MATH 155: PROBLEM SET 5

Due May 10

1. Let $|t| \geq 1$. Prove that

$$
\zeta(1+i t)=\sum_{n \leq|t|} \frac{1}{n^{1+i t}}+O(1)
$$

Conclude that

$$
|\zeta(1+i t)| \leq \log |t|+O(1)
$$

2. For $|t| \geq 1$ obtain, as in problem 1 , an approximation for $\zeta^{\prime}(1+i t)$, and deduce an estimate for $\left|\zeta^{\prime}(1+i t)\right|$.
3. Prove, using the Euler product or otherwise, that for $\sigma>1$

$$
\zeta(\sigma) \geq|\zeta(\sigma+i t)| \geq \frac{\zeta(2 \sigma)}{\zeta(\sigma)}
$$

4. Let $\|x\|:=\min _{n \in \mathbb{Z}}|x-n|$ denote the distance between x and the nearest integer. Suppose you are given real numbers $\alpha_{1}, \ldots, \alpha_{K}$. For any integer $N \geq 1$ prove that there exists n with $1 \leq n \leq N^{K}$ such that $\left\|n \alpha_{j}\right\| \leq 1 / N$ for each $j=1, \ldots, K$. Hint: Divide the K-dimensional hypercube $[0,1)^{K}$ into cuboids with side-length $1 / N$. For each $0 \leq n \leq N^{K}$ associate a point in this hypercube; use the pigeonhole principle.
5. Let $\sigma>1$ be fixed, and suppose $\epsilon>0$ is given. Show that there exists a non-zero real number $T=T(\sigma, \epsilon)$ such that

$$
|\zeta(\sigma+i t)-\zeta(\sigma+i t+i T)| \leq \epsilon
$$

for all real numbers t. In other words, the zeta-function on the line $\operatorname{Re}(s)=\sigma$ is almost periodic, and T is called an ϵ-almost period. Hint: First show that $\zeta(\sigma+i t)$ is well approximated by a suitable truncation of the Euler product, and then use the result of problem 4.

