MATH 155: PROBLEM SET 8
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1. For a nice smooth function f with rapid decay show that
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Prove that for any x > 0
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2. Let x5 denote the Legendre symbol (mod 5): that is, for all n € Z we have
x5(n) = (). This is a Dirichlet character (mod 5), and associated to it is the
Dirichlet L-function
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Let 6(t, x5) be defined by
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Show that for Re(s) > 1
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3. (a). Show that

.’L‘ X5 i < > Ze—Sﬂ'x(n—&—a/5)2,

a=1 nez

and invoke the relation for the inner sum from problem 1. Conclude that
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(b). If 5|k show that the inner sum over a above equals zero. If 5 1 k, using that

multiplication by k permutes the reduced residue classes (mod 5), show that the
sum over a equals (£)7(xs), where 7(x5) is the Gauss sum
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(c). Conclude that
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(d). Show that 7(xs5)? = 5, and by computing determine the sign of 7(xs).

O(x,xs5) = 0(1/x, xs).
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4. Prove the functional equation
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T((1 = 5)/2)L(1 = s, x5),

and show that the above function is holomorphic for all s € C.



