## MATH 155: PROBLEM SET 3

Due Thursday, April 26.

1. Prove that the 3 -divisor function $d_{3}(n)$ is at most $C(\epsilon) n^{\epsilon}$ for any $\epsilon>0$ and some positive constant $C(\epsilon)$. Determine an explicit constant $C$ such that $d_{3}(n) \leq C n^{1 / 4}$ for all $n$.
2. Show that

$$
\frac{n}{\phi(n)}=\sum_{d \mid n} \frac{\mu(d)^{2}}{\phi(d)}
$$

Show that

$$
\sum_{n \leq x} \frac{n}{\phi(n)}=c x+O(\log x)
$$

for some constant $c$. Show that $c=\zeta(2) \zeta(3) / \zeta(6)$.
3. (a). Show that

$$
\sum_{p q \leq x} \frac{1}{p q}=\left(\sum_{p \leq x} \frac{1}{p}\right)^{2}-2\left(\sum_{p \leq \sqrt{x}} \frac{1}{p}\right)\left(\sum_{x / p<q \leq x} \frac{1}{q}\right)-\left(\sum_{\sqrt{x}<p \leq x} \frac{1}{p}\right)^{2}
$$

(b). For $p \leq \sqrt{x}$ show that

$$
\sum_{x / p<q \leq x} \frac{1}{q}=\log \log x-\log \log (x / p)+O\left(\frac{1}{\log x}\right)=O\left(\frac{\log p}{\log x}\right)
$$

(c). Conclude that

$$
\sum_{p q \leq x} \frac{1}{p q}=\left(\sum_{p \leq x} \frac{1}{p}\right)^{2}+O(1)
$$

(d). Let $B$ be the constant in the asymptotic

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+B+O\left(\frac{1}{\log x}\right)
$$

Show that

$$
\sum_{n \leq x}(\omega(n)-\log \log x-B)^{2} \sim x \log \log x
$$

