MATH 155: PROBLEM SET 8

Due May 31

1. For a nice smooth function f with rapid decay show that

$$
\sum_{n \in \mathbb{Z}} f(n+\alpha)=\sum_{k \in \mathbb{Z}} \hat{f}(k) e^{2 \pi i k \alpha}
$$

Prove that for any $x>0$

$$
x^{-\frac{1}{2}} \sum_{n \in \mathbb{Z}} e^{-\pi(n+\alpha)^{2} / x}=\sum_{k \in \mathbb{Z}} e^{-\pi k^{2} x+2 \pi i k \alpha},
$$

and that

$$
-2 \pi x^{-\frac{3}{2}} \sum_{n \in \mathbb{Z}}(n+\alpha) e^{-\pi(n+\alpha)^{2} / x}=2 \pi i \sum_{k \in \mathbb{Z}} k e^{-\pi k^{2} x+2 \pi i k \alpha} .
$$

2. Let χ_{5} denote the Legendre symbol $(\bmod 5)$: that is, for all $n \in \mathbb{Z}$ we have $\chi_{5}(n)=\left(\frac{n}{5}\right)$. This is a Dirichlet character $(\bmod 5)$, and associated to it is the Dirichlet L-function

$$
L\left(s, \chi_{5}\right)=\sum_{n=1}^{\infty} \frac{\chi_{5}(n)}{n^{s}}
$$

Let $\theta\left(t, \chi_{5}\right)$ be defined by

$$
\theta\left(t, \chi_{5}\right)=\sum_{n \in \mathbb{Z}} \chi_{5}(n) e^{-\pi n^{2} t / 5}
$$

Show that for $\operatorname{Re}(s)>1$

$$
\left(\frac{5}{\pi}\right)^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) L\left(s, \chi_{5}\right)=\frac{1}{2} \int_{0}^{\infty} \theta\left(x, \chi_{5}\right) x^{s / 2} \frac{d x}{x}
$$

3. (a). Show that

$$
\theta\left(x, \chi_{5}\right)=\sum_{a=1}^{4}\left(\frac{a}{5}\right) \sum_{n \in \mathbb{Z}} e^{-5 \pi x(n+a / 5)^{2}}
$$

and invoke the relation for the inner sum from problem 1. Conclude that

$$
\theta\left(x, \chi_{5}\right)=\frac{1}{\sqrt{5 x}} \sum_{k \in \mathbb{Z}} e^{-\pi k^{2} /(5 x)}\left(\sum_{a=1}^{4}\left(\frac{a}{5}\right) e^{2 \pi i k a / 5}\right)
$$

(b). If $5 \mid k$ show that the inner sum over a above equals zero. If $5 \nmid k$, using that multiplication by k permutes the reduced residue classes $(\bmod 5)$, show that the sum over a equals $\left(\frac{k}{5}\right) \tau\left(\chi_{5}\right)$, where $\tau\left(\chi_{5}\right)$ is the Gauss sum

$$
\tau\left(\chi_{5}\right)=\sum_{a=1}^{4}\left(\frac{a}{5}\right) e^{2 \pi i a / 5}
$$

(c). Conclude that

$$
\theta\left(x, \chi_{5}\right)=\frac{\tau\left(\chi_{5}\right)}{\sqrt{5}} \frac{1}{\sqrt{x}} \theta\left(1 / x, \chi_{5}\right)
$$

(d). Show that $\tau\left(\chi_{5}\right)^{2}=5$, and by computing determine the sign of $\tau\left(\chi_{5}\right)$.
4. Prove the functional equation

$$
\left(\frac{5}{\pi}\right)^{s / 2} \Gamma(s / 2) L\left(s, \chi_{5}\right)=\left(\frac{5}{\pi}\right)^{(1-s) / 2} \Gamma((1-s) / 2) L\left(1-s, \chi_{5}\right)
$$

and show that the above function is holomorphic for all $s \in \mathbb{C}$.

