
Math 215A HW5

Solutions

November 16, 2011

1 Problem 6.1

We have 1/Γ(s) = eγss
∞∏
n=1

(1+s/n)e−s/n for all s. Thus, Γ(s) = e−γs1/s
∞∏
n=1

n/(n+s)es/n

whenever 1/Γ(s) 6= 0 ⇔ s 6= 0,−1,−2, .... Now, note that γ = limN→∞(
∑

n≤N 1/n −

log(N)), so e−γs = limN→∞(N se−s
∑
n≤N 1/n). Thus, Γ(s) = limN→∞(N se−s

∑
n≤N 1/n1/s

N∏
n=1

n/(n+

s)es/n) = limN→∞
NsN !

s(s+1)...(s+N) , which is what we wanted.

2 Problem 6.3

Using Γ(1/2) =
√
π and the previous exercise we get

√
π = limN→∞

√
NN !

1/2(1/2+1)...(1/2+N) =

limN→∞
2N+1

√
NN !

(2N+1)!! = limN→∞
22N+1

√
N(N !)2

(2N+1)! = limN→∞
22N (N !)2

(2N+1)! 2
√
N = limN→∞

22N (N !)2

(2N+1)!

√
2N + 1

√
2,

which is what we wanted. For the other equality, see that

Γ(s)Γ(s+ 1/2) = limN→∞
N2s+1/2(N !)2

s(s+1/2)...(s+N)(s+N+1/2) = limN→∞
22N+2N2s+1/2(N !)2

s(s+1)..(s+2N+1) =

limN→∞( N2s(2N+1)!
2s(2s+1)..(2s+2N+1)

22N+2N2s+1/2(N !)2

(2N+1)2s(2N+1)!
) = limN→∞( N2s(2N+1)!

2s(2s+1)..(2s+2N+1)
22N (N !)2

(2N+1)!

√
2N + 1 4N2s+1/2

(2N+1)2s+1/2 ) =

limN→∞( N2s(2N+1)!
2s(2s+1)..(2s+2N+1)

22N (N !)2

(2N+1)!

√
2N + 123/2−2s(2N/(2N+1))2s+1/2 = Γ(2s)

√
π21−2s,

where the last is just substituting the factors with their already known limits.

3 Problem 6.5

From the formula from 6.1, we can deduce that |Γ(1/2 + it)| = |Γ(1/2 − it)| (because
it holds for each of the corresponding pairs of terms from the limits). Thus, since

|Γ(1/2+ it)Γ(1/2− it)| = |π/sin(π(1/2+ it))|, we have |Γ(1/2+ it)| = |
√

π
sin(π(1/2+it)) | =

|
√

2π
eiπ(1/2+it)−e−iπ(1/2+it) | = |

√
2π

e−πt+eπt |.
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4 Problem 6.7

(a) As the hint suggests, we have Γ(α)Γ(β) =
∞∫
0

∞∫
0

tα−1sβ−1e−t−sdtds =
∫
(t,s)∈R2

+
tα−1sβ−1e−t−s.

Now looking at the function (u, r) → (ur, u(1 − r)) we can see that this is continuous,
bijective and with a continuous inverse, which sends R+×(0, 1) to R2

+. The determinant
of the derivative matrix is u, so we have

∫
(t,s)∈R2

+
tα−1sβ−1e−t−s =

∫
(u,r)∈R+×(0,1)(u(1−

r))α−1(ur)β−1e−uu =
1∫
0

∞∫
0

(u(1−r))α−1(ur)β−1e−uududr =
1∫
0

(1−r)α−1rβ−1
∞∫
0

(uα+β−1e−ududr =

Γ(α+β)
1∫
0

(1−r)α−1rβ−1dr = Γ(α+β)B(α, β), which is what we wanted (we don’t worry

about dividing, since Re(α) > 0 and Re(β) > 0).

(b) Do the transformation x → 1/x to see that B(α, β) =
1∫
0

(1 − t)α−1tβ−1dt =

∞∫
1

(1− 1/t)α−11/tβ−11/t2dt =
∞∫
1

(t− 1)α−11/tα+βdt =
∞∫
0

tα−11/(t+ 1)α+βdt.

5 6.10

(a) Again, using the hint, we look at the function f(w) = e−wwz−1 along the contour
from the picture. It is easy to see that the integral along the large quarter-circle is zero
(we’ve already done that in one of the HW’s, the idea is to split it into Re(w) < a and
Re(w) > a for some proper a; in this case a = R1−z−b for some small b works). Clearly
the integral along the small quarter-circle is also zero, since f is small as w → 0. Thus,

taking limits we have that Γ(z) =
∞∫
0

e−ttz−1dt =
∞∫
0

e−it(it)z−1d(it) = iz
∞∫
0

e−ittz−1dt.

We’ll prove the result for z ∈ (0, 1), the general result will follow from analytic con-

tinuation. Since e−it = cos(t) − isin(t), we have shown Γ(z)i−z =
∞∫
0

cos(t)tz−1dt −

i
∞∫
0

sin(t)tz−1dt. The result follows from i−z = e−π/2z = cos(π/2z) − isin(π/2z) and

taking real and imaginary parts of the above identity.
(b) As is done in the textbook for the proof of the holomorphicity of Γ, we’ll apply

Theorem 5.4 of Chapter 2 to show that Fε(z) =
∫ 1/ε
ε sin(t)tz−1dt is holomorphic in

the extended strip. Now, our integral is the limit of the above functions as ε → 0,
so we just have to show uniform convergence. We’ll do this by considering strips of
the form (−1 + δ, 1 − δ). Now |

∫ ε
0 sin(t)tz−1dt| = |

∫ ε
0 (sin(t)/t)tzdt| ≤ C|

∫ ε
0 t

zdt| =
C|z||εz+1| < Cεδ, where the first inequality is since sin(x)/x→ 1 as x→ 0; on the other
hand |

∫∞
1/ε sin(t)tz−1dt| ≤ |

∫∞
1/ε sin(t)t−δdt| → 0 since in (a) we’ve shown convergence

of the integral for z = 1− δ. Thus, we have uniform convergence, so
∫∞
0 sin(t)tz−1dt is

holomorphic and agrees with Γ(z)sin(π/2z) for Re(z) ∈ (0, 1), and thus agrees with it
on the whole strip Re(z) ∈ (−1 + δ, 1− δ) for any small δ, which is what we wanted to
show. The first identity is a consequence of sin(x)/x→ 1 and Γ(x)x→ 1 as x→ 0 and
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the second is just substituting with z = −1/2.

6 6.12

(a) Let n be a positive integer. We have Γ(−n − 1/2)G(n + 3/2) = |1/π|, so |Γ(−n −
1/2)| = πG(n + 3/2) = π(n + 1/2)G(n + 1/2) = ... = π(1/2)(3/2)...(n + 1/2)G(1/2) >√
π/2n! (just compare term by term 1/2 + k > k). Thus, if 1/|Γ(s)| were O(ec|s|), then

n! would be O(ecn), which is not true (since it’s Ω((n/e)n) (e.g. integrate log and then
exponentiate)).

(b) That’s done in the chapter. If there were another such function, clearly it would
have order 1, so we can apply Hadamard’s formula to get the form of this function, which
makes it clear that it differs from 1/Γ(z) just by a factor of ecz, which implies that if
this function were O(ecn), then so would be |1/Γ(z)|, which is not true by (a).

7 6.15

For x > 0 we have 1/(ex−1) =
∞∑
n=1

e−nx. Now, 1/Γ(s)
∫∞
0 xs−1/(ex−1)dx = 1/Γ(s)

∫∞
0

∞∑
n=1

e−nxxs−1dx =

1/Γ(s)
∞∑
n=1

∫∞
0 e−nxxs−1dx = 1/Γ(s)

∞∑
n=1

n−s
∫∞
0 e−nx(xn)s−1d(nx) = 1/Γ(s)

∞∑
n=1

n−sΓ(s) =

∞∑
n=1

n−s = ζ(s) (we used Re(s) > 1 for the convergence of
∑

1/ns).

8 6.17

(a) Showing that the function is holomorphic for Re(s) > 0 can be done exactly the same
way as it’s shown in the chapter that Γ is holomorphic for Re(s) > 0 (all we need is to
show uniform convergence of the integral, for which the only thing that is used is the
faster than polynomial decay of f). For the othe part, suppose for some k it is true that

I(s) = (−1)k/Γ(s+ k)
∞∫
0

f (k)(x)xs+k−1dx (true for k = 0). Now integrating by parts we

get I(s) = 1/Γ(s)
∞∫
0

f (k)(x)xs+k−1dx = (−1)k/Γ(s + k)(f (k)(x)xs+k/(s + k)|∞0 − 1/(s +

k)
∞∫
0

f (k+1)(x)xs+kdx = (−1)k+1/Γ(s+ k+ 1)
∞∫
0

f (k+1)(x)xs+kdx (the other summand is

zero, since all derivatives of f decay faster than any polynomial). Thus, by induction,
the formula is true for any k. Now, since Γ(s + k) is non-zero for Re(s) > −k and the
integral defines a holomorphic function for Re(s) > −k (for the same reason for which
I(s) is holomorphic for Re(s) > 0, since f and f (k) satisfy the same decay property), so
we have derived an analytic continuation for I over Re(s) > −k. This is true for any k,
so we have an analytic continuation on the entire complex plane.

(b) Using the above formula for k = n + 1 and plugging in s = −n gives I(−n) =
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(−1)n+1
∞∫
0

f (n+1)(x)dx = (−1)n+1(f (n)(x)|∞0 ) = (−1)nf (n)(0), where again the last is

because of the fast decay of f (n).

9 Problem 2

By Corollary 2.6 we have ζ(s)−1/(s−1) =
∞∑
n=1

n+1∫
n

(1/ns−1/xs)dx. Note that
n+1∫
n

(1/ns−

1/xs) = 1/ns −
n+1∫
n

(x/xs+1) = 1/ns −
n+1∫
n

(({x} + [x])/xs+1) = 1/ns −
n+1∫
n

(n/xs+1 +

{x}/xs+1) =
n+1∫
n

(1/ns−n/xs+1)−
n+1∫
n
{x}/xs+1. Now, applying the mean value theorem

for f(x) = x−s−1 we get |1/ns+1−1/xs+1| ≤ |s+1|/nRe(s)+2 and thus (multiplying by n

and combining this with the similar result from Corollary 2.6) we get |
n+1∫
n
{x}/xs+1| ≤

c|s|/nRe(s)+1, which proves uniform convergence of the sum in the half-plane Re(s) ≥ δ.
Thus, if we show that the identity holds for Re(s) > 1, then we are done by uniqueness
of analytic continuation.

For Re(s) > 1 we just have
n+1∫
n
{x}/xs+1 =

n+1∫
n

(x−[x])/xs+1 =
n+1∫
n

1/xs−n
n+1∫
n

1/xs+1 =

1/(1− s)(1/(n+ 1)s−1 − 1/ns−1) + 1/sn(1/(n+ 1)s − 1/ns). Summing over all n we get
∞∫
1

{x}/xs+1 = 1/(s − 1) − 1/s
∞∑
n=1

n−s = 1/(s − 1) − 1/sζ(s), which is what we wanted.

Thus, the identity holds for Re(s) > 1 and by the previous paragraph this implies that
it holds for Re(s) > 0.

10 P3

We have (integrating by parts a bunch of times):
∞∫
1

( d
k

xk
Qk(x)x−s−1dx) = ( d

k−1

xk−1Qk(x)x−s−1dx)|∞1 + (s+ 1)
∞∫
1

( d
k−1

xk−1Qk(x)x−s−2dx) =

( d
k−1

xk−1Qk(x)x−s−1dx)|∞1 +(s+1)( d
k−2

xk−2Qk(x)x−s−2dx)|∞1 +(s+1)(s+2)
∞∫
1

( d
k−2

xk−2Qk(x)x−s−3dx) =

... =
∑k−1

i=1 (s + i − 1)!/s!( d
k−i

xk−i
Qk(x)x−s−idx)|∞1 + (s + k)!/s!

∞∫
1

Q(x)x−s−k−1dx. Each

of the summands is some polynomial in s, the integral at the end converges since
Re(s+ k + 1) > 1. Thus, the right-hand side is a holomorphic function for Re(s) > −k

(it is holomorphic since it is a sum of polynomials and (s + k)!/s!
∞∫
1

Q(x)x−s−k−1dx,

which is holomorphic by the last problem), thus, it is an analytic continuation of the
function on the left-hand side. Substituting the expression from the problem with our
derived expression gives an analytic continuation of ζ(s) for Re(s) > −k.
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