Homework 7 Solutions

Math 171, Spring 2010
Henry Adams

42.1. Prove that none of the spaces \(\mathbb{R}^n, l^1, l^2, c_0, \) or \(l^\infty \) is compact.

\textit{Solution.} Let \(X = \mathbb{R}^n, l^1, l^2, c_0, \) or \(l^\infty \). Let \(0 = (0, \ldots, 0) \) in the case \(X = \mathbb{R}^n \) and let \(0 = (0, 0, \ldots, 0) \) in the case \(X = l^1, l^2, c_0, \) or \(l^\infty \). For \(n \in \mathbb{N} \), let \(B_n(0) \) be the ball of radius \(n \) about \(0 \) with respect to the relevant metric on \(X \). Note that \(\mathcal{U} = \{ B_n(0) : n \in \mathbb{N} \} \) is an open cover of \(X \). However, if \(\mathcal{U} \) had a finite subcover, then we would have \(X = B_N(0) \) for some \(N \in \mathbb{N} \). This is a contradiction in all cases. In the case of \(X = \mathbb{R}^N \), note that \((N + 1, 0, \ldots, 0) \notin B_N(0) \). In the case \(X = l^1, l^2, c_0, \) or \(l^\infty \), note that \((N + 1, 0, \ldots) \notin B_N(0) \). Hence none of the spaces \(\mathbb{R}^n, l^1, l^2, c_0, \) or \(l^\infty \) is compact.

42.3. Let \(X_1, \ldots, X_n \) be a finite collection of compact subsets of a metric space \(M \). Prove that \(X_1 \cup X_2 \cup \cdots \cup X_n \) is a compact metric space. Show (by example) that this result does not generalize to infinite unions.

\textit{Solution.} Let \(\mathcal{U} \) be an open cover of \(X_1 \cup X_2 \cup \cdots \cup X_n \). Then \(\mathcal{U} \) is an open cover of \(X_i \) for each \(1 \leq i \leq n \). Since each \(X_i \) is compact, there is a finite subcover \(U_i^* \) of \(X_i \) for each \(i \). Let \(U^* = \bigcup_{i=1}^n U_i^* \). Then \(U^* \) is finite as it is a finite union of finite collections. Also, \(U^* \) covers \(X_i \) for all \(i \) as \(U_i^* \) covers \(X_i \) for each \(i \). Therefore \(U^* \) is a finite subcollection of \(\mathcal{U} \) covering \(X_1 \cup X_2 \cup \cdots \cup X_n \), and so \(X_1 \cup X_2 \cup \cdots \cup X_n \) is compact.

To see that this result does not generalize to infinite unions, let \(M = \mathbb{R} \) and let \(X_n = [n-1, n] \) for all \(n \in \mathbb{N} \). Then each \(X_n \) is compact, but \(\bigcup_{n=1}^\infty X_n = \bigcup_{n=1}^\infty [n-1, n] = [0, \infty) \) is not compact.

42.5. A collection \(\mathcal{C} \) of subsets of a set \(X \) is said to have the finite intersection property if whenever \(\{ C_1, \ldots, C_n \} \) is a finite subcollection of \(\mathcal{C} \), we have \(C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset \). Prove that a metric space \(M \) is compact if and only if whenever \(\mathcal{C} \) is a collection of closed subsets of \(M \) having the finite intersection property, we have \(\cap \mathcal{C} \neq \emptyset \).

\textit{Solution.} First, suppose that \(M \) is compact. Let \(\mathcal{C} \) be a collection of closed subsets of \(M \) having the finite intersection property. Let \(\mathcal{U} = \{ C^c : C \in \mathcal{C} \} \). Then \(\mathcal{U} \) is an open collection of open sets. Suppose for a contradiction that \(\cup \mathcal{U} = M \). Then since \(M \) is compact, there exists some finite subcover \(\mathcal{U}^* \) of \(\mathcal{U} \). Label the sets in \(\mathcal{U}^* \) as \(U_i^* = \{ C_1^c, \ldots, C_n^c \} \) with \(C_i \in \mathcal{C} \) for all \(i \). Since \(\mathcal{C} \) has the finite intersection property, we have \(C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset \). Taking complements, we get \(C_1^c \cup C_2^c \cup \cdots \cup C_n \neq M \), contradicting the fact that \(\mathcal{U}^* \) is a cover of \(M \). Hence it must be that \(\cup \mathcal{U} \neq M \), and taking complements gives \(\cap \mathcal{C} \neq \emptyset \).

Next, suppose whenever \(\mathcal{C} \) is a collection of closed subsets of \(M \) having the finite intersection property, we have \(\cap \mathcal{C} \neq \emptyset \). Let \(\mathcal{U} \) be an open cover of \(M \). Let \(\mathcal{C} = \{ U^c : U \in \mathcal{U} \} \), so \(\mathcal{C} \) is a collection of closed subsets. Since \(\mathcal{U} \) is an open cover, we have \(\cup \mathcal{U} = M \) hence \(\cap \mathcal{C} = \emptyset \). By assumption, this means that \(U_1^c \cap \cdots \cap U_n^c = \emptyset \) for some finite subset of \(\mathcal{C} \). Taking complements, we get that \(U_1 \cup \cdots \cup U_n = M \) for some finite subset of \(\mathcal{U} \). This shows that \(M \) is compact.

42.10. Let \(\{ X_n \} \) be a sequence of compact subsets of a metric space \(M \) with \(X_1 \supset X_2 \supset X_3 \supset \cdots \). Prove that if \(U \) is an open set containing \(\bigcap X_n \), then there exists \(X_n \subset U \).

\textit{Solution.} Note \(M = U \cup \bigcup_{n=1}^\infty X_n^c \) so \(X_1 \subset (U \cup \bigcup_{n=2}^\infty X_n^c) \). Hence \(U, X_1^c, X_2^c, X_3^c, X_4^c, \ldots \) is an open cover of the compact space \(X_1 \). By definition of compactness, there exists some finite
42.12. A contractive mapping on \(M \) is a function \(f \) from the metric space \((M,d) \) into itself satisfying
\[
d(f(x), f(y)) < d(x,y) \quad \text{whenever } x, y \in M \text{ with } x \neq y.
\]
Prove that if \(f \) is a contractive mapping on a compact metric space \(M \), there exists a unique point \(x \in M \) with \(f(x) = x \).

Solution. Suppose there does not exist such a fixed point \(x \) with \(f(x) = x \). Then the function \(g(x) = d(f(x), x) \) positive. To see that \(g \) is continuous, use the fact that \(f \) is continuous (which follows since \(f \) satisfies the contractive mapping property) and the triangle inequality. Since \(M \) is compact, by Corollary 42.7 there exists \(c \in M \) such that \(g(c) \leq g(x) \) for all \(x \in M \). As \(g \) is positive, this means that \(g(c) > 0 \). However, note

\[
g(f(c)) = d(f(f(c)), f(c)) < d(f(c), c) = g(c).
\]

This is a contradiction. Therefore, there must exist a fixed point \(x \in M \) with \(f(x) = x \). This fixed point must be unique, for if there were some \(y \neq x \) with \(f(y) = y \), then we would have \(d(f(x), f(y)) = d(x, y) \), which contradicts our hypotheses.

43.1. Prove that the set \(\{x \in M : d(x, 0) = 1\} \) is closed and bounded in \(M \), but not compact if \(M \) is \(l^2 \), \(c_0 \), or \(l^\infty \).

Solution. Let \(f(x) = d(x, 0) \), which is a continuous function by Theorem 40.3. So \(\{x \in M : d(x, 0) = 1\} \) is the continuous preimage of a closed set, hence closed by Theorem 40.5(ii).

Note that \(d(y, z) \leq 2 \) for all \(y, z \in \{x \in M : d(x, 0) = 1\} \), as \(d(y, z) \leq d(y, 0) + d(0, z) = 1 + 1 = 2 \). Hence \(\{x \in M : d(x, 0) = 1\} \) is bounded by Definition 43.6.

Let \(\delta^{(k)} \) in \(l^2 \), \(c_0 \), or \(l^\infty \) be given by

\[
\delta^{(k)}_n = \begin{cases}
1 & \text{if } n = k \\
0 & \text{if } n \neq k.
\end{cases}
\]

Check that \(\{\delta^{(k)}\}_{k=1}^\infty \) is a sequence of points in \(l^2 \), \(c_0 \), or \(l^\infty \) that has no convergent subsequence. Therefore \(l^2 \), \(c_0 \), and \(l^\infty \) are not compact by Theorem 43.5.

43.4. If \((M,d) \) is a bounded metric space, we let \(\text{diam} \ M = \text{lub}\{d(x, y) : x, y \in M\} \). Prove that if \((M,d) \) is a compact metric space, there exist \(x, y \in M \) such that \(d(x, y) = \text{diam} \ M \).

Solution. I will give two solutions.

First solution: For each \(x \in M \), define \(f(x) = \max\{d(x, y) : y \in M\} \), where this maximum is realized by Theorem 40.3 and Corollary 42.7. Let \(y_x \in M \) be a point such that \(f(x) = d(x, y_x) \).

We want to show that \(f \) is continuous. Let \(\epsilon > 0 \). Suppose \(d(x, x') < \epsilon \). It must be that \(d(x, y_x) < \epsilon + d(x', y_x) \), for otherwise we would have

\[
d(x, y_x) \leq d(x, x') + d(x', y_x) < \epsilon + d(x', y_x) \leq d(x, y_x),
\]

contradicting the choice of \(y_x \). Similarly, it must be that \(d(x', y_{x'}) < \epsilon + d(x, y_x) \). Together, these two inequalities show that \(|d(x, y_x) - d(x', y_{x'})| < \epsilon \). Hence

\[
|f(x) - f(x')| = |d(x, y_x) - d(x', y_{x'})| < \epsilon.
\]

This shows \(f \) is continuous.

Therefore, we apply Corollary 42.7 to see that there exists some \(c \in M \) such that \(f(c) \geq f(x) \) for all \(x \in M \). Hence

\[
d(c, y_c) = f(c) \geq f(x) = \max\{d(x, y) : y \in M\}
\]
44.6(a,b,c). Let 44.1. Give an example of metric spaces X

43.7. Let M be a compact subset of a metric space M. If $y \in X^c$, prove that there exists a point $a \in X$ such that $d(a, y) \leq d(x, y)$ for all $x \in X$. Give an example to show that the conclusion may fail if “compact” is replaced by “closed.”

\textbf{Solution.} Let $f(x) = d(x, y)$. By Theorem 40.3, the function f is continuous. By Corollary 42.7, there exists a point $a \in X$ such that $d(a, y) \leq d(x, y)$ for all $x \in X$.

To see that the conclusion may fail if “compact” is replaced by “closed,” let $M = l^\infty$. Let $\delta^{(k)} \in l^\infty$ be given by

$$\delta^{(k)} = \begin{cases} 1 & \text{if } n = k \\ 0 & \text{if } n \neq k, \end{cases}$$

and let $X = \{\delta^{(k)} : k \in \mathbb{P}\}$. Note that X contains its limit points and is therefore closed. Let $y = (-1, -\frac{1}{2}, \ldots, -\frac{1}{n}, \ldots)$. So $d(\delta^{(k)}, y) = 1 + \frac{1}{k}$ for all $k \in \mathbb{P}$, which implies that there does not exist a fixed $k_0 \in \mathbb{P}$ such that $d(\delta^{(k_0)}, y) \leq d(\delta^{(k)}, y)$ for all $k \in \mathbb{P}$.

44.1. Give an example of metric spaces M_1 and M_2 and a continuous function f from M_1 onto M_2 such that M_2 is compact, but M_1 is not compact.

\textbf{Solution.} Let $M_1 = \mathbb{R}$, let M_2 be the trivial metric space $\{0\}$ consisting of a single point, and let $f : \mathbb{R} \to \{0\}$ be given by $f(x) = 0$ for all $x \in \mathbb{R}$. Check that f is a continuous function. Note that $M_2 = \{0\}$ is compact, but $M_1 = \mathbb{R}$ is not compact.

44.6(a,b,c). Let f be a one-to-one function from a metric space M_1 onto a metric space M_2. If f and f^{-1} are continuous, we say that f is a homeomorphism and that M_1 and M_2 are homeomorphic metric spaces.

(a) Prove that any two closed intervals of \mathbb{R} are homeomorphic.

\textbf{Solution.} Let $[a, b]$ and $[c, d]$ be any two closed intervals of \mathbb{R}. Define $f : [a, b] \to [c, d]$ by $f(x) = \frac{d-c}{b-a}(x-a) + c$. Check that f is one-to-one and onto, and that $f^{-1}[c, d] \to [a, b]$ is given by $f^{-1}(x) = \frac{b-d}{a-c}(x-c) + a$. Check that f and f^{-1} are continuous functions, and hence $[a, b]$ and $[c, d]$ are homeomorphic.

(b) Prove (a) with “closed” replaced by “open”; with “closed” replaced by “half-open”.

\textbf{Solution.} When “closed” is replaced by “open”, the argument given in (a) works after replacing $[a, b]$ and $[c, d]$ with (a, b) and (c, d), respectively.

When “closed” is replaced by “half-open,” there are four cases. If the two intervals are $(a, b]$ and $(c, d]$ or $(a, b]$ and $[c, d)$, then define f by $f(x) = -\frac{d-c}{b-a}(x-a) + d$, and proceed as above.

(c) Prove that a closed interval is not homeomorphic to either an open interval or a half-open interval.

\textbf{Solution.} I will prove the following claim: if two spaces M_1 and M_2 are homeomorphic, then M_1 is compact if and only if M_2 is compact. For the proof, note that if M_1 is compact, then $M_2 = f(M_1)$

for all $x \in M$. This shows that $d(c, y_c) = \text{lub}\{d(x, y) : x, y \in M\} = \text{diam } M$.

Second solution: Consider the product metric space $(M \times M, d')$, where d' is defined by $d'[(x_1, x_2), (y_1, y_2)] = d(x_1, y_1) + d(y_1, y_2)$ as in Exercise 35.8. Since (M, d) is compact, by Exercise 43.2 it follows that $(M \times M, d')$ is compact. Show that $d : M \times M \to \mathbb{R}$ is continuous, using the definition of d' and the triangle inequality. So Corollary 42.7 tells us that there exist points $(c, d) \in M \times M$ such that $d(c, d) \geq d(x, y)$ for all $x, y \in M$. Hence $d(c, d) = \text{diam } M$.

43.7. Let M be a compact subset of a metric space M. If $y \in X^c$, prove that there exists a point $a \in X$ such that $d(a, y) \leq d(x, y)$ for all $x \in X$. Give an example to show that the conclusion may fail if “compact” is replaced by “closed.”

\textbf{Solution.} Let $f(x) = d(x, y)$. By Theorem 40.3, the function f is continuous. By Corollary 42.7, there exists a point $a \in X$ such that $d(a, y) \leq d(x, y)$ for all $x \in X$.

To see that the conclusion may fail if “compact” is replaced by “closed,” let $M = l^\infty$. Let $\delta^{(k)} \in l^\infty$ be given by

$$\delta^{(k)} = \begin{cases} 1 & \text{if } n = k \\ 0 & \text{if } n \neq k, \end{cases}$$

and let $X = \{\delta^{(k)} : k \in \mathbb{P}\}$. Note that X contains its limit points and is therefore closed. Let $y = (-1, -\frac{1}{2}, \ldots, -\frac{1}{n}, \ldots)$. So $d(\delta^{(k)}, y) = 1 + \frac{1}{k}$ for all $k \in \mathbb{P}$, which implies that there does not exist a fixed $k_0 \in \mathbb{P}$ such that $d(\delta^{(k_0)}, y) \leq d(\delta^{(k)}, y)$ for all $k \in \mathbb{P}$.
is compact by Theorem 44.1. Conversely, if M_2 is compact, then $M_1 = f^{-1}(M_2)$ is compact by Theorem 44.1.

Since a closed interval is compact but an open interval or a half-open interval is not compact, our claim shows that a closed interval is not homeomorphic to either an open interval or a half-open interval.

44.8. Let X be a compact subset of \mathbb{R}, and let f be a real-valued function on X. Prove that f is continuous if and only if $\{(x, f(x)) : x \in X\}$ is a compact subset of \mathbb{R}^2.

Solution. First, suppose f is continuous. Let $\{(x_n, f(x_n))\}$ be any sequence of points in $\{(x, f(x)) : x \in X\}$. Then $\{x_n\}$ is a sequence of points in X. Since X is compact, by Theorem 43.5 there is a convergent subsequence $\{x_{n_k}\}$ with $\lim_{k \to \infty} x_{n_k} = x \in X$. Since f is continuous, by Theorem 40.2 we have $\lim_{k \to \infty} f(x_{n_k}) = f(x)$. Hence $\lim_{k \to \infty} (x_{n_k}, f(x_{n_k})) = (x, f(x))$ by Theorem 37.2. Hence $\{(x, f(x)) : x \in X\}$ is compact by Theorem 43.5.

Conversely, suppose that $\{(x, f(x)) : x \in X\}$ is a compact subset of \mathbb{R}^2. Let $\{x_n\}$ be any sequence of points in X with $\lim_{n \to \infty} x_n = x \in X$. Consider the sequence of points $\{(x_n, f(x_n))\}$ in $\{(x, f(x)) : x \in X\}$. Let U be any open neighborhood about $(x, f(x))$ in \mathbb{R}^2. Suppose for a contradiction that $\{(x, f(x))\}$ is not eventually inside U. Then there is a subsequence $\{(x_{n_k}, f(x_{n_k}))\}$ which lies in $\{(x, f(x)) : x \in X\} \setminus U$. Note $\{(x, f(x)) : x \in X\} \setminus U$ is a closed subset of the compact set $\{(x, f(x)) : x \in X\}$ and is hence compact. So $\{(x_{n_k}, f(x_{n_k}))\}$ has a convergent subsequence in $\{(x, f(x)) : x \in X\} \setminus U$. But any subsequence of $\{x_{n_k}\}$ must converge to x, and so any subsequence of $\{(x_{n_k}, f(x_{n_k}))\}$ must converge to (x, y) for some y, which contradicts the fact that there is no point of the form (x, y) in $\{(x, f(x)) : x \in X\} \setminus U$. Hence it must be the case that $\{(x_n, f(x_n))\}$ is eventually inside U, and so $\lim_{n \to \infty} (x_n, f(x_n)) = (x, f(x))$. By Theorem 37.2, this means $\lim_{n \to \infty} f(x_n) = f(x)$ and so f is continuous by Theorem 40.2.