0 < d < 1/2 be fixed. Let D = k(x, d) be the disk with center x
and radius d. From the Cauchy inequalities we get:
|f (n)(x)| ≤ n!

dn ||f(z)||C where C = ∂D.

Now we use that ||f(z)||C ≤ A sup
z∈C

(1+|z|)n and this gives |f (n)| ≤ An sup
z∈C

(1+

|z|)n = An(1 + |x|)n sup
z∈C

(
supz∈C(1 + |z|)n

(1 + |x|)n

)
where An = An!

dn .

Now it remains to show that sup
z∈C

(1 + |z|)n

(1 + |x|)n
≤ En for some constant En

depending only on n. This follows from the trivial 1
2 <

1+|z|
1+|x| < 2. The first

inequality is equivalent to 2|z| + 1 > |x| which is true since |z| > |x| − d.
The second inequality is equivalent to 2|x| + 1 > |z| which is true since
|z| < |x|+ d.

Problem 11. 2.13

There are countably many coefficients cn. Suppose that for every n it is
true that every point z for which cn of f at z is zero is isolated, i.e. that
for every z there exists a circle around z s.t. cn is non-zero for all points
z′ in this circle. We can choose the circles so that they do not intersect
(take any collection of circles that satisfies the above rules and half all their
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radii). Then, since all of these circles contain a rational point, we can define
an injection from the set of points for with cn = 0 to Q, so this set is
countable. But since there are countable many coefficients we get that the
points for which any of the cn is zero are countably many, which contradicts
the condition that this is true for all points in C. Thus, there exists an n s.t.
we have a sequence z1, z2, ... which converges to z0 s.t. cn = 0 for all these
points. Thus, f (n)(zi) = 0∀i. Thus, f (n)(z) is identically zero (Theorem
4.8). Thus, the power series for f is finite and f is a polynomial.

Problem 12. Problem 1(a)

Suppose f were regular at some point z on the unit circle. Clearly, for
any open neighborhood of z there exists a θ = 2 ∗ π ∗ p/2k s.t. ei∗θ is in
this neighborhood (i.e. if the neighborhood contains a disk of radius ε, pick
k > log 4∗π

ε ). But this means that for z = ei∗θ ∗ r and r close enough to 1
we must have f(z) = g(z). But then lim f(z) = lim g(z) for r → 1, which
is a contradiction because the left limit is infinite (because after some point
all the coefficients become 1 and thus f will grow like 2A/(1 − r) for some
A) and the right has to be finite (because g is analytic).

Problem 13. Problem 2

Expanding the right side we get
∞∑
n=1

zn

1− zn
=
∞∑
n=1

zn
∞∑
k=0

zkn =
∞∑

n,k=1

zkn =∑
n=1

d(n)zn. Where we use that d(n) is the number of solutions of ab = n in

integers a, b ≥ 1.

Now suppose z = r for 0 < r < 1. We have f(r) =

∞∑
n=1

rn

1− rn
≥

c

∫ ∞
1

rx

1− rx
dx =

1

ln r

∫ ∞
1

drx

1− rx
= − ln r ln(1 − rx)|∞1 =

ln(1− r)
ln r

. In

a similar way we prove the inequality for all rational values of θ = 2πp/q.
Now since when r → ∞ the right side of the inequality goes to infinity
and the points ei2πp/q are dense on the unit circle we see that f can not be
continued analitically beyond the unit disk.


