MATH 155: PROBLEM SET 4

Due May 3

1. Let $Q(s)=\sum_{n=1}^{\infty} \mu(n)^{2} / n^{s}$. In what region does Q converge absolutely? Does Q have an Euler product; in what region does that converge absolutely? Can you express Q in terms of the Riemann zeta-function? Analytically continue $(s-1) Q(s)$ to as large a region as you can.
2. Using Euler-Mclaurin or otherwise prove that for $\sigma>1$ we have

$$
\zeta(s)=\frac{s}{s-1}-\frac{1}{2}+\frac{s}{12}+s(s+1) \int_{1^{-}}^{\infty} \frac{\left(\{y\}^{2} / 2-\{y\} / 2+1 / 12\right)}{y^{s+2}} d y
$$

Use the RHS to obtain a definition for $\zeta(s)$ in $\sigma>-1$ (and $s \neq 1$). What is $\zeta(0)$? Carry out the Euler-Mclaurin process one more time to obtain a definition of $\zeta(s)$ for $\sigma>-2$ (and $s \neq 1$). Determine $\zeta(-1)$.
3. In this problem put $\sigma=1+1 / \log x$. Show that

$$
\sum_{p>x} \log \left(1-\frac{1}{p^{\sigma}}\right)^{-1}=\sum_{p>x} \frac{1}{p^{\sigma}}+O\left(\frac{1}{x}\right)=\int_{1}^{\infty} \frac{e^{-t}}{t} d t+O\left(\frac{1}{\log x}\right)
$$

Hint: use that $\sum_{p \leq z}(\log p) / p=\log z+O(1)$.
4. Again put $\sigma=1+1 / \log x$. Show that

$$
\sum_{p \leq x}\left(\log \left(1-\frac{1}{p^{\sigma}}\right)^{-1}-\log \left(1-\frac{1}{p}\right)^{-1}\right)=-\int_{0}^{1} \frac{1-e^{-t}}{t} d t+O\left(\frac{1}{\log x}\right)
$$

This may be a little challenging; one hint is to use the Taylor series for $\log (1-t)^{-1}$.
5. Using problems 3 and 4 and information about $\log \zeta(\sigma)$ from class, establish that

$$
\sum_{p \leq x} \log \left(1-\frac{1}{p}\right)^{-1}=\log \log x+\int_{0}^{1} \frac{1-e^{-t}}{t} d t-\int_{1}^{\infty} \frac{e^{-t}}{t} d t+O\left(\frac{1}{\log x}\right)
$$

Use a computer to evaluate the constant in the RHS above; what do you get?

