MATH 155: PROBLEM SET 5

Due May 10

1. Let $|t| \ge 1$. Prove that

$$\zeta(1+it) = \sum_{n \le |t|} \frac{1}{n^{1+it}} + O(1).$$

Conclude that

$$|\zeta(1+it)| \le \log |t| + O(1).$$

2. For $|t| \ge 1$ obtain, as in problem 1, an approximation for $\zeta'(1+it)$, and deduce an estimate for $|\zeta'(1+it)|$.

3. Prove, using the Euler product or otherwise, that for $\sigma > 1$

$$\zeta(\sigma) \ge |\zeta(\sigma + it)| \ge \frac{\zeta(2\sigma)}{\zeta(\sigma)}.$$

4. Let $||x|| := \min_{n \in \mathbb{Z}} |x - n|$ denote the distance between x and the nearest integer. Suppose you are given real numbers $\alpha_1, \ldots, \alpha_K$. For any integer $N \ge 1$ prove that there exists n with $1 \le n \le N^K$ such that $||n\alpha_j|| \le 1/N$ for each $j = 1, \ldots, K$. Hint: Divide the K-dimensional hypercube $[0, 1)^K$ into cuboids with side-length 1/N. For each $0 \le n \le N^K$ associate a point in this hypercube; use the pigeonhole principle.

5. Let $\sigma > 1$ be fixed, and suppose $\epsilon > 0$ is given. Show that there exists a non-zero real number $T = T(\sigma, \epsilon)$ such that

$$|\zeta(\sigma + it) - \zeta(\sigma + it + iT)| \le \epsilon$$

for all real numbers t. In other words, the zeta-function on the line $\operatorname{Re}(s) = \sigma$ is almost periodic, and T is called an ϵ -almost period. Hint: First show that $\zeta(\sigma + it)$ is well approximated by a suitable truncation of the Euler product, and then use the result of problem 4.

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$