MATH 155: PROBLEM SET 2

Due April 19

1. Let d_{x} denote the least common multiple of the integers not exceeding x. Show that

$$
\binom{2 n}{n}=\prod_{k=1}^{\infty} d_{2 n / k}^{(-1)^{k-1}}
$$

What can you say about the size of d_{x} ?
2. Prove directly the identity from class

$$
\mu(n) \log n=-\sum_{a b=n} \mu(a) \Lambda(b)
$$

3. Let f and g be two multiplicative functions. Show that $f * g$ is also multiplicative. A function is called completely multiplicative if it satisfies $f(m n)=f(m) f(n)$ for all m and n. Is the convolution of two completely multiplicative functions necessarily completely multiplicative?
4. Prove that

$$
2^{\omega(n)}=\sum_{d^{2} m=n} \mu(d) d(m)
$$

(Hint: One way to check such identities is to prove them for prime powers, and then use multiplicativity.) Prove that

$$
\sum_{n \leq x} 2^{\omega(n)}=\frac{6}{\pi^{2}} x \log x+c x+O(\sqrt{x} \log x)
$$

for some constant c. You may use without proof that $\zeta(2)=\pi^{2} / 6$.

